

CORRELAÇÃO ENTRE DIGESTIBILIDADE EM PEPSINA COM ENERGIA METABOLIZÁVEL E OS COEFICIENTES DE DIGESTIBILIDADE DE AMINOÁCIDOS DA FARINHA DE VÍSCERAS E OSSOS DE SUÍNOS PARA FRANGOS DE CORTE

Maria Giulia Stefanello Langone¹, Jardel Andrei Müller² e Fernando Castro Tavernari³

¹Graduanda em Engenharia de Alimentos pelo Instituto Federal Catarinense, Campus Concórdia, estagiária na Embrapa Suínos e Aves, bolsista CNPQ/PIBIC, giuliamariart @gmail.com

²Mestre em Zootecnia pela Universidade do Estado de Santa Catarina, Campus Chapecó

³Pesquisador da Embrapa Suínos e Aves

Palavras-chave: farinha de origem animal; digestibilidade em pepsina; energia metabolizável; aminoácidos.

INTRODUÇÃO

As farinhas de origem animal (FOA), são subprodutos obtidos após o processamento dos resíduos resultantes do processo de obtenção da carne (1). Esses podem ser utilizados na dieta de frangos de corte com o propósito de fornecer aminoácidos, fósforo e energia (2), possibilitando ajustar a inclusão dos ingredientes mais onerosos da ração e assim minimizar os custos de produção. No entanto, uma vez que a contribuição nutricional dessas é variável, existe uma dificuldade na assertividade das metas de desempenho dos animais (3). Esse fator faz com que seja necessário à contínua avaliação da composição nutricional (4) e principalmente, determinar os coeficientes de digestibilidade, tornando possível o refinamento das dietas e aumento da quantidade de informações do banco de alimentos. Mais especificamente, a digestibilidade em pepsina é um método in vitro para avaliar a qualidade da proteína de origem animal, com boa correlação com ensaios biológicos, rápida execução e baixo custo (5). Contudo, essa metodologia não fornece o valor de Energia Metabolizável Aparente corrigida para balanço de nitrogênio (EMAn) e os coeficientes de digestibilidade de aminoácidos (CDAAs) (6). Isto posto, outra forma de determinar tais informações é por meio das equações de predição, que permitem determinar indiretamente as informações nutricionais. Dessa forma, correlacionando-as com a EMAn e os CDAAs das FOA podem trazer resultados positivos sobre o uso desses subprodutos (7). Diante do exposto, este trabalho teve como objetivo avaliar se a digestibilidade em pepsina das FOA contribui para a correlação de equações para predição da EMAn e dos CDAAs para frangos de corte.

MATERIAL E MÉTODOS

Foram realizados três experimentos, dois deles in vivo e um in vitro. Aqueles in vivo foram realizados para determinar a energia metabolizável aparente (EMA), a energia metabolizável aparente corrigida para o balanço de nitrogênio (EMAn), os coeficientes de digestibilidade ileal da proteína bruta e aminoácidos (CDAAs). Por sua vez, o ensaio in vitro correspondeu a digestibilidade em pepsina. A avaliação ocorreu em três lotes de farinhas de origem animal, os quais consistiam em dois lotes de farinha de vísceras e ossos de frangos (FVOF1 e FVOF2), e um lote de farinha de vísceras e ossos de suínos (FVOS), submetidos também a diferentes períodos de processamento térmico em autoclave a 121º C, com o intuito de gerar diferentes valores de digestibilidade. Para a EMAn foi utilizado o método tradicional de coleta de excreta e o delineamento inteiramente casualizado (DIC), com 16 tratamentos, 8 repetições e 10 animais por unidade experimental. No mesmo dia, foram introduzidas as rações experimentais, que corresponderam a uma ração referência (300 kcal/kg; 1,189 Lis/Dig, %; 0,449 P disp, %) e 15 rações com alimento teste (80% ração referência + 20% FOA), formulada para atender as exigências nutricionais correspondente a fase de vida dos animais, de acordo com. Para o ensaio de CDAAs foi utilizado o mesmo delineamento experimental que o ensaio anterior e as aves foram abatidas aos 29 dias de idade após 5 dias de consumo da ração experimental para coleta ileal. As dietas foram compostas por um tratamento com ração isenta de aminoácidos (300kcal/kg; 0,0 Lis/Dig, %; 0,449 P disp, %) e 15 tratamentos com os alimentos teste adicionados a 20% na ração isenta de aas. Em cada ração foi adicionado 1% de celite, como indicador indigestível. Posteriormente, foram feitas análises laboratoriais em que foram determinados a matéria seca (MS), cinzas (CZ), extrato etéreo (EE), energia bruta (EB) e proteína bruta (PB). A metodologia utilizada para determinar a energia metabolizável foi tradicional com coleta total de excretas (8) utilizadas para avaliar MS, EB, nitrogênio e assim, valores de EMA e EMAn. O conteúdo ileal, foi submetido aos procedimentos para quantificar os valores de indicador indigestível (cinza insolúvel em ácido - CIA) e de aminoácidos, para que fossem calculados os coeficientes de digestibilidade ileal verdadeiro (CDIv).

RESULTADOS E DISCUSSÃO

Com os dados obtidos a partir do ensaio de coleta total de excretas das FOA de aves e suínos avaliou-se um efeito linear negativo entre a EMAn da FVOF1 e a digestibilidade em pepsina, em que a EMAn tendeu a aumentar com a redução da digestibilidade em pepsina. Quando avaliado a FVOS e a FVOF2, não houve interação entre a EMAn e a digestibilidade em pepsina. Observou-se que é possível correlacionar a digestibilidade em pepsina com os CDAAs e EMAn das FOA para frangos de corte, resultados apresentados na Tabela 1. Contudo, ocorreram efeitos distintos nas equações para as diferentes FOA utilizadas, na qual

17 Jinc Jornada de Iniciação Cientifica

17ª Jornada de Iniciação Científica - JINC 20 de Outubro de 2023 - Concórdia, SC

o CDAAs e a EMAn tenderam a aumentar com a redução da digestibilidade em pepsina da FVOF1, efeito contrário ao observado na FVOF2, que apresentou aumento do CDAAs com o aumento da digestibilidade em pepsina, e quando avaliado o efeito sobre a EMAn, não houve interação.

Na FVOS, as equações geradas foram quadráticas para os CDAAs e geraram as maiores correlações, contudo para EMAN não houve interação. As FOA que apresentarem solubilidade proteica acima de 55%, podem ser consideradas de boa qualidade, já as farinhas com solubilidade abaixo de 45%, poderia ser um indicativo de uma FOA de má qualidade (9). A redução da digestibilidade em pepsina muitas vezes pode estar associada a efeitos prejudiciais do processamento inadequado da FOA, principalmente nos casos em que ocorra o super processamento.

CONCLUSÕES

A digestibilidade em pepsina das FOA contribui para a correlação de equações para predição da EMAn e dos CDAAs para frangos de corte. É possível utilizar variáveis determinadas *in vitro* e de composição físico-químicas para melhorar equações de predição da EMAn e dos CDAAs de matérias primas utilizadas na nutrição de frangos de corte.

REFERÊNCIAS

- ABRA. Associação Brasileira de Reciclagem Animal: Anuário. Brasília. 2019. Disponível em: https://abra.ind.br/anuario2019/>.
- 2. BESKI, S. S. M.; SWICK, R. A.; IJI, P. A. Specialized protein products in broiler chicken nutrition: A review. **Animal Nutrition**, v. 1, n. 2, p. 47–53, 1 jun. 2015. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2405654515000281. Acesso em: 29 ago. 2023.
- 3. EAGLESON, C.; CLARK, T.; HILL, B.; DANIELS, B.; EAGLESON, A.; GOODWIN, H. L.; WATKINS, S. Impact of meat and bone meal nutritional variability on broiler performance. **Journal of Applied Poultry Research**, v. 27, n. 2, p. 172–179, 1 jun. 2018. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S1056617119301643>. Acesso em: 29 ago. 2023.
- SOL, C.; CASTILLEJOS, L.; LÓPEZ-VERGÉ, S.; GASA, J. Prediction of the digestibility and energy contents of non-conventional by-products for pigs from their chemical composition and *in vitro* digestibility. **Animal Feed Science and Technology**, v. 234, n. July, p. 237–243, dez. 2017. Disponível em: https://doi.org/10.1016/j.anifeedsci.2017.10.003>.
- SHURSON, G. C.; HUNĞ, Y.-T.; JANG, J. C.; URRIOLA, P. E. Measures Matter—Determining the True Nutri-Physiological Value of Feed Ingredients for Swine. **Animals**, v. 11, n. 5, p. 1259, 27 abr. 2021. Disponível em: https://www.mdpi.com/2076-2615/11/5/1259>.
- 7. SAKOMURA, N. K.; ROSTAGNO, H. S. **Métodos de pesquisa em nutrição de monogástricos**. 2.ed. Jaboticabal: Funep, 2016. 262p.
- 8. SIBBALD, I. R.; SLINGER, S. J. A Biological Assay for Metabolizable Energy in Poultry Feed Ingredients Together With Findings Which Demonstrate Some of the Problems Associated With the Evaluation of Fats. **Poultry Science**, v. 42, n. 2, p. 313–325, 1 mar. 1963. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S003257911942912X. Acesso em: 29 ago. 2023.
- BELLAVER, C.; ZANOTTO, D. L. Parâmetros de qualidade em gorduras e subprodutos protéicos de origem animal. In: CONFERENCIA APINCO 2004, Anais... [s.l: s.n.] Disponível em: https://www.nutritime.com.br/arquivos_internos/artigosBK/Artigo04_bellaver.pdf

Tabela 1. Valores médios da energia metabolizável das farinhas utilizadas no estudo.

Farinha	Dig Pep (%)	EMAn (kcal/kg)	Р	EPM	CV (%)
FVOF1	52,98	3466±37,24 c			
	51,18	3535±40,15 bc			
	47,81	3568±48,43 abc	0,0006L	21,68	3,83
	40,75	3646±27,56 ab			
	39,04	3668±55,77 a			
FVOS	44,55	2716±66,99			
	35,43	2662±52,21			
	35,00	2678±62,52	0,623	22,74	5,4
	31,38	2658±22,97			
	30,22	2599±41,76			
FVOF2	65,24	3773±72,72			
	64,90	3611±75,81			
	62,01	3771±66,91	0,1651	34,56	5,96
	60,89	3566±102,5			
	56,15	3612±41,86			

Dig Pep: Digestibilidade em pepsina; EMAn: Energia metabolizável aparente corrigida para o balanço de nitrogênio; a,b,c Médias seguidas por letras distintas na coluna diferem significativamente pelo teste t-Student (P≤0,05). L Linear.