
Vol.:(0123456789)1 3

Theoretical and Applied Genetics           (2024) 137:9  
https://doi.org/10.1007/s00122-023-04512-w

ORIGINAL ARTICLE

Using visual scores for genomic prediction of complex traits 
in breeding programs

Camila Ferreira Azevedo1,2  · Luis Felipe Ventorim Ferrão2  · Juliana Benevenuto2  · 
Marcos Deon Vilela de Resende1,3,4  · Moyses Nascimento1  · Ana Carolina Campana Nascimento1  · 
Patricio R. Munoz2 

Received: 9 July 2023 / Accepted: 21 November 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Key message An approach for handling visual scores with potential errors and subjectivity in scores was evaluated 
in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making.
Abstract Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of 
implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and 
analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding 
values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic 
prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated 
these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) 
collecting data using an intermediate number of categories (1–3 and 1–5) is the best strategy, even considering errors associ-
ated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but 
marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; 
(iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to 
real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in 
the evaluation of 600–1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, 
is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores 
traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evalu-
ator teams and in high-quality phenotyping.

Introduction

Over the last century, plant and animal breeders have used 
quantitative genetics to estimate genetic parameters and pre-
dict phenotypic traits. These traits are typically modeled as 
a function of the genetic makeup of plants (genotype) and 
the conditions in which that plant developed (environment). 
The traditional statistical framework in this field relies on a 
core assumption, the normality of the residuals and, conse-
quently, the response variables. The use of linear models for 
phenotypes that follow a Normal (or Gaussian) distribution 
is attractive due to its simplicity, robustness, straightforward 
implementation, and support by a well-established theory. 
However, data collection in plant breeding often involves 
visual scores to simplify assessments and reduce the costs 
of phenotyping even, when traits are originally normally dis-
tributed. In such cases, statistical challenges may arise do 
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not exist in the original scale. A central question faced by 
biometricians is how they should model these phenotypes 
visually scored and if such normality violation may affect 
estimates of genetic parameters of key interest.

At least in theory, the violation of the normality assump-
tion in these data sets can invalidate the model and affect 
future decisions, such as leading to highly imprecise esti-
mates (Schielzeth et al. 2020). To address these issues, 
breeders and biometricians have used various strategies. The 
simplest approach is ignoring the scale of the recorded data, 
under the argument that large sample sizes follow the cen-
tral limit theorem–which states that treatment means have 
an approximately normal distribution when sample sizes 
are large enough (Montesinos-López et al. 2017). Another 
common alternative is transforming the phenotypes, which 
can stabilize the residual variation, and hence help fulfill 
the assumptions required by linear modeling. Although 
both alternatives are popular in the plant breeding literature, 
empirical evidence shows that statistical inference's accuracy 
and power can be reduced when shoehorning the data into 
classical statistical methods (Stroup 2015).

A more formal approach to analyzing categorical traits 
relies on using a generalized linear model (GLM) (McCul-
lagh and Nelder 1989). In this model, the mean of response 
is modeled as a function of explanatory variables, and the 
response variable is assumed to be conditionally distributed 
according to an exponential family distribution (e.g., Bino-
mial or Poisson distributions). Several methodologies have 
been proposed in the genetics field to handle categorical 
data, including mixed-model-based approaches (Harville 
and Mee 1984; Gilmour et al. 1985), Bayesian methodolo-
gies (Montesinos-López et al. 2015a, 2020a; Pérez‐Rod-
ríguez et  al. 2020), and machine learning and artificial 
intelligence techniques (González-Recio et al. 2014; Mon-
tesinos-López et al. 2020b; Montesinos López et al. 2022a). 
However, breeders are still seeking answers regarding easily 
implementable methods that provide accurate results, the 
best approach to record categorical data instead of record-
ing the trait in its original scale and whether they should 
continue with this practice or make an effort to record data 
in the original scale.

Another important aspect for practical implementation 
is that contemporaneous breeding programs have modeled 
phenotypic observations as a function of variations at the 
DNA level. Referred to as genomic selection, this method-
ology is a form of marker-assisted selection in which all 
available molecular markers are used to predict quantitative 
traits (Meuwissen et al. 2001). Despite its importance, the 
debate around using of non-continuous traits remains the 
same: most genomic prediction models are based on linear 
regression models that assume continuous and normally dis-
tributed phenotypes, without clear evidence on the impact 
of normality violation on estimating genetics parameters. 

Some recent studies have relaxed these assumptions and 
applied threshold models and Bayesian ordinal regression. 
For example, Montesinos-López et al. (2015b) introduced 
genomic selection models for ordinal traits in maize, and 
reported gains when genotype-by-interaction was taken 
into account. They also reported the use of ordinal logistic 
regression for predictions, under the argument that ordi-
nal models are more robust for dealing with outlying data 
and provide interpretable results (Montesinos-López et al. 
2015b). In animal science, ordinal and continuous data were 
compared, and the use of threshold traits resulted in mark-
edly lower accuracy than a linear model (Kizilkaya et al. 
2014). More recently, Merrick et al. (2022) reported that 
using machine learning methods led to higher predictive 
accuracy for the classification and prediction of traits with 
skewed distributions. However, most of these studies have 
focused on the predictive performance rather than estimat-
ing genetic parameters of key interest, such as selection gain 
and marker effects. They have also not fully addressed the 
challenges breeders face when assigning scores instead of 
measuring continuous traits.

In this context, it is still unclear how to analyze pheno-
typic data that are normally distributed but are categorized. 
A prime example is yield evaluation in fruit crops. Using 
Blueberry (Vaccinium spp.) as our biological model, yield 
is commonly evaluated after all berries are manually picked 
and weighed. Remarkably, harvesting takes place multi-
ple times during the crop season, which makes the process 
slow, laborious, and expensive. As an alternative, breeders 
visually classify the genotypes using scores that can range 
between 1(low production) and 5 (high production). Despite 
the simplicity, the use of visual assessments does not relieve 
breeders of important decisions, i.e., the choice of increase 
costs of screening a large population using visual scores or 
conducing reduced experimental by using numerical scoring 
for continuous variation in a variable.

Aiming to shed light on the relevance of using visual 
score traits in plant breeding, we conceptualized this study 
in two sections. First, we simulated continuous data with 
Gaussian distribution, categorized it, and included different 
levels of noise–mimicking potential errors associated with 
recording visual scores. We draw attention on the impact 
of using categorical traits for prediction and genetic infer-
ence using parametric and non-parametric models. In the 
sequence, we used real data collected in a large blueberry 
breeding population and modeled categorical traits evaluated 
over multiple years and locations. Collectively, in this study 
we addressed the following questions: (i) what is the best 
strategy for recording and modeling categorical data? (ii) 
what is the effect of the operators' experience (error level) 
when estimating genetic parameters? (iii) should categorical 
traits be modeled using parametric or non-parametric meth-
ods? and finally, (iv) how can breeders allocate resources for 
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phenotyping to collect continuous and categorical data, to 
maximize predictive gains?

Material and methods

The Materials and Methods section of the study is organized 
as follows. The “Statistical and machine learning methods” 
section outlines the use of parametric and non-parametric 
models for predicting and estimating genetic parameters. 
The "Simulated Data" and “Scenarios of Analyzes” sec-
tions describe the development of simulations for the experi-
ments, using a stochastic model that considers various lev-
els of noise/errors and the scenarios of Analyzes evaluated 
using the simulated data. The "Real Data" section applies the 
findings from the simulated results to real data Analyzes on 
blueberries. Finally, the "Genomic prediction and efficient 
measures calculation" section presents the metrics used to 
compare the different analysis approaches.

Statistical and machine learning methods

For data modeling, we employed two main approaches: 
statistical methods (including Generalized Linear Mixed 
Model, Linear Mixed Model, Bayesian Ordinal Regres-
sion Model, and Bayesian Linear Regression Model) and 
machine learning methods (Random Forest Regression and 
Random Forest Classification).

Generalized linear mixed model and linear mixed 
model

The Generalized Linear Mixed Model (GLMM) is defined 
as:

where l is the vector of latent variables (called liabilities) 
for the vector of phenotypic values represented by y , 1 is a 
vector of the same dimension of l being all elements equal 
to 1, � is the trait mean, u is the vector of additive genetic 
random effects of individuals with u|�2

u
∼ N(0, �2

u
G), G is 

the additive genomic relationship matrix (VanRaden 2008) 
between individuals and �2

u
 is the additive genetic variance, 

Z is the matrix of incidence of random effects and e is the 
vector of random errors. In a generalized linear model, it is 
assumed that each observation of the variable Y has a dis-
tribution belonging to the exponential family. In this case, 
the expected value of Y is defined as:

where g(.) is the link function. The linear mixed model 
(LMM) is a particular case of GLMM, in which the variable 

(1)l = 1� + Zu + e

(2)E(Y) = g−1(l)

Y follows a normal distribution with mean 1� + Zu and a 
covariance matrix given by I�2

e
 , where �2

e
 is the residual 

variance, and whose link function is the identity (McCul-
lagh and Nelder 1989). Suppose the Y variable consists 
of levels of some categorical factors and has a natural 
ordering, an adequate link function is the probit func-
tion. Ordinal categorical predictions for phenotypes with 
K categories are defined based on threshold parameters 
�

�

= (�0 = −∞, �1, �2,… , �K−1, �K = +∞) that have a con-
tinuous scale and relate to the observed ordinal categorical 
response, according to:

where i = 1,… , n and n is the number of the observations.
Therefore, in the ordinal model, Yi is a random variable that 

takes values1, ...,K , with the following probabilities:

where FN is the Gaussian cumulative distribution function.
Nelder and Wedderburn (1972) demonstrated the transfor-

mation of ỹ given by the equation:

where ỹ is a linear combination of the expected value of 
the liability and the discrepancy between the observed and 
adjusted values, and g�

(.) is the first derivative of g(.) . Fol-
lowing this transformation, g�(E(Y))(y − E(Y)) follows a nor-
mal distribution. In this case, Henderson’s generalized linear 
mixed model equations (GLMME) can lead to the BLUP in 
linear mixed models when the response variable is defined 
as the latent variable ỹ.

So, the estimation and prediction algorithms for the linear 
mixed model case can be adapted as the mixed model equa-
tions below (Resende et al. 2018):

where S−1 is a diagonal matrix with elements equal to V(Y)�2

e
 

and �2

e
 is the residual variance on the continuous scale (lia-

bilities). The Restricted maximum likelihood (REML) esti-
mators are given by:

YKi =

⎧⎪⎨⎪⎩

1 if 𝛾0 < li ≤ 𝛾1
2 if 𝛾1 < li ≤ 𝛾2
⋮

K if 𝛾K−1 < li ≤ 𝛾K

(3)
P
(
Yi = k|𝜇, u, �) = P

(
𝛾k−1 < li ≤ 𝛾k|𝜇, u, �

)
= FN(𝛾k − 𝜇 − ui) − FN(𝛾k−1 − 𝜇 − ui)

(4)ỹ = 1� + Zu + g�(E(Y))(y − E(Y))

(5)

[
1

�

S−11 1
�

S−1Z

Z
�

S−11 Z
�

S−1Z + G−1 1

�2
u

][
�̂

û

]
=

[
1
�

S−1ỹ

Z
�

S−1ỹ

]

�̂2

u
=

�̂2G−1

q − tr(G−1C22)∕�2
u
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where n is the number of the observations, q is the number 
of random effect levels, tr is trace matrix operator, �2

e
 and �2

u
 

are values obtained in the previous iteration of the algorithm 
and C22 is the partition of the inverse of the coefficients of 
the mixed model equations, referring to random effects.

And the solution to the GLMME may be expressed in the 
following way:

where V = S + �2

u
ZGZ�.

These procedures were implemented in the ASReml pack-
age in software R (Butler 2022), for each replicated data set 
within the scenarios and real data set.

Bayesian ordinal regression model and Bayesian 
linear regression model

Model (1) can be used under a Bayesian framework. The 
Bayesian Ordinal Regression Model (BORM) model assumes 
the following prior distribution for the unknown parameter 
vector � = (�, u, l, �, �2

u
):

where I is an identity matrix and �2

e
= 1 to reach identi-

fiability for unobservable liabilities (even when the num-
ber of unknown parameters is higher than the sample 
size), �2

�
 is a value assumed as 1010 that represents a vague 

prior knowledge, G is the additive genomic relationship 
matrix (VanRaden 2008) between individuals and �2

u
 is the 

additive genetic variance. The v , s2 , ak and bk are called 
hyperparameters.

The joint posterior density of �, u, �, �2

u
 and the liabilities 

l is given by:

�̂2

e
=

(y − 1�̂ − Zû)�S−1(y − 1�̂ − Zû)

n − 1 − q − tr(G−1C22)∕�2
u

�2

e

(6)�̂ =
(
1
�

V−1
1

)−1

1
�

V−1ỹ

(7)û = �2

u
GZ�V−1 (̃y − 1�)

� ∼ N(0, �2

�
)

u|�2

u
∼ N(0, �2

u
G)

�2

u
∼ �−2(v, s2)

�k ∼ U(ak, bk)

(8)l|�, u ∼ N(1� + Zu, I�2

e
)

(9)
p
(
�, u, l, �, �2

u
|y) ∝ p(y|l, �)p(l|�, u)p(�)p(�)p(u|�2

u

)
p
(
�2

u

)

The inference of the parameters ( �, u, l, �, �2

u
) is based 

on their marginal posterior distributions, obtained indi-
rectly from full conditional posterior distributions through 
the Markov Chain Monte Carlo (MCMC) algorithms. 
These full conditional posterior distributions were pre-
sented by Montesinos López et al. (2022b). These proce-
dures were implemented by the BGLR package in software 
R (Pérez and de los Campos 2014) to each replicated data 
set within each scenario and to the real data by defining 
500,000 iterations for the MCMC algorithms, a burn-
in period of 50,000 MCMC cycles, and thin equals to 10 
before saving samples from each, totaling 45,000 MCMC 
cycles. The û , �̂  , �̂2

u
 and �̂2

e
 estimates were obtained as 

the posterior mean of their respective marginal poste-
rior distributions. In the Bayesian Linear Regression 
Model (BLRM), the joint posterior density is simplified 
t o  p

(
�, u, �2

u
, �2

e
|y) ∝ p(y|�, u)p(�)p(u|�2

u

)
p
(
�2

u

)
p
(
�2

e

)
 

because the own response variable Y assumes the Normal 
distribution, e.g.,, y|�, u, �2

e
∼ N(1� + Zu, I�2

e
).

Random forest regression and random forest 
classification

Random Forest Regression (RFR) and Random Forest Clas-
sification (RFC) are supervised machine learning methods 
based on tree algorithms that can apply to continuous, binary 
and categorical variables, respectively (James et al. 2013). 
The tree algorithms divide the predictor space ( X1,X2,… ,Xp

–in this study, molecular markers) into several non-overlap-
ping regions ( R1, ...,RJ ), and these stratifications are based 
on the optimization of cost functions. The regression tree is 
indicated for continuous traits, and the goal is to find boxes 
R1, ...,RJ that minimize the Residual Sum of Squares given 
by:

where ŷRj
 is the mean of response observations (continuous 

phenotypes) within the jth region. However, instead of con-
sidering each possible partition of space in J regions to 
reduce the computational time of the Analyzes, recursive 
binary splitting is performed by selecting the predictor Xj 
and the cutpoint s and then minimizing the equation:

where ŷR1
 and ŷR2

 are, respectively, the mean of response 
observations in R1(j, s) and R2(j, s).

The classification tree procedure is very similar to a 
regression tree, but is indicated for binary and categorical 

J∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2

(10)
∑

i∶xi∈R1(j,s)

(
yi − ŷR1

)2
+

∑
i∶xi∈R2(j,s)

(
yi − ŷR2

)2
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traits, and uses other cost functions like the Gini index, given 
by:

where p̂jk is the proportion of observations in the jth region 
that are from the kth category. Typically, a single regression 
or classification tree has high variability in its predictions 
and, as a result, a reduced ability to make accurate predic-
tions. To improve the predictive and classification perfor-
mance of the tree, refinements such as Random Forest can 
be used. Random Forest builds multiple trees that are decor-
related by using a subset of predictor variables in each parti-
tion, and then averages or takes the mode of the predicted 
values. This results in independent predicted values, which 
reduces the variability of the tree (Ho 1995). The number of 
predictors ( m ) suggested by Hastie et al. (2009) is m =

√
p 

for classification trees (RFC) and m = p∕3 for regression 
trees (RFR).

These procedures were implemented by the randomFor-
est package in software R (Liaw and Wiener 2022) to each 
replicated data set within each scenario and real data.

Simulated data

The effect of categorizing continuous traits using a simu-
lated data set was first studied by simulating phenotypic 
traits with contrasting genetic architectures. The simu-
lated genome consisted of 10 pairs of chromosomes with 
a genetic length of 1.43 Morgans and a physical length of 
8 ×  108 base pairs. The recombination rate was calculated 
based on the genome size (i.e., 1.43 Morgans per 8 × 10

8 
base pairs, which equals 1.8 × 10

−9 per base pair), and the 
mutation rate was set to 2 × 10

−9 per base pair (Batista 
et al. 2021). Sequences for each chromosome were ran-
domly chosen to have 1,000 causal loci per chromosome 
(a total of 10,000 across the genome) and were generated 
using the Markovian Coalescent Simulator (Chen et al. 
2009). After generating genome sequences, we created 
50 founder genotypes that were used as initial parents in 
the burn-in phase. The following steps involved crosses 
between highly heterozygous hybrids. After simulating the 
crosses, 10% of the resulting F1 progenies (5,000 geno-
types) were selected based on their estimated breeding 
value (500 genotypes). Then, using genomic models, we 
selected 50 genotypes to be parents in the next breeding 
cycle. This simulation represents a typical small effective 
population size (Ne = 50). The methods and analysis sce-
narios were evaluated using the average of ten replicates, 
and each replicate consisted of: (i) a burn-in phase that 
consisted of 20 cycles of breeding, and (ii) an evaluation 
phase that simulated future breeding with different analysis 

G =

K∑
k=1

p̂jk(1 − p̂jk)

strategies. In this way, we simulated a classical recurrent 
selection breeding program in which the allele frequencies 
of target traits are increased by selecting the best individu-
als and crossing them to create a new generation.

In our breeding design, we simulated traits with two 
genetic architectures within the current population: (i) a 
qualitative trait controlled by three large quantitative trait 
loci (QTL) and high heritability (0.60); and (ii) a quantita-
tive trait following the infinitesimal model, with 100 QTL 
and low heritability (0.10). For each QTL, we assigned 
one additive effect on the phenotype following a normal 
distribution with zero mean and variance, resulting in the 
desired heritability level (Gaynor et al. 2021). We added 
a random deviation from a normal distribution N(0,100) 
to the genotypic value. All simulations were carried out 
using AlphaSimR (Gaynor et al. 2021), following a similar 
crossing and selection design as those described by Batista 
et al. (2021).

As part of the simulation process, continuous phenotypic 
traits ( Yi ) were categorized as follows: two (1–2), three 
(1–3), five (1–5), and nine (1–9) categories. The use of four 
different numbers of categories mimics visual scores which 
are commonly used in plant breeding programs. To create 
these categories ( YKi

 ), we used the following thresholds to 
categorize the simulated phenotype values:

where �1, �2,… , �K are the non-equidistant thresholds based 
on quantiles distribution and K is the number of categories 
( K = 2, 3, 5 or 9).

Assuming that visual scores may be subject to errors 
due to the experience of the person recording them, we 
also simulated different levels of noise, or error. We con-
sidered three levels of error: low, moderate, and high, 
which corresponded to the introduction of 20%, 50%, 
and 70% error variance into the scores, respectively. This 
approach is similar to what has been reported in genomic 
studies that have evaluated the effect of mislabeling on 
genomic prediction trials (Biffani et al. 2017; Yabe et al. 
2018). Importantly, an error rate of 20% –even considered 
as “low” in this study–is still a very conservative value for 
most breeding programs. Figure 1 summarizes the differ-
ent categorical classes and noise levels.

Scenarios of analysis

For statistical purposes, genomic prediction was per-
formed according to three theoretical scenarios:

YKi
=

⎧⎪⎨⎪⎩

1 if −∞ < Yi ≤ 𝜏1
2 if 𝜏1 < Yi ≤ 𝜏2
⋮

K if 𝜏K−1 < Yi ≤ 𝜏K
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• Continuous (CONT—benchmark): The simulated pheno-
types ( Yi) were used as the response variable in the Lin-
ear Mixed Model, Bayesian Linear Regression Model, or 
Random Forest Regression. This represents the bench-
mark scenario, where the true continuous distribution 
of the phenotypes is considered and analyzed with an 
appropriate model and probability distribution.

• Categorical-Continuous (CAT-CONT—practical): After 
categorizing the continuous phenotypes ( YKi

 ), we decided 
to process the data into classical statistical methods and 
used the ordinal response variable in the Linear Mixed 
Model, Bayesian Linear Regression Model or Random 
Forest Regression. This scenario represents what is typi-
cally done in breeding programs, where the phenotypes 
are collected as categorical but analyzed as continuous.

• Categorical (CAT—formal): After categorizing the 
continuous phenotypes ( YKi

 ), we used the categori-
cal response variable into a Generalized Linear Mixed 
Model, Bayesian Ordinal Regression Model or Random 
Forest Classification. This scenario represents a formal 
statistical procedure for Analyzes of categorical pheno-
types.

For a graphic representation of the “Simulated Data”, 
“Statistical and machine learning methods” and “Scenarios 
of Analyzes” sections, see Fig. 2.

Real data

We extended our simulated Analyzes to real data using blue-
berry as our biological model. Briefly, as part of the recur-
rent selection strategy, the UF blueberry breeding program 
annually makes up to 150–200 crosses. These crosses are 
designed based on a combination of phenotypic, pedigree, 
and molecular information that predicts plant performance 
for yield, fruit quality, flavor, disease/pest resistance, and 
early season production. From crosses to a cultivar, a four-
stage selection approach is used. In the first stage, 20,000 
progenies are planted in high-density plantations from the 
approximately 200 crosses. The first evaluation cycle is con-
ducted on one-year-old seedlings (Stage I), and about 10% of 
seedlings are advanced to the second stage (Stage II). In the 
second year, with more fruits available for evaluation, a new 
selection (10% of the approximately 2,000 remaining plants) 
is performed. Stage III consists of clonally propagated plants 

Fig. 1  Distribution of observa-
tions simulated by four different 
categories, considering three 
noise levels (low – 20% of 
misclassification, moderate – 
50% of misclassification, and 
high – 70% of misclassification) 
and no errors. Error bars serve 
as graphical representations of 
the variability in simulated data 
across these scenarios
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that have been established in a commercial field and evalu-
ated in a 15-plant clonal plot. Of the genotypes in Stage III, 
approximately 10% of the most promising are selected to 
move on to Stage IV. At this stage, evaluations are conducted 
on commercial farms throughout the state of Florida, using 
clonal field plots with 5–45 plants per plot. The final selec-
tion consists of genotypes that perform well across years 
and locations for evergreen or deciduous systems and are 
released as cultivars. During this four-stage selection pro-
cess, genotypes have been visually evaluated using 1 (low) 
to 5 (high) categorical scores for yield, vigor, healthiness, 
yield estimated via floral buds, yield estimated via flower 
numbers, and yield estimated via green berries. Firmness 
and size have also been visually scored on a scale of 1 (low) 
to 3 (high). Table 1 shows the average number of samples 

genotyped and phenotyped across various locations and 
seasons.

For the genomic analyzes, we followed the same approach 
as described in Ferrão et al. (2021) and Benevenuto et al. 
(2019). Briefly, genotyping was performed using the “Cap-
ture-Seq” approach, and reads were aligned against the 
largest scaffolds of each of the 12 homoeologous groups 
of Vaccinium corymbosum cv. “Draper” genome assem-
bly (Colle et al. 2019). SNPs were called with FreeBayes 
v.1.3.2, using 10,000 probe positions as targets (Garrison 
and Marth 2012). Loci were filtered, applying the follow-
ing criteria: (i) minimum mapping quality of 10; (ii) only 
biallelic locus; (iii) maximum missing data of 50%; (iv) 
minor allele frequency of 1%; and (v) minimum and maxi-
mum mean sequence depth of 3 and 750 across individuals, 

Fig. 2  The following flowchart illustrates the procedures used in 
this study. The simulation component involves simulating traits with 
two genetic architectures (quantitative and qualitative) and Gauss-
ian distributions. The categorization component involves delineat-
ing the continuous phenotypic traits into categories (1 to 2, 1–3, 1–5, 
and 1–9). The noise component includes the creation of noise levels 
(low–20% of misclassification, moderate–50% of misclassification, 
and high–70% of misclassification) in the categorization, for mimick-
ing the evaluator experience. The analysis component represents the 
application of parametric (Generalized and Linear Mixed Models, 

Bayesian Ordinal and Bayesian Linear Regression Models) and non-
parametric (Random Forests Regression and Classification) methods 
to continuous and categorical traits. The CONT analysis scenario rep-
resents the benchmark scenario when continuous phenotypes are the 
response variables in the LMM, BLRM, and RFR. The CAT-CONT 
analysis scenario represents the typical practice in breeding programs 
where categorical phenotypes are the response variables in the LMM, 
BLRM, and RFR. The CAT analysis scenario represents a formal sta-
tistical procedure where the categorical phenotypes are the response 
variable in the GLMM, BORM, and RFC

Table 1  Mean of the number of observations of eight categorical traits, evaluated over several seasons and breeding stages of the blueberry 
breeding program, in four Florida regions

1 The "Plant Science Research and Education Unit" at the University of Florida is located in Citra, Florida

Trait Category North Citra1 Central South Seasons Breeding stages

Yield 1–5 713 931 67 85 2014,2015,2020,2021 II, III, IV
Vigor 1–5 596 119 89 71 2020,2021,2022 III, IV
Health 1–5 590 114 85 68 2020,2021,2022 III, IV
Yield estimate floral Buds 1–5 323 123 89 75 2021,2022 III, IV
Yield estimate flowers 1–5 183 70 89 70 2021,2022 III, IV
Yield estimate green Berries 1–5 156 – 78 60 2021,2022 III, IV
Firmness 1–3 – – 76 58 2022 III, IV
Size 1–3 – – 76 56 2022 III, IV
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respectively. A total of 63,552 SNPs were kept after these 
filtering steps. Sequencing read counts per allele per indi-
vidual were extracted from the variant call file using vcftools 
v.0.1.16 (Danecek et al. 2011). And were used as input to 
estimate the allele dosage, according to the “norm model” 
in the updog 2.1.0 R package.

Genomic prediction and efficient measures 
calculation

In the real data analysis, a single genomic prediction model 
was adjusted for each trait, location and season using mixed 
models, Bayesian and machine learning methods. These 
models were identical to those used in the simulations, with 
the exception of incorporating the age of the plant as a fixed 
effect in the statistical methods and as a factor in the random 
forest model.

We compared the prediction performances of methods 
in the simulated data using fivefold cross-validation and 
the following metrics: (i) accuracy, which is the correlation 
between the true breeding value (TBV) and genomic esti-
mated breeding values (GEBV); (ii) prediction bias, which 
is the deviation from one of the coefficient of regression 
between TBV and GEBV; (iii) the percentage of agree-
ment between the top 10% of individuals selected by each 
approach (CONT, CAT-CONT and CAT) and true breeding 
value; and finally (iv) the correlation between the marker 
effects estimated by each approach. In the real data, we used 
the same cross-validation approach and the predictive ability 
to compare the methods, which is the correlation between 
the phenotype and GEBV.

We also computed genetic parameters in terms of herit-
ability to both data sets and selection gain to simulated data. 
For the Bayesian approaches, heritability was computed for 
the kth value of the Markov chain of heritability, and is given 
by: h2(k) = �

2(k)
u

�
2(k)
u +�

2(k)
e

 , where �2(k)
u

 and �2(k)
e

 are values of the 
variance components of the kth iteration of the MCMC algo-
rithm. Subsequently, the posterior mean was calculated. For 
the Henderson’s equations approach, the heritability is given 
by:h2 = �2

u

�2
u
+�2

e

 , where �2

u
 is estimated using REML, �2

e
= 1 in 

the GLMM, and �2

e
 is estimated using REML in the LMM. 

For the random forest approach, the variances were calcu-
lated as being the variance of the GEBV and residuals vector 
and then the heritability values were obtained by h2 = �2

u

�2
u
+�2

e

.

Selection gain was calculated using the following expres-
sion, considering the selection of 10% of individuals by each 
approach: GS =

(
Xs − Xo

)
h2 , where Xs is the mean TBV of 

the selected population, Xo is the mean TBV of the original 
population, and h2 is the heritability estimate.

Results

Prediction accuracy of different combinations 
of categorical levels and errors

In breeding programs, phenotypic traits are often recorded 
using visual scores traits. Herein, we first investigated the 
impact of categorizing traits that are continuous by nature 
and tested different combinations of categorical levels and 
error (Fig. 3). When comparing both extremes, the use of 
binary categories was a poor simplification of continuous 
scenarios (Fig. 3a); and the use of more categories (1–9) was 
noisier (Fig. 3d). In general, we found that an intermediate 
number of categories (such as 1–3 and 1–5) showed a good 
compromise in terms of predictive accuracy and error, above 
the other categories classification tested (Fig. 3b, c).

Statistical models for categorical traits

After discussing the relevance of using different numbers of 
categories to simplify continuous traits, herein we addressed 
how breeders should statistically model these traits that are 
continuous by nature, but they are visually categorized for 
simplicity. In the Fig. 3, we show three scenarios of accuracy 
evaluation, where breeders need to deal with a combination 
of strategies, that is, analyzing visual categorical data with 
LMM and BLRM (CAT-CONT) and modeling categorical 
traits either via GLMM or BORM (CAT). The connection 
between modeling strategy and genetic architecture is a sec-
ond piece of relevant information. We observed that traits 
simulated with quantitative and qualitative nature produced 
very similar results (Fig. 3, Supplemental Fig. 1). By focus-
ing primarily on the quantitative results, BLRM and LMM 
showed the highest accuracies for continuous scale pheno-
types (0.69 and 0.73, respectively). When using standard 
“normal” models to predict a categorical trait (CAT-CONT), 
we observed reasonable accuracy values (Fig. 3).

While LMM and BLRM may produce consistent results, 
they may not be the best approach in terms of accuracy. 
First, we note that whenever simplification is performed by 
transforming continuous data into categorical data, there 
are losses in accuracy. A second important aspect relies 
on the relevance of including noise in the data Analyzes. 
We observed that RFC was less sensitive to noise errors, 
resulting in satisfactory predictive accuracy. On the rel-
evance of using non-parametric methods, RFC had a better 
predictive performance than RFR, even in scenarios with 
a larger number of categories. Therefore, we emphasize 
that when categorical traits are presented, they should be 
framed as a classification problem, even if the dataset pre-
sents an approximately normal distribution.
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Estimating genetic parameters

Also relevant, breeders rely on the inference of genetic 
parameters to assist future decisions. When we computed 
the Person’s correlation between marker effects estimated 
in each scenario (below the diagonal, Fig. 4; Supplemental 
Figs. 2—5), for categories ranging from 1 to 5 the correla-
tion values were moderate to high. We also observed a large 
percentage of agreement between the top 10% of individuals 
selected across the scenarios (above the diagonal, Fig. 4; 
Supplemental Figs. 2—5). Importantly, Bayesian models 
reported the highest percentage of agreement on selecting 
the top 10% of individuals, compared to the true breeding 
value (first row in the matrices, Fig. 4; and Supplemental 
Figs. 2—5). Another central genetic parameter is heritabil-
ity. We found that on the continuous distribution, Bayesian 
and mixed models recovered the simulated value of herit-
ability (Fig. 5, Supplemental Figs. 6), suggesting that our 
simulation was appropriate. When contrasting different sce-
narios, all methods underestimated heritability values. As an 
important trend, the Bayesian ordinal regression (CAT) pre-
sented more robust results in recovering the estimated value. 

On the other hand, the use of RF did not result in biased 
estimates (Supplemental Figs. 7, 8). Finally, we investigated 
the impact on genetic gain, which relies primarily on herit-
ability values (Supplemental Figs. 9, 10). We found a severe 
underestimation of genetic gains.

Genomic prediction using real blueberry data

The prediction results detected in the simulated data encour-
aged us to explore genomic prediction in blueberries from 
three different angles. Importantly, the present study encom-
passes the largest breeding population used up to date to dis-
sect the importance of using genomic information to predict 
traits visually scored in the fruit literature. To this end, we 
first computed predictive ability and genetic parameters. The 
use of Bayesian model showed the best results (Fig. 6 and 
Supplemental Table 1). In the sequence, we explored a prac-
tical decision underlying population training size. Namely, 
by integrating categorical and continuous data, we identi-
fied a group of 179 samples that were both phenotyped for 
yield in a continuous (kg per bush) and visually scored (1–5 
scores). The estimated heritability using continuous data 

Fig. 3  Accuracy of different methods (Bayesian Ordinal and Bayesian 
Linear Regression Models (Bayes), Generalized and Linear Mixed 
Models (MM), and Random Forests Regression and Classification 
(RF)) under cross-validation procedures for simulated categorical 
traits, with different category levels (a—1 to 2; b—1 to 3; c—1 to 

5; d—1 to 9), under different levels of noise (low—20% misclassi-
fication, moderate—50% misclassification, and high—70% misclas-
sification) and no errors, relative to continuous traits. The traits had 
a quantitative genetic architecture, with 100 QTLs and heritability 
equal to 0.10
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was 0.28, and a similar value was computed for the visual 
scores (Supplemental Table 1). However, substantial differ-
ences were observed for prediction. Yield prediction for the 
179 genotypes using continuous data and cross-validation 
scheme was 0.17. To test the relevance of leveraging pre-
dictive ability at the cost of including more visually scored 
individuals, we trained our model using a new set of 2,323 
genotypes–all visually scored using categories ranging from 
1 to 5. This new set of genotypes was used to predict the 179 
genotypes collected at the continuous distribution. Remark-
ably, predictive ability increased to 0.35, representing more 
than a 100% gain over the continuous metric. This fact leads 
to us raising our last scientific question: what is the best 
alternative to combine continuous and categorical data in a 
single framework for genomic prediction?

To answer this question, we used the same stochas-
tic process to simulate traits but under four different 
genetic architectures (Fig. 7). By mimicking our breeding 

program, we simulated 200 phenotypes in a continuous 
distribution. Additionally, new genotypes (ranging from 
0 to 4,800 with an increment in 200 individuals) were cat-
egorized with different error levels. Herein, our benchmark 
is the predictive ability computed using the 5,000 continu-
ous phenotypes. Systematically, we included phenotypes 
collected at a categorical distribution, and checked the 
predictive ability (Fig. 7). As might be expected, genetic 
architecture and noise levels are the main drivers of pre-
dictive ability, with simple genetic architecture and low 
levels of errors leading to higher predictive ability. When 
no errors are simulated, increasing the population size by 
using more categorical traits will always increase the pre-
dictive ability of continuous traits. This is an ideal but 
unrealistic scenario; a more realistic approach is a pro-
gram operating with certain noise levels. A more realistic 
approach is a breeding program operating with a low noise 
level. Herein, including more categorial phenotypes only 
add to predictive ability when error levels are low, a fact 
that sheds light on the importance of properly training 
human resources for data collection.

Discussion

In this study, we discussed potential scenarios of analyz-
ing Gaussian traits, that are visually scored. Considered 
as a common practice in multiple breeding programs, we 
drew attention on the relevance of using different statisti-
cal models, forms of data collection, and impact of poten-
tial errors in evaluation for traits with different genetic 
control. Collectively, we tested three analysis procedures 
(CONT, CAT-CONT, and CAT), evaluated under three 
model approaches (Mixed models, Bayesian, and Ran-
dom Forest), for four category levels (1–2, 1–3, 1–5, and 
1–9), with three different noise levels (low, moderate and 
high), and two hypothetical genetic architectures (qualita-
tive and quantitative). These multiple scenarios create high 
complexity to discuss the results. To circumvent this, we 
structured our discussion in the following format. First, 
we framed our narrative in terms of genomic prediction, 
and discussed the importance of using different categori-
cal levels to classify continuous traits. Sequentially, we 
emphasized the impact of using different methods (LMM 
and GLMM, BLRM and BORM, RFR and RFC) and 
distributions (continuous and categorical) on predictive 
accuracy. After discussing the importance of our results 
for prediction, we focused on inference and considered 
potential impacts on estimating marker effects, heritability, 
and genetic gains. Finally, we applied our findings of the 
simulated populations to a real population of blueberry.

Fig. 4  Percentage of agreement between 10% of individuals selected 
(above the diagonal) for 1–5 simulated categorical traits, and correla-
tion between marker effects estimated (below the diagonal) by vari-
ous analysis approaches (CONT, CAT-CONT and CAT) using Bayes-
ian Ordinal and Bayesian Linear Regression Models, Generalized and 
Linear Mixed Models, and Random Forests Regression and Clas-
sification methods, under different levels of noise (low–20% of mis-
classification, moderate–50% of misclassification, and high–70% of 
misclassification) and no errors. The traits had a quantitative genetic 
architecture, with 100 QTLs and heritability equal to 0.10. The first 
row in the matrices represents the percentage of agreement between 
the 10% of individuals selected by the approaches and the true breed-
ing values (TBV)
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Fig. 5  Heritability estimated by different methods (Bayesian Ordinal 
and Bayesian Linear Regression Models (Bayes), Generalized and 
Linear Mixed Models (MM), and Random Forests Regression and 
Classification (RF)) for simulated categorical traits, with different cat-
egory levels (a—1 to 2; b—1 to 3; c—1 to 5; d—1 to 9), under dif-

ferent levels of noise (low—20% misclassification, moderate—50% 
misclassification, and high—70% misclassification) and no errors, 
relative to continuous traits. The traits had a quantitative genetic 
architecture, with 100 QTLs and heritability equal to 0.10. The red 
line represents the simulated heritability value

Fig. 6  Genomic prediction was performed using cross-validation 
procedures. The mean predictive ability using blueberry categorical 
phenotypes collected in several seasons (2014, 2015, 2020–2022) and 

breeding stages (II, III, and IV) over four macro-regions in Florida 
State. All predictive abilities were expressed as percentage values
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What is the impact on predicting categorized traits 
that are continuous by nature?

Our first contribution aimed to investigate the impact of cat-
egorizing traits, that are continuous by nature. To this end, 
we tested different levels of categories, mimicking visual 
scales that have been commonly reported in the literature. 
For example, categories ranging from 1 to 5 are frequently 
used for yield evaluation (Williams et al. 2021). Disease 
progress, on the other hand, is often recorded either using 
binary evaluations (Manichaikul and Broman 2009) or 1–9 
visual scales (Ferrão et al. 2019). After testing the impact of 
using different categorical levels and errors of evaluations, 
we noticed that using binary evaluations and 1–9 scores 
tended to result in poor results. While the use of binary 
evaluations tends to be a simplistic approach, a valid argu-
ment for increasing the number of categories is that results 
could resemble a continuous distribution that ultimately 
makes the use of traditional LMM models more appealing. 
However, when increasing the number of categories, we 
are also leveraging potential misclassification, in particular 

for intermediate evaluations–since scoring extreme results, 
such as high and low production, led to less subjectivity 
than assessing intermediate scores. The higher rates of mis-
classifications are probably affecting the use of 1–9 scores, 
making this category less efficient. Overall, we observed that 
using 1–3 and 1–5 scales for categorizing continuous data 
showed a good compromise between accuracy and error.

LMM and BLRM are robust, but not the best 
predictive performance for categorical traits

Our second contribution to this study relies on investigating 
a diverse set of statistical modeling. When the prediction is 
framed for categorical data, the use of GLMM and BORM 
are more flexible and have a broader application. However, 
it has the cost of being more computationally demanding, 
and to require a higher level of theoretical understanding to 
be applicable, when contrasted to standard methods (LMM 
and BLRM).

As an important result, we first showed that for all traits 
and scenarios, the use of traditional LMM ensured robust 

Fig. 7  Genomic prediction was performed using cross-validation 
procedures for simulated categorical traits, considering categories 
ranging from 1 to 5, different levels of noise (low–20% of misclas-
sification, moderate–50% of misclassification, and high – 70% of 
misclassification), and no errors. The genetic architectures of the 
traits were: a h2 = 0.30 and 100 QTLs, b h2 = 0.30 and 50 QTLs, c 

h2 = 0.10 and 100 QTLs, and d h2 = 0.60 and 3 QTLs. The accuracies 
were calculated using different numbers of genotypes (ranging from 
0 to 4,800 in increments of 200) recorded in the categorical trait, in 
addition to the 200 genotypes recorded in the continuous distribution. 
The horizontal red line represents the accuracy of 5,000 genotypes 
recorded in the continuous distribution in each scenario
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predictive results. Villemereuil et al. (2016) also reported 
that the scale on which estimation is performed in general-
ized models satisfies the assumptions of the breeder's equa-
tion, making it useful for expressing selection of non-Gauss-
ian traits on this scale. Similar results were also reported by 
Silveira et al. (2019), after evaluating rust disease resistance 
in Eucalyptus urophylla using LMM and GLMM. Similarly, 
Ornella et al. (2012) also compared parametric and non-
parametric models and reported that LMM had superior pre-
diction performance. Higher prediction accuracies for the 
LMM method were also discussed by Heuer et al. (2016), 
when contrasted with GLMM. Thus, as a main message, 
our results indicate a certain legitimacy for breeders and 
biometricians who are less familiar with GLMM theory and 
have opted to use LMM in their routines–regardless of the 
data distribution.

Despite the simplicity of using LMM for data Analyzes, 
as an important piece of relevant information, we also 
showed that gains can be obtained when parametric and 
non-parametric methods (BORM and RFC) are used for 
evaluating visual scores. Although those gains are marginal 
when compared to LMM results, whether computational 
resources and runtime are not limiting factors, the use of 
such models that do not assume normality on the residuals 
can result in better results. When comparing methods, we 
also noticed an overlap from most of the confidence intervals 
for accuracy, with a clear exception for the 1–9 categories. 
In short, it indicates similarity between methods, that aligns 
with previous studies in the literature (de los Campos et al. 
2013; Gianola 2013). However, it is noteworthy that the RFC 
exhibited greater stability across different levels of noise. 
This indicates that RFC is a robust method that is less sensi-
tive to variations in the presence of noise. Consequently, if 
there is uncertainty or lack of knowledge regarding the level 
of error in the dataset, the RFC method may be a suitable 
choice.

Genetic parameters are better assessed using 
Bayesian ordinal regression models

In fact, breeding programs have relied on estimating genetic 
parameters to guide decisions. For example, breeders have 
guided their decisions based on the level of genetic control 
(i.e.,,, heritability), the magnitude of gene action effects, the 
correlations between traits, and the dynamics of genotype-
by-environment interactions. At the molecular level, under-
standing the genetic architecture of a trait requires the esti-
mation of the number, position, and effect size of molecular 
markers associated with putative QTL.

Among the key genetic parameters, recovering heritability 
values is an alternative for discriminating methods (Azevedo 
et al. (2015). Herein, as an important trend, we noticed that 
Bayesian ordinal regression (CAT) presented robust results 

in recovering the simulated values. Similar results were also 
reported by Kizilkaya et al. (2014), when using the Bayes 
Cπ linear model. Tiezzi and Maltecca (2015) evaluated the 
impact of computing genetic parameters using LMM and 
GLMM in a Bayesian framework, and also reported that 
GLMM captured larger proportions of the genetic variance, 
resulting in higher heritability values. When comparing par-
ametric and non-parametric methods, the use of RF showed 
some disadvantages. For example, the covariances between 
predictors and variance components do not have a close form 
and can only be estimated through recursive expressions, 
such as the variance of predicted values (Chen and Zhang 
2013). Consequently, if RF produces inaccurate estimates of 
genetic values, it will naturally impact genetic parameters.

Another important parameter for implementing marker-
assisted selection is the estimated marker effects. Genetic 
values and putative genes can be estimated using marker 
effects in genomic selection and genome-wide association 
(GWAS) studies, respectively. The question to be consid-
ered is as follows: are the different statistical modeling 
approaches assessing similar information at the genomic 
level? When compared to the parametric simulated value, 
the results highlighted the robustness of the LMM Analyzes. 
Overall, we observed high correlations between estimated 
markers effects and genomic breeding values, with a large 
percentage of agreement when genotypes were ranked.

Genomic prediction and inference on the genetic 
basis of blueberry traits using categorical data

Our final contribution relies on GS implementation using 
real data. Over the years, blueberry breeders often faced the 
dilemma of phenotyping a large breeding population using 
visual scores or focusing on a restricted number of sam-
ples and collecting more accurate continuous phenotypes. 
In this context, yield is a prime example. While blueberry 
bushes need to be harvested multiple times over the sea-
son, the phenotyping process is labor intensive, costly, and 
has low throughput. To circumvent this, the UF blueberry 
breeding program has the following strategy: berries from 
mature plants on advantaged breeding stages are manually 
harvested and weighed, and plants from earlier stages are 
visually scored based on general yield, number of flowers, 
flower buds, and green fruits. For genomic prediction, yield 
collected at the continuous scale is formally used to train 
our predictive models, while the visual scores are used as 
auxiliary traits.

To effectively test the importance of using categorical 
data in our breeding pipeline, we selected a diverse set of 
traits measured at the categorical scale to be predicted using 
genome-base methods. To our knowledge, there are no stud-
ies in fruit crops addressing predictive performances in such 
diverse set of traits evaluated in large breeding populations, 



 Theoretical and Applied Genetics           (2024) 137:9 

1 3

    9  Page 14 of 16

in different environments. Initially, we noticed low-to-mod-
erate predictive abilities for all the blueberry traits. As a 
form to validate our results, we contrasted categorical vs. 
continuous results using previous studies. Remarkably, the 
use of the Bayesian approach resulted in more reasonable 
values, with estimates comparable with values reported by 
Cellon et al. (2018) and de Bem Oliveira et al. (2020), but 
using firmness and size traits collected in the continuous 
scale. For yield, we noticed that combining a few continu-
ous data points with a massive number of categorical infor-
mation has the potential to leverage predictive Analyzes by 
increasing the population sizes. As the main objective of 
this study is to translate genomics information into breeding 
decisions, while the use of automatic phenotype acquisition 
is not in the routine of many breeding programs, we argue 
that combining continuous and categorical data for predic-
tion is a valid strategy. Reducing the subjectivity of visual 
evaluations and screening large diversity of genotypes are 
important elements for practical implementation.

Conclusion

Altogether, the real and simulated data used in this inves-
tigation allow us to provide a blueprint for how visual 
scores could be used by plant breeders. Regarding our main 
research questions, we can first conclude that categorical 
traits can be effectively used for prediction and inference 
on traits with different genetic architecture, with gains and 
precision directly related to the amount of noise and subjec-
tivity included in the Analyzes. Secondly, the use of tradi-
tional statistical approaches showed robustness, but not the 
best predictive results over different error levels and genetic 
architectures. Thus, when time and computational resources 
are not a barrier, the use of Bayesian ordinal regression mod-
els are preferable. Next, we reported large predictive abilities 
for a group of categorical traits collected in blueberry, which 
opens important venues to include such traits in a molecu-
lar breeding pipeline. Finally, we integrated continuous and 
categorical data and simulated scenarios of genomic predic-
tion for traits with different genetic architectures. Simply 
stated, we suggested that by including 600–1000 categorical 
data phenotypes with low error, we can verify the improve-
ment of stable predictive performance. At this point, breed-
ers are encouraged to reflect on the importance of allocat-
ing resources to training their team and the costs related to 
phenotyping. In the case of blueberry, it is noteworthy that 
collecting yield and other fruit set traits over the seasons is 
costly and time-consuming. Investing in better training asso-
ciated with visual scores is a more feasible alternative when 
phenotyping is designed for larger populations–at least until 
the use of computer vision methods for high-throughput phe-
notyping is fully adopted.
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