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Abstract: Coffee trading is an important source of income for the Brazilian commercial balance.
Chlorophyll (Chl) are pigments responsible for converting radiation into energy; these pigments are
closely related to the photosynthetic efficiency of plants, and the evaluation of the nutritional status
of the coffee tree. The inversion method can be used for estimating the canopy chlorophyll content
(Chlcanopy) using the leaf chlorophyll content (Chlleaf) and the leaf area index (LAI). The application
of vegetation indices (VIs) in high spatial resolution images obtained from remotely piloted aircraft
(RPA) can assist in the characterization of Chlcanopy in addition to providing vital and fast information
for monitoring crops and aiding decision-making. This study aimed to identify which VIs adequately
explain the Chl and evaluate the relationships between the VIs obtained from remotely piloted aircraft
(RPA) images and the Chlleaf and Chlcanopy in coffee plants during the wet and dry seasons. The
experiment was conducted on a Coffea arabica L. plantation in Lavras, Minas Gerais, Brazil. Images
were collected on 26 November 2019 (wet), 11 August 2020 (dry), and 26 August 2021 (dry) by a
multispectral camera embedded in a quadcopter. Plant height (H), crow diameter (D), and Chlleaf (a,
b and total) data were collected in the field by a metre ruler (H and D) and sensor (Chlleaf). The LAI
was calculated based on H and D. The Chlcanopy (a, b, and total) was calculated based on Chlleaf and
LAI. The image processing was performed in Pix4D software, and postprocessing and calculation
of the 21 VIs were performed in QGIS. Statistical analyses (descriptive, statistical tests, Pearson
correlation, residuals calculation, and linear regression) were performed using the software R. The
VIs from the RPA that best correlates to Chlcanopy in the wet season were the Modified Chlorophyll
Absorption Ratio Index 2 (MCARI2RPA), Modified Simple Ratio (MSRRPA) and Simple Ratio (SRRPA).
These VIs had high sensitivity and, therefore, were more affected by chlorophyll variability. For the
two dry season studied days, there were no patterns in the relationships between Chlleaf, Chlcanopy,
and the VIs. It was possible to use the Chl inversion method for the coffee during the wet season.

Keywords: unmanned aircraft systems; canopy chlorophyll content; Coffea arabica L.

1. Introduction

The estimated global coffee production for the 2022/23 harvest included 7.8 million
60-kg bags, more than the previous year [1]. Brazil is a major world producer of coffee,
it is expected for the marketing year 2022/2023 to produce 64.3 million 60-kg bags, an
increase of eleven percent compared to the last crop [1]. These numbers make Brazil the
major world producer [1]. In this context, coffee is of commercial importance for Brazilian
income because it is an agricultural commodity and a source of income for family farmers
in this country.

However, there is growing evidence that farmers are facing challenges in coffee
production due to climate change in the main coffee-producing regions, such as southern
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Minas Gerais state, which experienced rainfall below the historical average [2] and increased
incidence and severity of pests and diseases [3,4]. Faced with these challenges, production
costs increased, and there was a reduction in bean quality and quantity. According to
Chemura et al. [5], coffee crops have significant input costs and require intra- and inter-
seasonal evaluations of crop conditions and monitoring of crop status and productivity to
achieve profitability and sustainable production.

Coffee plants’ morphological and physiological parameters are good indicators of
vegetation conditions and assist in crop monitoring. It is possible to cite plant height, canopy
diameter, and leaf area index (LAI) as morphological parameters [6,7]. Additionally, it is
possible to highlight chlorophyll (Chl) as a physiological parameter [5,8]. Furthermore, the
climate could affect the coffee field in different ways. In the wet season, the high intensity
of rainfall could cause high humidity, eventually resulting in the increased emergence
of various diseases, and in the dry season, the plants can be subjected to accelerated
evapotranspiration [8]. Thus, the season will affect the coffee plant and its morphological
and physiological parameters.

The primary photosynthetic pigments in plants are chlorophyll a and b, and carotenoids
(carotenes and xanthophylls). These pigments absorb energy at different wavelengths [9]
and can vary from crop to crop [10]. This makes it possible to use remote sensing tech-
niques to observe this characteristic in different crops. According to Santos et al. [11],
photosynthetic pigments play an essential role in plant physiology, in addition to being
correlated with concentrations of nitrogen (N) and foliar magnesium (Mg). Therefore, it
can be considered that among the photosynthetic pigments, the chlorophyll content of
the leaf is an indicator that represents the state of growth of the crops and is crucial for
agricultural practices [12].

Plants’ chlorophyll content can be measured by equipment such as chlorophyll metres,
optical sensors and multispectral sensors [13] directly in the field, which can be labour
intensive and time-consuming. The chlorophyll metre usually measures chlorophyll a,
b, and total. Chlorophyll a (Chl a) is a pigment present in all organisms that perform
oxygenic photosynthesis, and it is used to carry out photochemistry (the first stage of the
photosynthetic process) [14]. Chlorophyll b (Chl b) is a ubiquitous accessory pigment in
land plants, green algae, and prochlorophytes, and its biosynthesis is important in the
plant’s adaptation to various light environments [15].

Recent remote sensing studies, using new technologies such as remotely piloted
aircraft (RPA), have shown a different view of crop fields, serving as the farmer’s eye in the
sky, facilitating the spread of this technology in the field. According to Salami et al. [16],
RPA technology represents a paradigm shift. Unlike satellite images and airborne surveys,
the images obtained by RPA have a high spatial resolution (in centimetres and even
millimetres) and high temporal resolution (for example, several times a day) in addition
to low operational cost, serving as a complement to the existing technologies, favouring
precision agriculture and precision coffee farming. More advantages and disadvantages of
these two platforms can be seen in studies of [17–19]

However, the transfer of empirical algorithms from satellite images to RPA images is a
challenge, especially in spatial resolution, since RPA images are highly detailed, affecting
the importance of structural parameters such as obtaining the Chl content [10]. The
radiative transfer model (RTM) developed by [20] is widely used to generate reflectance
from the canopy top, considering biophysical variables measured from the crop of interest.
It is a combination of the leaf-level and canopy-level models, as described by [21]. It has
been used with different degrees of success for a wide variety of vegetation types, such as
poplar trees [22], beets [23], cotton [24], eucalyptus [25], pastures [26], maize [10,23] and
forest canopies [27].

Nonetheless, this method has not been applied to data obtained from RPA images
of coffee plantations. The chlorophyll inversion method to estimate the Chl content of
the canopy (Chlcanopy) uses the chlorophyll content of the leaf (Chlleaf) and the LAI, as
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described by [10,28]. So the Chlcanopy can be calculated by Chlleaf x LAI [10,28]. The LAI
can be calculated based on the canopy diameter and plant height, as described by [29].

Linked to this chlorophyll inversion method, in the context of remote sensing, using a
vegetation index (VI) that characterizes the Chlcanopy is relevant. The VIs consist of a com-
bination of two or more spectral bands, which allows monitoring and detecting changes in
the crop from each crop’s spectral response in its phenology. Many different VIs developed
can explain or be correlated to one or more variables. According to Ahmad et al. [30], VIs
provide vital information for crop monitoring and decision making and serve as a guide
while planning to collect crop-specific data. With VIs, it is possible to map an area and see
its spatial variability. Thus, correlating chlorophyll information with VIs can be interesting
since it will be possible to see the spatial variability of the field. Moreover, it can be less
time-consuming than field collecting sampling points.

This study hypothesises that high-spatial-resolution images obtained from RPA can
be used to estimate the coffee canopy’s chlorophyll content based on different VIs. Fur-
thermore, this estimate is expected to be improved using the inversion/transformation of
Chlleaf into Chlcanopy. Thus, the objective of this study was to identify which VIs adequately
explain the Chl inversion method and evaluate the relationships between the VIs obtained
from the RPA images and the Chlleaf and Chlcanopy indices of coffee plants in the wet and
dry seasons.

2. Materials and Methods
2.1. Study Site and Field Data Collection

The study was conducted on an experimental coffee plantation (Coffea arabica L.) in
Lavras, Minas Gerais, Brazil (21◦13′36.47” S, 44◦57′40.35” W) (Figure 1). The plantation
belongs to the Department of Agriculture of the Federal University of Lavras (Universi-
dade Federal de Lavras—UFLA) and contains experimental treatments related to water
optimisation in coffee production, described in [31,32]. The plantation has an area of 0.48
ha and contains coffee plants of the “Mundo Novo 379-19” cultivar that were planted in
January 2016, with spacings of 3.6 m between planting rows and 0.75 m between plants.
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Figure 1. Study site location. Figure 1. Study site location.

A total of 90 experimental plots were used. Each experimental plot consisted of
six plants, and the four central plants were considered the useful plants. Between the
treatment rows, a border row was used to avoid interference. The study site, the sampled
plots and control points were georeferenced with the aid of a differential global positioning
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system (DGPS) (Trimble Navigation Limited, Sunnyvale, CA, USA) with horizontal and
vertical accuracy of 0.007 m.

2.2. RPA Data Collection

To collect the RPA spectral data on the coffee plantation, a quadcopter (Matrice 100,
DJI) (Figure 2a) was used as the RPA platform. This quadcopter has four motors powered
by a remotely controlled battery.
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The quadcopter used was a robust RPA and was controlled through an automated
flight plan using the Precision Flight application installed on a smartphone. The flight plan
was configured for an altitude of 30 m above ground level, with 80% overlap and sidelap
and a speed of 3 m/s, following the method of Santos et al. (2020) [6]. Thus, a spatial
resolution of 0.03 m pixel-1 was achieved.

The RPA had a damping structure for camera stabilisation, oriented perpendicular
to the ground, to which was coupled a Parrot Sequoia multispectral camera with five
image sensors, including one 16-megapixel red, green, blue (RGB) visible sensor and four
1.2-megapixel sensors: green, red, red edge, and near infrared (NIR) (details in Table 1 and
Figure 2b). However, the green, red, red edge, and NIR bands were used in this study.

Table 1. Parrot Sequoia Camera Specifications.

Camera Parrot Sequoia™
Weight 107 g

Dimensions 5.9 × 4.1 × 2.9 cm

Spectral range Green (0.53–0.57 µm), red (0.64–0.68 µm), red edge (0.73–0.74 µm),
and near infrared (NIR) (0.77–0.81 µm)

Three flights were performed at different times: the first on 26 November 2019 (wet
season), the second flight on 11 August 2020, and the third flight on 26 August 2021, both
in the dry season. The multispectral images were collected around noon, under clear and
sunny skies, to minimise the effects of clouds and the generation of shadows in the images.
Before each flight, a radiometric calibration panel was used, in which images were taken
with the camera that were subsequently used to calibrate the images captured over the area
(Figure 2c).

The images were processed using the educational version of Pix4Dmapper Pro version
4.8 software (PIX4D SA, Prilly, Switzerland), following the processing workflow available
in the software, in which the photos were calibrated and geometrically aligned to build
the point cloud, 3D model, digital terrain model (DTM), digital surface model (DSM),
and orthomosaic.
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The orthomosaics were georeferenced in QGIS software version 3.10 (Quantum GIS)
in the Universal Transverse Mercator (UTM) cartographic projection in the Sistema de Ref-
erencia Geocéntrico para Las Américas (SIRGAS) 2000 datum, zone 23 South, performing
a first-order polynomial transformation with the nearest-neighbour resampling method,
using six control points (Figure 2d) distributed in the area.

VIs are calculated based on the combination of spectral bands; they are commonly used
as important indicators to monitor growth and predict yields, among other applications.
In this study, 21 VIs were calculated, as described in Table 2. These VIs were obtained by
averaging the useful plants using the QGIS zonal statistics tool.

Table 2. Vegetation indices obtained from the reflectance of the multispectral bands of the RPA images.

Vegetation Index Equation Source

Canopy Chlorophyll Content Index (CCCI) CCCI =NDRE
NDVI [33]

CIgreen CIgreen =
(

ρNIR
ρgreen

)
−1 [34]

CIred edge CIred edge =
(

ρNIR
ρred edge

)
−1 [34]

Enhanced Vegetation Index 2-Green (EVI2green) EVI2green =
2.5 × (ρ green− ρred

)
ρgreen+2.4 × ρred+1

[35]

First Modified Chlorophyll Absorption Ratio
Index (MCARI1) MCARI1= 1.2

[
2.5(ρNIR−ρgreen)− 1.3(ρNIR−ρgreen

)]
[36]

Second Modified Chlorophyll Absorption Ratio
Index (MCARI2) MCARI2 =

1.5 [ 2.5(ρ NIR−ρred)−1.3(ρ NIR−ρgreen)]√
2(ρ NIR +1)2−(6ρNIR−5

√
ρred)−0.5

[36]

Green Minus Red (GMR) GMR = ρgreen−ρred [37]
Green Normalized Difference Vegetation

Index (GNDVI) GNDVI =
ρNIR−ρgreen
ρNIR+ρgreen

[38]

Modified Triangular Vegetation Index 1 (MTVI1) MTVI1= 1.2
[

1.2(ρNIR−ρgreen)− 2.5(ρ red−ρgreen

)]
[36]

Modified Triangular Vegetation Index 2 (MTVI2) MTVI2 =
1.5 [ 1(ρ NIR−ρgreen)−2.5(ρ red−ρgreen)]√
[2(ρ NIR +1)2−(6ρNIR−5

√
ρred)−0.5]

[36]

Modified Normalized Green–Red Difference
Index (MNGRDI) MNGRDI =

ρgreen
2−ρred

2

ρgreen
2+ρred

2
[39]

Modified Soil-Adjusted Vegetation Index (MSAVI) MSAVI = 0.5

[
2ρNIR+1−

√
(2ρNIR+1)

2−8(ρNIR−ρred)

]
[40]

Modified Simple Ratio (MSR) MSR =

(
ρNIR
ρred

)
−1√(

ρNIR
ρred

)
+1

[41]

Normalised Difference Red Edge (NDRE) NDRE =
ρNIR−ρred edge
ρNIR+ρred edge

[42]

Normalised Difference Vegetation Index (NDVI) NDVI =ρNIR−ρred
ρNIR+ρred

[43]

Normalized Green–Red Difference Index (NGRDI) NGRDI =
ρgreen−ρred
ρgreen+ρred

[44]

Optimised Soil Adjusted Vegetation Index-Green
(OSAVIgreen) OSAVIgreen =

1.5 (ρ green−ρred

)
(ρgreen+ρred)+0.16

[35]

Renormalised Difference Vegetation Index (RDVI) RDVI =
√

ρNIR−ρred
ρNIR+ρred

[45]

Simple Ratio (SR) SR =ρNIR
ρred

[46]

Soil Adjusted Vegetation Index-Green (SAVIgreen) SAVIgreen =
(1+0.5) × (ρgreen−ρred )

(ρgreen+ρred )+0.5
[47]

Triangular Vegetation Index (TVI) TVI = 0.5
[
120
(
ρNIR − ρgreen

)
− 200

(
ρred − ρgreen

)]
[48]

2.3. Obtaining the Morphological and Physiological Parameters

The a (ChlAleaf), b (ChlBleaf) and total (ChlTleaf) leaf chlorophyll indices were
determined using a ClorofiLOG (model CFL 1030) digital device, collected on the same
day as the RPA flights. The device provided indices proportional to the absorbance of
chlorophyll. The readings were performed between 9 and 11 am using a fully expanded leaf
located in the third or fourth node from the apex of the plagiotropic branch in the middle
third of the plant. Only normal leaves and leaves not affected by any pests or diseases were
considered. One plant was chosen per plot, totalling 90 analysed leaves.
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The mean plant height (H) and crown diameter (D) of the four useful plants in each
plot were measured using a metre ruler. Equation (1) was used to calculate the LAI, as
described by [29]:

LAI = 0.0134 + 0.7276 × D2 × H (1)

The a (ChlAcanopy), b (ChlBcanopy), and total (ChlTcanopy) canopy chlorophyll
indices were determined from Equation (2) and according to the studies by [10,28]:

Chlcanopy = Chlleaf × LAI (2)

2.4. Meteorological Data

The monthly meteorological data of total rainfall (mm), minimum temperature (T min,
in ◦C), maximum temperature (Tmax, in ◦C), and relative humidity (RH, in %) were
obtained from the weather station of the National Institute of Meteorology (INMET, for
its acronym in Portuguese), located at UFLA, from 1 November 2019 to 31 August 2021
(Figure 3). The wet season for Minas Gerais ranges from October to March, and the dry
season goes from April to September.
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Gerais, from November 2019 to August 2021.

2.5. Statistical Analysis

Descriptive statistics (mean, median, maximum, minimum, and first and third quar-
tiles) were calculated to support the exploratory data analysis. The data for ChlAleaf,
ChlBleaf, ChlTleaf, ChlAcanopy, ChlBcanopy, and ChlTcanopy were correlated with the 21 VIs
using the Pearson correlation (R) for in the two study seasons. Student’s t test was applied
to evaluate whether the estimates were significant (p < 0.05), and the residuals were cal-
culated as the difference between the VI data estimated by the RPA images and the field
measurements. The mean absolute error (MAE) and the root mean square error (RMSE)
were also calculated. Further, the correlation between the Chl and VI data was analysed,
which was significantly related in the first analysis to obtain the correlation coefficient (R).
All the statistical analyses were performed in the statistical software R version 3.6.2 (R Core
Team, Vienna, Austria).

3. Results
3.1. Wet Season

Figure 4 shows that the correlation between H, D, LAI and Chlcanopy and the VIs was
positive and moderate, as indicated by the blue tones. Conversely, the correlation between
the VIs and Chlleaf was negative. Moreover, the correlation between the Modified Chloro-
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phyll Absorption Ratio Index 2 (MCARI2) VI and the morphological and physiological
parameters was negative, as indicated by the red tones. In addition, the highest correlation
between Chlleaf and the VIs was weak and inverse (R = −0.26). The highest correlation
between the Chlcanopy and VIs was good and direct (R ≤ 0.52), except for the correlation be-
tween MCARI2 and ChlAcanopy and ChlTcanopy, which was good but inverse (R = −0.51).
The correlation between Modified Chlorophyll Absorption Ratio Index 1 (MCARI1) and
ChlBleaf and between the Modified Simple Ratio (MSR) and ChlTleaf was null or very
weak (R = 0).
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Figure 4. Correlation coefficients and non-significance of Student’s t test (represented by ×) between
the VIs and the morphophysiological parameters of coffee plants in the wet season (November 2019).
The positive correlations are shown in blue, and the negative correlations are shown in red. Similarly,
the strong correlations are in dark tones, and the weak correlations are in light tones.

Figure 4 also showed significant (p ≤ 0.05) and nonsignificant correlations (p > 0.05).
The “×” in Figure 4 represents a p value greater than the significance level set at 5%. The
relationship between ChlBcanopy and the VIs was not significant. The VIs that were com-
posed of the ratio of green and NIR (green normalised difference vegetation index (GNDVI)
and green chlorophyll index (CIgreen)) and red edge and NIR (red-edge chlorophyll index
(CIrededge), canopy chlorophyll content index (CCCI), and normalised difference red edge
(NDRE)) were not related to the morphological parameters (H, D and LAI) or physiological
parameters (ChlAleaf, ChlBleaf, ChlTleaf, ChlAcanopy, ChlBcanopy, and ChlTcanopy).
Similarly, the correlations between green minus red (GMR) and ChlAcanopy, ChlBcanopy
and ChlTcanopy; between MCARI1 and the parameters H, ChlAcanopy, ChlBcanopy and
ChlTcanopy; between the modified soil-adjusted vegetation index (MSAVI) and ChlB-
canopy and ChlTcanopy; between modified triangular vegetation index 1 (MTVI1) and
ChlAcanopy, ChlBcanopy and ChlTcanopy; between modified triangular vegetation index
2 (MTVI2) and ChlBcanopy and ChlTcanopy; between the normalised green–red difference
index (NGRDI) and ChlBcanopy and ChlTcanopy; and between the triangular vegetation
index (TVI) and ChlAcanopy, ChlBcanopy and ChlTcanopy were not significant.
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Given the results, this study considered only the analyses with significant variations
(p ≤ 0.05) and with a positive (direct) and/or negative (inverse) correlation coefficient
greater than 0.50. Therefore, the relationships between Chlcanopy and the MCARI2RPA,
MSRRPA, and Simple Ratio (SRRPA) were analysed, and these VIs were statistically ade-
quate to explain the Chl inversion method.

As observed in Figure 5, MCARI2RPA, MSRRPA, and SRRPA were not highly corre-
lated with ChlAleaf, as values of R = 0.02 and R2 = 0.01 were found for MCARI2RPA and
R = −0.01 and R2 = −0.01 for RSMRPA and SRRPA.
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Figure 5. Relationship between (a) MCARI2RPA and measurements of the chlorophyll a content in
the canopy (ChlAcanopy); (b) RSMRPA and ChlAcanopy; (c) SRRPA and ChlAcanopy.

Figure 5 presents the regression relationship between MCARI2RPA, MSRRPA and
SRRPA and ChlTcanopy improved considerably when using the Chl inversion method.
The correlation coefficient between MCARI2RPA and ChlTleaf changed from R = 0.01 to
R = −0.51 (Figure 6a), and the coefficient of determination changed from R2 = −0.01 to
R2 = 0.26. The correlation coefficients between RSMRPA and ChlTleaf (Figure 6b) changed
from R = 0.00 to R = 0.52, and those between SRRPA and ChlTleaf (Figure 6c) change
from R = 0.01 to R = 0.52. The coefficient of determination changed from R2 = −0.01 to
R2 = 0.26 in both relationships, going from a null relationship to a significant (p ≤ 0.05) and
nonzero correlation.

The RMSE and MAE values demonstrated good performance in estimating Chl from
the VIs studied and MSRRPA and SRRPA showed higher RMSE and MAE values than
MCARI2RPA (Figure 6).

The error or residuals were calculated for each correlated data point to evaluate the
regression model’s effectiveness. Figure 7 shows the dispersion of the residuals is in
accordance with the regression assumptions, in which the residuals should be randomly
distributed around zero.

In Figure 8a, MCARI2RPA has an inverse relationship; the soil is represented in yellow,
and the vegetation in blue and purple. This index showed a negative correlation with Chl.
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Different results were found by [36], who observed a positive correlation between MCARI2
and Chl in maise and wheat. This result can be attributed to different spectral behaviour
variations between crops.
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Figure 8b,c show the similarity in the characterisation and variability of RSMRPA and
SRRPA. Note that the highest VI values are represented in green and the soil in purple; in
addition, there is variability in the VIs between the treatments.

3.2. Dry Season

For the 2020 dry season, the correlations between H, LAI and Chlcanopy and the VIs
were positive and weak. The correlations between D and the VIs and between Chlleaf and
the VIs were positive and moderate, as indicated by the more intense blue tones in Figure 9.
The correlations between D and the CCCI vegetation index and between Chlleaf and this
index were negative and weak, as indicated by the light red tones. The relationships
between H, LAI and Chlcanopy and CCCI were not significant. In the figure, x represents a
p value greater than the significance level of 5% (Figure 9).

For the 2021 dry season, the correlations between H, D, LAI, Chlcanopy and the VIs were
negative and weak, as indicated by light red tones in Figure 10. The correlations between
Chlleaf and the VIs were not significant. The same fact was observed in the correlation
between H and CCCI (Figure 10).
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Figure 7. Residuals of the values estimated by the VIRPA and the parameters measured in the
field: (a) MCARI2RPA and ChlAcanopy, (b) MSRRPA and ChlAcanopy, (c) SRRPA and ChlAcanopy,
(d) MCARI2RPA and ChlTcanopy, (e) MSRRPA and ChlTcanopy, and (f) SRRPA and ChlTcanopy.
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Figure 9. Correlation coefficients and non-significance of Student’s t test (represented by ×) between
the VIs and the morphophysiological parameters of coffee plants in the dry season (August 2020).
Positive correlations are shown in blue, and negative correlations are shown in red. Strong correlations
are in dark tones and weak correlations are in light tones.
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the strong correlations are in dark tones, and the weak correlations are in light tones.
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4. Discussion
4.1. Wet Season

In this study, a correlation was made between the VIs and the morphophysiological
parameters of coffee plants in the wet season (November 2019), presented in Figure 4 of
Section 3.1. Similar results were found by [49]. These authors studied the ChlTleaf estimate
using radiometric data of the VIs obtained from an RPA in a recently transplanted coffee
plantation (Coffea arabica L.) with the cultivars Catucaí (2SL), Catuaí (IAC 62), and Bourbon
(IAC J10) and an age of 5 months at the beginning of the study, as the results were not
significant for the studied variable.

Although [49] followed the method to measure the leaf chlorophyll content, the
results found were due to the ability to measure and estimate the VIs obtained from RPA
images since the data obtained from images represented the chlorophyll content of the
canopy, whereas the measurements that were correlated represented the measurement of
a single leaf in a given plant. In addition, the method used should be considered, as the
correlation can be improved by using other methods for obtaining Chl. Another way that
the calculation of Chl can be improved may be by measuring different parts and sides of
the plant.

Another factor that may have contributed to this result is the age of the coffee trees
under study, as the coffee plants were 3 years old at the time of collection. The authors
of [5] investigated an algorithm to predict the Chl content in coffee plants using Sentinel-2
data at different spatial resolutions and different plant ages. The results showed that the
best modelling results (R2 = 0.69, RMSE = 6.8) were achieved when all bands were used at
10 m spatial resolution in the modelling of Chl for all coffee plants. The prediction accuracy
improved (R2 = 0.77, RMSE = 5.9) when only coffee plants aged between 5 and 8 years
were considered.

However, the results found in the present study improved considerably when ChlAleaf
was multiplied by the LAI using the Chl inversion method in the wet season. The cor-
relation coefficient changed from R = 0.02 to R = −0.51 and the coefficient of determi-
nation changed from R2 = −0.01 to R2 = 0.26 for the relationship between MCARI2RPA
and ChlAleaf (Figure 5a). Conversely, the correlation coefficients between MSRRPA and
ChlAleaf (Figure 5b) and between SRRPA and ChlAleaf (Figure 5c) changed from R =−0.01
to R = 0.52, and the coefficient of determinations changed from R2 = −0.01 to R2 = 0.26
in these two relationships, going from a null relationship to a significant (p ≤ 0.05) and
nonzero correlation.

Similar results were obtained by [10], who used the LAI to map the chlorophyll
content in maise using RPA images and obtained a high correlation between the VI NDRE
and the canopy chlorophyll, calculated by multiplying Chlleaf and the LAI. In that study,
the coefficient of determination increased from R2 = 0.177 to R2= 0.774 when the canopy
chlorophyll content was calculated using the LAI.

The spectral bands used in this study that showed statistically significant values were
the NIR, red, and green bands. According to [36], the MSR and SR showed an improve-
ment in the images concerning sensitivity, and the linear relationship with the vegetation
morphological parameters, whereas MCARI2 is less sensitive to changes in chlorophyll
content and linearly related to the LAI. It should be noted that in the study by [10], the
authors used the red edge band in maise, which shows the importance of evaluating the
method in different crops since each crop has its own unique spectral characteristics.

According to [36], MCARI2RPA, MSRRPA, and SRRPA have high sensitivity and,
therefore, are more affected by variability in chlorophyll. According to the same authors,
this is because the formulas of the VIs take into account the red, green and NIR bands,
which are bands highly correlated with Chlleaf and Chlcanopy.

4.2. Dry Season

For both dry season days studied, there were no patterns in the relationships between
Chlleaf, Chlcanopy and the VIs. In the 2020 dry season, the correlation between Chlleaf
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and the VIs was greater than the correlation between Chlcanopy and the VIs. In the 2021
dry season, the correlations between Chlleaf and the VIs were not significant, and the
correlations between Chlcanopy and the VIs were negative and weak. These results were the
inverse of those found for the 2019 wet season and can be attributed to climatic variations
(Figure 3), mainly in rainfall and temperature, as in the dry season, the crop experienced a
water deficit due to the low rain.

Some studies evaluating plants in situations of water deficit have observed that the
chlorophyll content increased with a decrease in the volumetric water content in the
soil [50,51]. Conversely, [52] observed that coffee plants grown in winter and growing
under water stress showed no changes in chlorophyll content.

Although the Chl inversion method is not new, this study explores the impact of high-
spatial-resolution RPA images in obtaining Chl maps of coffee plants using VIs. Therefore,
in agriculture and especially in precision coffee farming, these applications are valid since
rapid phenological changes occur that can be monitored with this technology.

Given the results found in the dry season and because obtaining effective results on
the relationship between Chlleaf, Chlcanopy and VIs is an incipient topic in coffee growing,
there is a need for studies to evaluate these relationships between chlorophyll and VIs.

We recommend that in future studies this method be applied to different cultivars
and different water deficiency levels and that other VIs that may produce better results be
evaluated. It is important to note that the studied method should consider the specificities
of the canopy structure, the time of data collection, the light on the day of data acquisition,
the sensor used, the calibration, and the image processing. Thus, when using this approach
to apply VIs in a generalised manner to a given crop, compiling a database of acquired
images is recommended, covering a wide range of the factors mentioned above. In ad-
dition, field data must be collected to validate the method in different seasons. Another
recommendation is to perform studies investigating the correlation of visible bands with
Chl values since if the visible bands interact with ChlA and ChlB, low-cost RPA can be
used to obtain and estimate these parameters using this technology.

5. Conclusions

The challenge for coffee producers is to obtain chlorophyll content data in a timely
manner to apply nutritional control measures. Currently equipment, such as chlorophyll
metres, is used to obtain field data. The availability of high spatial resolution RPA images
combined with digital image processing and VI allows the detection of plant nutritional
information, allowing for faster and more proactive monitoring and decision making.

In this study, we identified which VIs adequately explained the Chl inversion method
and evaluated the relationships between VIs obtained from RPA images and the Chlleaf
and Chlcanopy indices of coffee trees in the wet and dry seasons.

The results of this study suggest that it is possible to use the Chl inversion method
for images of coffee plants trees obtained by RPA during the wet season. The relationships
between the MCARI2RPA, MSRRPA and SRRPA VIs were appropriate for estimating Chlcanopy
in the wet season.

For both dry seasons studied, there were no patterns in the relationships between
Chlleaf, Chlcanopy, and the studied VIs. Given the results found in the dry season and
because obtaining effective results on the relationships between Chlleaf, Chlcanopy and VIs
is an incipient topic in coffee growing, there is a need for future studies to evaluate the
relationships between chlorophyll and VIs.

The results found in this paper reinforce the use of RPA to obtain images of a coffee
field. Furthermore, these collected images can be analysed through VIs, which can result in
the observation of the spatial variability of chlorophyll in an area. Therefore, works such as
this can be replicated by producers, technicians, and scientists to understand the behaviour
of this variable in a coffee field, mainly in the wet season.
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