
Kernel Maps of the Bactrocera carambolae Occurrence in
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Abstract. This work analyzes the spatial distribution of the Bactrocera caram-
bolae occurrence between 2014 and 2019 in Amapá, Brazil. They monitored the
quarantine pest present using traps distributed throughout the state. The tech-
nicians checked traps every fifteen days, recorded the occurrence, and sent the
information to MAPA. To analyze the spatial distribution, we evaluated the de-
gree of randomness of the traps using the non-homogeneous K function. Subse-
quently, we applied the quartic kernel function on the occurrences and the sim-
ulated occurrences, considering the non-homogeneous phenomenon and having
the population per census tracts and highways as covariates. The results showed
that we could use the method to monitor the pest on a regional scale.

Resumo. Este trabalho analisa a distribuição espacial da ocorrência de Bac-
trocera carambolae entre 2014 e 2019 no Amapá, Brasil. Os técnicos mon-
itoraram a presença da praga quarentenária por meio de armadilhas dis-
tribuı́das por todo o estado. Eles verificavam as armadilhas a cada quinze
dias, registravam a ocorrência e enviavam as informações ao MAPA. Para anal-
isar a distribuição espacial, avaliamos o grau de aleatoriedade das armadilhas
usando a função K não homogênea. Posteriormente, aplicamos a função de
kernel quártico nas ocorrências e nas ocorrências simuladas, considerando o
fenômeno não homogêneo e tendo como covariáveis a população por setores
censitários e rodovias. Os resultados mostraram que poderı́amos usar o método
para monitorar a praga em escala regional.



1. Introduction
The pests are characterized as quarantine when there is a probability or possibility of entry,
establishment, and dispersal in a particular region, and that brings with them significant
economic risk [Fidelis et al. 2018, Silva et al. 2011]. In Amapá, the State Agricultural
Defense and Inspection Agency (Agência de Defesa e Inspeção Agropecuária do Estado,
DIAGRO) is responsible for the actions of combat, surveillance, prevention, and eradi-
cation of quarantine pests. The current programs on its official website involve efforts to
control the quarantine pest Bactrocera carambolae, also known as the carambola fruit fly.
Generally, pest detection, monitoring, and control methods consist of trapping and fruit
sampling. Monitoring by traps on a regional scale aims to obtain information for devel-
oping plans for containment, suppression, and eradication of the pest [Silva et al. 2011].

Amapá divided its territory into zones from specific plans with different goals
depending on the level of necessary pest control for effective control of the Bactrocera
carambolae and the distribution of traps. They are: Plano de Contenção, Plano de
Erradicação do Sul, and Plano de Pós-Erradicação do Vale do Jari. In 2017, a refor-
mulation of these plans came into effect, keeping the same municipalities in the Plano
de Contenção and Plano de Pós-Erradicação do Vale do Jari, the last renamed to Plano
de Erradicação. Plano de Erradicação de Bactrocera carambolae do Sul do Amapá be-
comes Plano de Supressão com vistas à Erradicação.

This work aims to study the spatial pattern by kernel density maps of the oc-
currence of the pest Bactrocera carambolae from data obtained by the state monitoring
carried out through traps installed throughout Amapá between the years 2014 to 2019. In
the end, an inhomogeneous model is defined for the phenomenon, enabling the data ob-
tained to be compared with simulations using the model to identify occurrences that are
higher than expected. The following section presents a brief review of the subject, section
3 presents the studied area and the methods, section 4 shows the results and discussion,
and section 5 the conclusions.

2. Related work
The majority of works on spatial sampling for pest monitoring address it at farm scale
[Silva et al. 2019, Valente 2018, Dionı́sio et al. 2015, Matrangolo et al. 2014]. With the
exception of Dionı́sio et al. [2015], who used geostatistical methods to analyze the spatio-
temporal pattern of the occurrence of the pest Metamasius hemipterus in oil palm plan-
tation, the others used the methods of analysis of the ratio of variance to mean, morisita
index and analysis of the k parameter for the negative binomial probability distribution to
assess whether the pests occur in an clustered pattern using the host as the unit of count.
In all cases, even in those with low incidence, the authors registered a strong aggregation
of pest occurrences.

Valente [2018] and Matrangolo et al. [2014] developed a sampling plan seeking
to identify the minimum number of samples for the spatial analysis of pest occurrences,
considering pest per host. In these cases, there was no need to consider the condition of
complete spatial randomness of the traps, since no methods with this requirement were
used. On the other hand, Dionı́sio et al. [2015] opted for the geostatistical analysis of
the occurrences by randomly distributing 24 sampling units for analysis. The authors
concluded that infestation occurs initially at the edges of the plantation, with subsequent



dissemination to the entire area. The authors then suggest that the traps showed be placed
on the edges of the plantation, for sampling and control of the pest.

Spatial trap distribution affects pest monitoring [Berec et al. 2015]. It could fol-
low a regular, random, sparse, or even concentrated in a particular region with a greater
probability of pest occurrence. However, we must distribute the traps randomly to an-
alyze the pest’s spatial distribution with kernel maps. The exploratory spatial distribu-
tion of the occurrence of the pest has been conducted by the use of the Kernel Density
Estimator (KDE) because it is intuitive, simple to apply and generate a conservative es-
timation of hot-spots [Lin et al. 2011, Kitthawee and Dujardin 2010]. When conducting
a KDE study, the key points are avoiding sampling bias (e.g., clustered traps tend to
generate clustered hot spots) and the kernel function’s bandwidth empirical definition
[Wallner et al. 2014, Kumar et al. 2014].

3. Material and Methods

To assess whether the traps were spatially randomly distributed, we conducted the tests
of Complete Spatial Randomness (CSR) and non-homogeneously with the support of
the K function. We applied the tests by region covered by each control plan in the an-
thropized area for each monitoring period at intervals of 15 days for each year. The non-
homogeneity tests considered the population by census sector and roads as covariates.

3.1. Hypothesis test of spatial non-homogeneity of traps and the K function

CSR test and inhomogeneous test assume basic conditions based in a poisson distribution:
the events are independent and its distribution follows an intensity λ. In CSR, the intensity
λ is constant in the entire area, however, in the inhomogeneous poisson process, intensity
can vary spatially f(λ), meaning that the events become more likely to happen in some
areas than others according to some covariates [Waagepetersen 2008, Hahn et al. 2003].

Since the occurrence of the pest is related to regions of intense economic and
social activity where there is consumption and transport of fruit [Silva et al. 2011], we
have chose the the population by census sector and the set of roads in the state as
covariates. When considering a covariate in a point event of coordinate (x, y), the
intensity function resembles λ(x, y) = exp(α + βZ(x, y)), where α and β are pa-
rameters to be adapted by the point event [Bivand et al. 2008]. The K function al-
lows the evaluation of whether there is spatial dependence, from the observation of
the density of points in various ranges of distances. The null hypothesis is that
the distribution is random and independent. The K function is defined by K(r) =
λ−1E(number of events contained within a distance of an arbitrary event ),
where λ is the intensity or intensity or the number of events expected per unit in the area
[Bivand et al. 2008]. Considering the inhomogeneous test, where intensity is defined by
a function, and edge effects, the estimated function is:

K̂(r) =
1

A
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i
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λ(xi)λ(xj),
(1)

where A: area of the region; n: number of events; Ir(dij) follows as an indicator func-
tion regards to the distance between the points and the chosen distance r. w−1

ij signaling



the edge correction; λ(xi) and λ(xj) returning the intensity at that point mapped by the
function f(λ) [Bivand et al. 2008].

For inference and better visualization of the meaning of the resulting value of the
formula, the value of K̂(r) under the assumption of complete randomness is generated
for comparison, which results in K̂(r) = πr2. It is also common to include the lower and
upper envelopes, created by several also random simulations of n events in region A. In
this work we created confidence bands for 99 simulations and considering a confidence
level of 98%. If the resulting value of K̂(r) is greater than the random simulation created
and its envelope, K̂(r) > πr2, then the distribution exhibits clustering pattern. If it is
smaller, K̂(r) < πr2, it exhibits dispersion pattern [Hohl et al. 2017].

3.2. Amapá’s pest control plans
Amapá has divided its territory into three zones defined by its pest control plans. Fig. 1
shows these plans through two periods (2014-2016 and 2017-2019).

(a) Plans for 2014 to 2016 (b) Plans for 2017 to 2019 (c) Anthropized zone & covariates

Figure 1. Plans for the Bactrocera carambolae controle in Amapá, Brazil, for
2014-2016 (a), and 2017-2019 (b). Anthropidez and anthropizable zone used as
the studied cut, traps spatial distribution, population densisity and roads (c).
Source: municipality boundaries (IBGE 2019), population by census sector (IBGE
Census 2010). Anthropized zone and roads (SEMA/AP). Maps in UTM/Zone 22N
projection and SIRGAS 2000 datum, elaborated by the authors.

According to Silva et al. [2011], the pest enter the country mainly through im-
ports of contaminated fruits and spread through transport to consumer centers. Thus,
we identified at least two covariates that can influence the occurrence of the pest Bac-
trocera carambolae, changing the average spatial occurrence, the routes of transport of
merchandises and the population per census sector (Fig. 1(c)). The analysis considered
the anthropized and/or anthropizable area as the studied region (Fig 1(c)). The 16 munic-
ipalities have the Jackson and McPhail trap types, distributed in order to have a density
of 0.4 Jackson traps/ha and 0.2 McPhail traps/ha monitored fortnightly. In regions not
covered by the plans, local authorities and the population are responsible for signaling the
appearance of focuses where the plague has not yet reached.

3.3. Kernel map
The kernel map can also validate the point distribution analysis by composing a surface
proportional to the point intensity. Starting from a generic location of interest, a radius is



defined and the points within this region are weighted. Therefore, it is possible to check
the distribution of points in a visual way and analyze if the distribution presents intensity
differences on its surface [Bivand et al. 2008]. The function chosen as estimator was the
quartic function:

k(
dis
r
) =

{
(1− d2is

r2
)2, if 0 < dis ≤ r

0 , otherwise
(2)

where r is the bandwidth and k(dis
r
) is the weight of a point i at distance dis to location of

interest s.

The traps were distributed in a concentrated way, which impairs the interpretation
of hot spots. However, we can consider that the phenomenon is non-homogeneous and
that its occurrence depends, at least, on the population and the roads. Thus, one way to
compensate for this aggregation of traps is to generate a false non-homogeneous distri-
bution of traps. The model that represents the phenomenon is created by adjusting the
data obtained from the 15-day window with covariates. The coefficients generated by the
model identify the lambda function of the inhomogeneous process, and then the random
point simulation is carried out. Then, we subtract the observed hot spot from this sim-
ulated one. The hot spot of this difference would be an approximation of the hot spot
discounting the aggregation of traps.

We performed the inhomogeneous model and the data simulation using the spat-
stat R package (version 3.0) and generated the maps with the SpatialKDE R package
(version 0.8.2) in the R language (version 4.3.0).

4. Results and Discussion

Fig. 2 shows the K curves for the CSR and inhomogeneous tests for a specific period of
monitoring in the region covered by the Plano de supressão com vistas à erradicação.
We conclude by the CSR test that the traps are clusterd (Fig. 2(a)), but if we consider that
our phenomena is inhomogenous and considers population and roads as covariates the
aggregation is significantly alleviated (Fig. 2(b)). Its suggests that the traps distribution
followed a inhomogenous distribution.

Figs. 3-5 show the occurrences kernel maps of observed, simulated, and the differ-
ence between them for 15-days monitoring for the years 2019 (plano de contenção), 2014
(plano de supressão), and 2017 (plano de erradicação). From the observed and simu-
lated kernel maps, we see differences between them, suggesting that in some regions,
the occurrence exceeded expectations in all zones. We could not plot all maps, but this
phenomenon is observed in all analyzed periods.

In the plano de contenção zone, considering the year 2019, the difference between
observed and simulated shows slight variation, highlighting the border region with French
Guiana as the main hot spot (Fig. 3(c)). In the plano de supressão region in 2014, there
is a great difference between the observed and simulated maps in Macapá (Fig. 4(c)).
In the region covered by the plano de erradicação region, 2017, the difference showed
distinct regions where the observed exceeded the simulated (Fig. 5(c)). In general, as
shown in the short literature review, the Bactrocera carambolae presents an aggregated
spatial pattern of occurrence.



(a) CSR test: K̂obs represents the observed, K̂theo the theoreti-
cal curve, and superior and inferior bands (K̂hi and K̂lo, respec-
tively).

(b) K for inhomogeneous test: K̂obs
inhom represents the ob-

served, Kinhom the mean curve, and superior and inferior bands
(K̂hi

inhom and K̂lo
inhom, respectively).

Figure 2. CSR versus in-homogeneous (population and roads as covariates) K
function graphic for the Plano de supressão com vistas à erradicação for the
period between 2017-01-01 to 2017-01-15. Source: elaborated by the authors.

The proposed method aims to eliminate the effect of the aggregate disposition
of the traps by considering this aggregation as a consequence of the non-homogeneous
process. In the difference, we identify hot areas beyond what we predicted. Economic
activity and roads are crucial for pest establishment. In our case, we used the population
by census sector as a proxy of economic activity [Wallner et al. 2014].

5. Conclusions
The kernel map produced by the difference between the observed and simulated maps
revealed only certain areas with occurrence higher than expected, compensating the ag-
gregated distribution of traps and suggesting an alternative for state monitoring of the pest.
Future works may consider improving the method by considering more covariates for the
non-homogeneous model, reducing the analyzed regions to cities or neighborhoods, eval-
uating other kernel functions, and producing marked kernel maps considering the number
of captures in the traps.



(a) Observed (O) (b) Simulated (S) (c) Diff = O − S

Figure 3. Kernel analysis for the Plano de contenção for the period 01-01-2019 to
15-01-2019

(a) Observed (O) (b) Simulated (S) (c) Diff = O − S

Figure 4. Kernel analysis for the Plano de supressão com vistas a erradicação
for the period 01-01-2014 to 15-01-2014

(a) Observed (O) (b) Simulated (S) (c) Diff = O − S

Figure 5. Kernel analysis for the Plano de erradicação do sul for the period 01-
12-2017 to 15-12-2017
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