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A B S T R A C T   

Sugarcane plays an important role in electricity and sugar production and is a viable biofuel. Developing and 
optimizing a mechanism that can predict crop growth and yield at different spatiotemporal scales can promote 
the understanding of the effects of cultivation on the ecosystem, while providing options for optimizing man
agement measures and improving the operational procedures of sugarcane growers. The main objective of this 
study is to integrate the sugarcane module into the ECOSystem MOdel Simulator (ECOSMOS) model and cali
brate a parameter set for sugarcane genotypes groups (using different datasets); the model supports datasets that 
vary in complexity (from flux tower experiments to operational plots), while accounting for high genotype-by- 
environment-by-management (GxExM) variability. First, we calibrated the ECOSMOS biophysical and physio
logical parameters for the sugarcane module using two micrometeorological experimental sites, based on eddy- 
covariance and biomass measurements. Second, sugarcane genotypes located in different regions of contrasting 
climate conditions were split into two groups based on their period of harvest, i.e., early or mid-to-late harvest 
season, and two parameter sets were proposed. The sugarcane module was used to estimate the yield of 
numerous plots, using two different parameter sets, namely, the general and regionally-specific parameter sets. 
The model could successfully simulate the biophysical and physiological processes of the biomass of stalks and 
leaves, energy and carbon fluxes, and soil-water dynamics; for Experimental Site 2, the Nash-Sutcliffe efficiency 
(NSE) was 0.14–0.86 and the relative root mean square error (RRMSE) was 13–112. However, the generic 
parameter set did not perform well in all production environments, and the difference between the observed and 
simulated yields ranged from 0.9 to 14.5 (Mg ha-1). Hence, a novel calibration approach adopted in this study 
improved the module’s accuracy, while improving the performances for all five production environments, with 
the difference between the observed and simulate yields being 0.3–2.2 (Mg ha-1). Although the two parameter 
sets can be used as a reference for sugarcane plantations in Brazil, we recommend recalibrating the model (for 
ensuring higher accuracy) before operational applications. Notably, the ECOSMOS-sugarcane model is emerging 
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as a complex ecosystem model that can support the quantifications and evaluations of the effects of sugarcane 
plantations on the carbon and water balances in different environmental conditions, particularly in tropical 
regions.   

1. Introduction 

Reducing fossil-fuel consumption is one of the main aims for 
reducing greenhouse gas (GHG) emissions and thus, mitigate climate 
change (Tollefson, 2018). Biofuels are a relevant alternative renewable 
energy source that can be used to meet the energy demand while 
lowering GHG emissions (Daioglou et al., 2020, 2019). Sugarcane is a 
major crop for ethanol production; ethanol is obtained from sucrose 
fermentation. Additionally, electricity is generated from sugarcane 
bagasse burn; second-generation ethanol can be produced from sugar
cane bagasse and straw, which can further increase the efficiency of 
sugarcane biomass utilization for energy purposes (Junqueira et al., 
2017). 

Given the importance of sugarcane in the scenario of the growing 
demand for alternatives to fossil-fuel energy sources, the area of sug
arcane cultivation in countries like Brazil has increased in recent years 
(Hernandes et al., 2022). In the beginning of the 21st century, sugarcane 
plantations expanded from traditional growing regions to areas with 
different soils and climates, e.g., over the Brazilian Neotropical Savanna 
(“Cerrado” in Portuguese). The consequences of mechanical harvesting, 
e.g., soil compaction and physical damage to plants, have affected the 
regrowth vigor of plants in the region, leading to a reduction in their 
yields (Petrielli et al., 2023; Scarpare et al., 2015). 

In this context, process-based crop models are important tools that 
can support the adoption of novel strategies and management practices, 
while minimizing loss and enhancing the yield. For example, the models 
can simulate hypothetical scenarios, predict plant growth in regions that 
are not generally used for the target crop, suggest the most suitable lo
cations and periods for planting and harvesting, provide operational 
support, and, consequently, optimize yields. Several crop models, such 
as the Decision Support System for Agrotechnology Transfer for sugar
cane (DSSAT-CANEGRO) and Agricultural Production Systems Simu
lator (APSIM-Sugarcane), are used for sugarcane growth and yield 
modeling (e.g., Dias and Sentelhas, 2017; Singels et al., 2014; Verma 
et al., 2023); this approach is feasible since these models have been 
developed and updated over decades. However, these models are 
generally limited to local scales, contrary to land surface models (LSM), 
such as the Joint UK Land Environment Simulator (JULES-crop; Vianna 
et al., 2022) and Agricultural version of the Integrated Biosphere 
Simulator (Agro-IBIS) model (Cuadra et al., 2012), which are applicable 
at regional and national scales and also are reasonable alternative 
models to understand the carbon and water balances in an ecosystem 
(above- and belowground) for different climate scenarios. 

Although sugarcane is a robust tropical crop (i.e., it has a highly 
efficient C4 photosynthetic mechanism), Brazilian sugarcane planta
tions are located in contrasting conditions of hydrological and climatic 
stresses; therefore, making it a challenge to obtain a model that simu
lates plant growth and yield consistently across different environmental 
variabilities. The ECOSMOS model, which is based on the Agro-IBIS 
model, provides an effective agricultural ecosystem simulation frame
work (Foley et al., 1996; Kucharik et al., 2000); notably, it can simulate 
crop production and environmental impacts, e.g., the effects on carbon 
and water cycles. The model is composed of several modules, including a 
land surface module (Pollard and Thompson, 1995; Thompson and 
Pollard, 1995a, 1995b), biogeochemical module (Kucharik et al., 2000), 
and modules for natural vegetation and crops. Specific crop modules 
were developed for oil palm (Benezoli et al., 2021), eucalypt (Colma
netti et al., 2022), soybean and pasture (Dias et al., 2023), sugarcane 
(Cuadra et al., 2012), maize and wheat. The biophysical and physio
logical processes based on a land surface module linked to a crop 

simulation model dedicated to sugarcane render the ECOSMOS model 
the robustness to determine the sites in extensive regions of varying 
climate and soil type that can support sugarcane production. 

This study aims to describe the sugarcane module implemented in 
the ECOSMOS simulation framework and present the results obtained 
from the calibration and evaluation processes. The specific objectives 
were to: (i) parametrize the ECOSMOS-sugarcane module using two 
monitored sites with flux towers; (ii) carry out calibration for two ge
notype groups (belonging to the early and mid-to-late harvest seasons) 
for contrasting climate and soil conditions; and (iii) assess the potential 
application of the module for estimating the yield of commercial sug
arcane plantations in different production environments. 

2. Material and methods 

2.1. Model descriptions: ECOSystem MOdel Simulator for sugarcane 
(ECOSMOS-sugarcane) 

The ECOSMOS model serves as a framework for energy and mass 
balance simulations and can consider two canopy levels. The core 
physical code of the simulator is derived mainly from the IBIS and Agro- 
IBIS models (Foley et al., 1996; Kucharik and Brye, 2003). ECOSMOS is a 
modularized simulation framework written in C+ + and includes 
modules dedicated to the biogeochemical cycle, plant physiology, ra
diation balance, and crop growth (every crop has its own module). In 
previous studies, the energy, water, and carbon exchanges between soil, 
vegetation (canopy and root system), and atmosphere were calculated 
using the LSM at hourly time steps (Pollard and Thompson, 1995; 
Thompson and Pollard, 1995a, 1995b). The C3 and C4 photosyntheses 
were calculated as the minimum of three potential capacities to fix 
carbon, following the Farquhar equations (Farquhar et al., 1980); and 
stomatal conductance was calculated based on the original 
Ball–Berry–Leuning (BBL) model (Leuning, 1995; Miner et al., 2017) 
and/or the updated BBL equation by (Cuadra et al., 2021). 

In this model, the hydrological processes simulate precipitation 
interception and water retention by the canopy, surface puddle forma
tion, infiltration, water flux through soil layers, deep percolation, 
evaporation from the soil surface and water intercepted by the canopy, 
and canopy transpiration. The number and size of soil layers can be set 
up, and the model simulates the hourly heat and water flux through the 
soil profile. The soil-water flux was calculated using Richard’s equations 
for saturated and unsaturated water flows (Farthing and Ogden, 2017). 
The soil hydraulic properties can be completely described or estimated 
using pedotransfer functions (PTF), in accordance with Tomasella et al. 
(2000). The runoff equations follow the United States Department of 
Agriculture Soil Conservation Service’s (USDAS-CS’s) empirical 
rainfall-runoff model (USDA-SCS, 1998). 

In a previous study, the decomposition of soil organic matter was 
simulated by the biogeochemical module, which was based on the 
“Century” model with a daily time-step (Kucharik et al., 2000). Notably, 
the rates of litter decomposition and microbial biomass turnover depend 
on soil temperature and moisture, with an average of 0–10 cm for litter 
and 0–100 cm for microbial biomass (Kucharik et al., 2000). 

The ECOSMOS-sugarcane module (Fig. 1) used in this study was 
mostly based on the equations (Eqs. 1–16) presented by Cuadra et al. 
(2012), which were developed using two widely used sugarcane crop 
models, APSIM-Sugarcane (Keating et al., 1999) and CANEGRO (Singels 
et al., 2005; Singels and Bezuidenhout, 2002) and previously imple
mented in the Agro-IBIS model. The module allocates the net primary 
production (NPP), as a function of the growing degree days (GDDs), to 
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four plant component pools: leaves, roots, stalk-structural (fiber and 
non-sucrose materials), and stalk-sucrose (sugar as sucrose). Relative 
maturity (RM), which refers to the summation of the GDD along the 
cycle normalized by the total GDD to reach physiological maturity, was 
used in the model as the temporal scale to drive the allocations. 

The RM [%; Eq. (1)] expresses the changes in the GDD along the 
sugarcane lifespan on a scale from 0 to 100. 

RM = 100 ∗

(
GDDn

GDDm

)

(1)  

GDDn = GDDn− 1 +

(
Tmax − Tmin

2
− Tbase

)

(2)  

where GDDm is the reference value for the GDD in the maturity age (K); 
GDDn is the GDD at day n; Tmax and Tmin are the maximum and minimum 
temperature (K) for day n, respectively; and Tbase is the minimum 
threshold value of the temperature required for plant development (K). 

The value of heat unit index (HUIleaf ), which refers to the value of 
GDD (K) (after planting) necessary for leaf emergence, was calculated 
using Eq. (3). 

HUIleaf = GDDm ∗ Leaf emerg ∗ Ef (3)  

where Leafemerg is the parameter that regulates leaf emergence (dimen
sionless), and Ef is the factor for reducing the emergency development 
for sugarcane plant (dimensionless, 1 for the first growing year and 0.2 

for sugarcane ratoons). 
When GDDn> HUIleaf , sugarcane begins accumulating biomass, and 

the daily net carbon assimilated along the day is allocated to different 
plant organs. First, the model computed the fraction of the NPP allocated 
to the aboveground components, which was calculated based on the 
coefficient of allocation, Coefa (dimensionless), as shown in Eq. (4) 
below: 

Coef a = (1 − Coef roots_min) ∗ min[1, 1 − e− (Rd∗RM∗Pf )] (4)  

where Coefa is the allocation coefficient for the aboveground carbon 
components (stalk and leaves; ranging between 0 and 1); Coefroots_min is 
the minimum allocation coefficients to roots (ranging between 0 and 1); 
Rd is the root decline parameter; and Pf is the factor for reducing the 
aboveground development parameter (which was 0.6 for sugarcane in 
the growing year and 1 for ratoons). 

Then, the Coefa was split between stalk and leaves. The stalk allo
cation coefficient, Coefstalk, was calculated using Eq. (5). Notably, F1 
[calculated using Eq. (6)] and F2 [calculated using Eq. (7)] are the linear 
and logarithmic functions that describe the fraction of the aboveground 
carbon that gets allocated to the stalk initially and for most of the plant 
lifespan, respectively. 

Coef stalk = min[(1 − Coef leaves_min − Coef roots_min),Coef a ∗ max(0,F1,F2)]

(5)  

Fig. 1. Schematic representation of the ECOSystem MOdel Simulator (ECOSMOS)-sugarcane model employed in this study.  
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F1 = max(0, (RM ∗ Clstalk) − (Ilstalk ∗ Clstalk)) (6)  

F2 = max(0,
(
1 − e[(RM∗Cestalk)− (Iestalk∗Cestalk) ]

))
(7)  

where Coefstalk ranges between 0 and 1; Coef leaves_min and Coefroots_min are 
the minimum allocation coefficients (and ranging between 0 and 1) to 
the leaves and roots, respectively; Clstalk and Ilstalk are the parameters that 
define the linear carbon allocation to the stalk at the beginning of stalk 
growth; and Cestalk and Iestalk are the parameters that define the loga
rithmic growth of carbon allocation to the stalk, with the allocation for 
most of stalk development period being dominant. 

The leaf allocation coefficient, Coef leaves, which ranged between 
0 and 1, was calculated using Eq. (8). 

Coef leaves = Coef a–Coef stalk (8) 

Then, we calculated the fraction of stalk that was considered to be 
sucrose (referred to as “stalk-sucrose”). The stalk-sucrose allocation 
coefficient, Coef suc, calculated using Eq. (9), ranged between 0 and 1. As 
shown in Eqs. (10) and (11), F3 (Eq. 10) and F4 (Eq. 11) are the linear 
(dominating in the beginning of stalk growth) and logarithmic functions 
that describing the fraction of the aboveground carbon that goes to the 
stalk-sucrose, respectively. They are responsible for the allocation for 
most of plant lifespan. 

Coef suc = Coef stalk ∗ max(0,F3,F4) (9)  

F3 = max(0, (RM ∗ Clsuc) − (Ilsuc ∗ Clsuc)) (10)  

F4 = max(0,
(
1 − e[(RM∗Cesuc)− (Iesuc∗ Cesuc) ]

))
(11)  

where Clsuc and Ilsuc are the parameters that define the carbon allocation 
to the stalk-sucrose of F3, and Cesuc and Iesuc are the parameters when the 
logarithmic function F4 allocates carbon to the stalk-sucrose. 

The carbon allocated to the stalk-structural was calculated using 
Coefstruc, as show in Eq. (12) below: 

Coef struc = Coef stalk –Coef suc (12) 

The root allocation coefficient, Coefroots, was calculated using the Eq. 
(13) below: 

Coef roots = 1–Coefa (13) 

The leaf area index (LAI; m2 m-2) was calculated using Eq. (14) 
below: 

LAI = (Cl ∗ SLA) (14)  

where Cl is the current amount of carbon in the leaves compartment (kg 
C m-2), and SLA is the specific leaf area (m2 kg-1). 

The LAIIntercept [calculated using Eq. (15)] is the effective LAI that 
intercepts light; it depends on the total green LAI (LAIg) and is a relative 
fraction of dead leaves (LAIb), parameterized through a coefficient of 
interception of dead leaves (IDL). The radiation IDL is a coefficient that 
reduces the relative fraction, with respect to the green leaves and the 
area projected in the incident radiation plane, as dead leaves have 
smaller inclination angle and are usually located bellow green leaves. 
Dead leaves have a direct impact on light interception, calculated by 
altering the green fraction of the canopy, Greefrac [see Eq. (16)]. Gree
frac impacts the gross primary production (GPP) directly, as only the 
fraction of photosynthetically-active radiation (PAR) absorbed by green 
leaves can be accounted for photosynthesis. 

LAIIntercept = LAIg + LAIb ∗ IDL (15)  

Greefrac =
LAIg

LAIIntercept
(16) 

After calculating all the allocation coefficients, they were multiplied 
by the NPP to obtain the carbon allocated for each component (stalk- 

structural, stalk-sucrose, leaves, and roots). 
Leaf mortality was computed on a daily basis, while considering the 

fact that the dead leaves do not fall immediately after their mortality but 
stay attached to the stalk after senescence; thus, they were computed 
only with respect to litterfall (after the harvest). The dead root mass was 
computed daily; notably, dead root mass is generally regulated by the 
total roots in the soil layer and the root turnover rate. The soil biogeo
chemical module accounted for the carbon cycle up to soil depth of 1 m; 
therefore, only the fraction of dead roots up to the depth of 1 m was 
included in the soil carbon model. Note that sugarcane roots can grow 
deeper than 1 m, and the model accounts for the water absorption bel
low 1 m; the soil water module is independent of the biogeochemical 
module containing different soil layers of different sizes. Additionally, 
after the harvest of each rotation, we assumed that the leaf mortality was 
17% of the roots (Ball-Coelho et al., 1992). The daily stalk mortality was 
not computed. At harvest, the leaves and the top of the stalk immedi
ately add to the surface litter, while the roots experience a period of 
senescence, eventually becoming a part of soil letter. 

For this study, the ECOSMOS module was implemented in a frame
work that supported multiple programming languages (most of the code 
was in C+ +), however some modules were in Fortran, to benefit from 
the computational performance of C+ + and its flexibility. 

2.2. Field dataset descriptions 

Sugarcane is a semi-perennial crop planted and harvested after 
12–18 months. The first year refers to the growing year when the sug
arcane is first planted in the field, and ratoon sugarcane refers to when 
the sugarcane sprouts from the previously harvested ratoon. In this 
study, four datasets were used for parameterization/evaluation and 
calibration/evaluation for different growing-year lengths (12–18 
months) and different numbers of ratoons. 

Dataset 1 consisted of two highly monitored experimental sites, 
including the eddy-covariance measurements of carbon and water fluxes 
between the ecosystem and atmosphere. One site was used for param
eterization (Site 1) and the other for evaluation (Site 2). Dataset 2 
consisted of a set of experimental sites having multiple sugarcane vari
eties; these sites had different climatic conditions and soil textures. 
Dataset 3 consisted of several commercial sugarcane plantations located 
in the State of Goiás (Brazil), with each plantation having different soil 
hydraulic properties and production environment. The last dataset was 
used to verify the model performance, based on the calibration obtained 
using Dataset 2 (with respect to crop yield). Fig. 2 illustrates the dis
tribution of the sites considered in this study, and Table 1 describes the 
level of information for each dataset. 

2.2.1. Dataset 1 
Dataset 1 (Fig. 2) consisted of sites 1 and 2. Site 1 is located at 

Pirassununga, São Paulo State (21º57’ S, 47º20’ W; altitude = 657 m). 
The region is characterized by the Cwa climate (Humid Subtropical, 
with dry winter and hot summer), with an average annual rainfall of 
1410 mm and average annual temperature of 22 ºC. The soil classifica
tion was oxisol with clay texture. The IAC SP 95–5000 genotype was 
planted in 2015, and the observed period corresponded to the growing 
year and the period of 2015–2018, when two consecutive ratoons 
sprouted. A flux tower (9 m) was installed in October 2015, 23 days after 
planting. The H2O and CO2 fluxes were obtained using an eddy covari
ance system (Cabral et al., 2020) equipped with a three-dimensional 
sonic anemometer (CSAT3) and an infrared H2O/CO2 analyzer 
(EC150), both being manufactured by Campbell Scientific, Inc. in Logan 
(Utah, USA). Radiation sensors (Kipp & Zonen, Delft, The Netherlands) 
were installed at the top of the flux tower, to monitor the components 
(incident and reflected) of global solar radiation (Rg), PAR, and net 
radiation (Rn). Other measurements included air temperature and hu
midity using Vaisala’s HMP45 sensor (Helsinki, Finland) in a forced 
ventilation shelter; the total precipitation was measured using TB4 rain 
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gage (Hydrological Services Pty. Ltd., New South Wales, Australia). Soil 
moisture was measured using reflectometers (CS615, Campbell SI, 
Logan, Utah, USA) installed vertically (0.3 m layers) on the ground 
surrounding the tower (to the soil depth of 2.7 m). Biomass sampling 
was performed every 30 d (Fig. 3), and sampling was carried out 
randomly at 10 points. The full aboveground biomass was harvested in 
2 m linear, where the green biomass of green and dry leaves and stalks 
were weighed. A subsample of each biomass component was obtained to 
determine the dry biomass content in each sample using a forced 
ventilation oven (70 ◦C), with measurements being carried out until a 
constant weight was achieved. 

Site 2 was located in Luiz Antonio, São Paulo State (21◦38’ S, 47◦47’ 
W; altitude = 552 m). The region was classified as Cwa (Humid Sub
tropical, with dry winter and hot summer), with an annual rainfall of 
1440 mm and average temperature of 23 ºC. The soil classification type 
was oxisol with sandy clay-loam texture. The planting (SP83–2847 ge
notype) was carried out in 2004, with the spacing between the rows 
being 1.5 m. The flux tower (8.5 m) was installed in early February of 
2005, and the period of measurements corresponded to the second and 
third ratoons during 2005–2007. The H2O and CO2 flows (Cabral et al., 
2013, 2012) were obtained by an eddy covariance system, using a sonic 
anemometer (R2, Gill Inst., Lymington, Hampshire, UK) and a 
closed-path infrared gas analyzer (IRGA, LI6262, Li-Cor Biosciences, 
Lincoln, Nebraska, USA). The incident and reflected solar radiation (Rg), 
PAR, and Rn were measured using Kipp and Zonen sensors (Delft, The 
Netherlands); the air temperature and humidity were measured using 
CSI HMP45C (Campbell SI, Logan, Utah, USA), and the precipitation was 

measured using TB4rain gage (Hydrological Services Pty. Ltd. New 
South Wales, Australia). Soil moisture was monitored using 10 re
flectometers (CS615, Campbell SI, Logan, Utah, USA) installed vertically 
(0.3 m layers) at the soil depth of 2.7 m. Biomass sampling was per
formed at 10 random sampling points in the plantation site, every 20–30 
d. At every sampling point, the number of stalks in 2 m of row were 
counted; a total of five stalks were sampled (one at every 0.4 m). The 
biomass fractions were separated (green leaves, dry leaves, and stems) 
and the dry mass was determined using the subsamples of each fraction 
(10%), after drying the samples in a forced ventilation oven (70 ◦C) until 
the samples reached constant weights. 

2.2.2. Dataset 2 
The 18 sites of Dataset 2 were located in regions with different 

climate and soil texture (Fig. 3 and Table 1). Nine sites were classified as 
Cfa (Humid subtropical oceanic climate, without dry season and with 
hot summer); three sites were classified as As (Tropical with dry sum
mer), two as Cfb (Humid subtropical Oceanic climate without dry season 
with temperate summer), two as Cwa (Humid Subtropical with dry 
winter and hot summer), one as Am (Tropical monsoon), and one as Aw 
(Tropical with dry winter). Complete biometric data (stalk, leaves, LAI 
and/or yield data) was available for eight sites; for 10 of these sites, only 
the yield data was available. The predominant genotypes of the crop 
were RB855156, RB966928, RB867515, and RB92579. For three sites, 
only the biometric and/or yield data for the growing year were avail
able: for 14 sites, only the data for the growing year and ratoons were 
available. The data for soil physical properties, such as texture, field 

Fig. 2. Experimental sites and sugarcane field plots used for the parametrization, calibration, and evaluation for the ECOSystem MOdel Simulator (ECOSMOS)- 
sugarcane model. A detailed description of Datasets 1, 2, and 3 is given in Section 2.2, based on the Köppen climate classification according to Alvares et al. (2013). 
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Table 1 
Summary of the datasets used for the parameterization, calibration, and evaluation of the ECOSystem Model Simulator (ECOSMOS)-sugarcane model.  

Dataset Site Number Coordinates Climate Soil Texture Genotype Level of information 

1 1 21◦57’S, 47◦20’W Cwa Clay IAC SP95-5000 Flux Tower; Stalk, 
Leaves & LAI 

2 21◦38’S, 47◦47’W Cwa Sandy Clay 
Loam 

SP83-2847 Flux Tower; Stalk, 
Leaves & LAI 

2 3 31◦40’S, 52◦26’W Cfa Clay Loam RB855156, RB867515, RB92579 & RB966928 Stalk, Leaves, LAI & 
Yield 

4 22◦59’S, 52◦28’W Cfa Sandy Clay 
Loam 

RB036066, RB867515 & RB966928 Stalk, Leaves, LAI & 
Yield 

5 23◦2’S, 51◦24’W Cfa Sandy Clay 
Loam 

RB855156 & RB867515 Stalk, Leaves & LAI 

6 22◦17’S, 51◦40’W Cfa Clay RB855156 & RB867515 Stalk, Leaves & LAI 
7 9◦28’S, 35◦50’W As Sandy Loam SP79-1011, RB92579, RB931530 & RB93509 Stalk, Leaves, LAI & 

Yield 
8 10◦9’S, 36◦18’W As Sandy Loam RB92579 Stalk, Leaves, LAI & 

Yield 
9 22◦35’S, 47◦34’W Cwa Clay RB966928 Stalk & Yield 
10 22◦37’S, 47◦35’W Cwa Clay IACSP-5000 Stalk & Yield 
11 4◦51’S, 42◦53’W Aw Sandy Loam RB867515, RB863129, RB72454, RB921011, RB931530, 

RB92579, RB962962, RB98710, SP79-1011 & VAT90212 
Yield 

12 29◦8’S, 51◦3’W Cfb Clay Loam RB855156, RB966928 & RB867515 Yield 
13 27◦38’S, 52◦12’W Cfb Sandy Clay RB855156, RB966928 & RB867515 Yield 
14 27◦57’S, 54◦18’W Cfa Clay Loam RB855156, RB966928 & RB867515 Yield 
15 29◦3’S, 53◦12’W Cfa Sandy Clay RB855156, RB966928 & RB867515 Yield 
16 27◦57’S, 54◦18’W Cfa Sandy Clay RB855156, RB966928 & RB867515 Yield 
17 28◦48’S, 55◦48’W Cfa Sandy Clay 

Loam 
RB855156, RB966928 & RB867515 Yield 

18 28◦27’S, 54◦53’W Cfa Clay RB855156, RB966928 & RB867515 Yield 
19 9◦15’S, 35◦36’W Am Loamy Sand RB92579 Yield 
20 9◦54’S, 36◦17’W As Loamy Sand RB92579 Yield 

3 21 - 234 (Prod. 
Env. A) 

18◦53’S - 18◦9’S, 
50◦17’W - 50◦48 W 

Aw Clay Not Available Yield 

235 - 373 (Prod. 
Env. B) 

Clay Loam Yield 

374 - 976 (Prod. 
Env. C) 

Sandy Clay 
Loam 

Yield 

977 - 1335 (Prod. 
Env. D) 

Sandy Clay 
Loam 

Yield 

1336 - 1759 
(Prod. Env. E) 

Loamy Sand Yield  

Fig. 3. Schematic representation of the parametrization, calibration, and evaluation of the new ECOSystem MOdel Simulator (ECOSMOS)-sugarcane module 
employed in this study. 
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capacity, and permanent wilting point, were available for all the sites. 
Notably, the majority of sites considered in this study belong to an 
experimental network coordinated by the Brazilian Agricultural 
Research Corporation (EMBRAPA). The data for sites 7 and 8 are 
available online (Barbosa et al., 2021); sites 11 and 12 were part of the 
project Sugarcane Renewable Electricity (SUCRE; Souza et al., 2021). 

2.2.3. Dataset 3 
Dataset 3 was composed of 1739 sugarcane fields (management 

units) located in Quirinópolis, Goiás State, Brazil. The region was clas
sified as Aw (Tropical savanna with dry winter), with an annual rainfall 
of 1400 mm and average temperature of 23 ºC. The soils were classified 
as Oxisol, Ultisol, Entisol, and Gleysol. The sugarcane fields were 
distributed in five different production environments, namely, A, B C, D 
and E. The production environments were management zones classified 
according to the chemical properties and water-holding capacity of the 
soil. As a consequence of the difference in nutrients and water avail
ability, the production environments led to different rooting depths, 
with Environment A having the deepest and Environment E having the 
shallowest rooting depth. The information for specific genotypes for 
each sugarcane field were not available; however, overall, more than 40 
genotypes were distributed among the fields. For sugarcane fields, the 
data is composed of fields with only the growing year (664 fields), 
growing year and one ratoon (814 fields), and growing year and two 
ratoons (261 fields), a total of 1739 fields. The sugarcane production in 
these fields was carried out between 2016 and 2019. Sugarcane was 
mechanically harvested, with crop residues (leaves and shoots) left in 
the field, and only the stalks transported to and processed by the in
dustry for sugar, ethanol, and electricity production. 

The sugarcane harvesting season lasted for 7–9 months in the dry 
season. The harvesting sequence was driven by two main parameters: 1) 
Production environment: As water deficit increased toward the mid-to- 
late harvesting season, the fields under production environments D and 
E, which had the lowest soil-water holding capacity, were harvested 
first, and those under production environments A and B were harvested 
later, to minimize yield loss. 2) Genotype susceptibility to water deficit 
and their precocity to accumulate stalk sucrose (according to ripening 
precocity): Breeding programs traditionally classify genotypes into three 
ripening groups: early, medium, and late harvest seasons. In this study, 
the genotypes were grouped into early and mid-to-late harvest seasons, a 
classification commonly adopted by farmers. 

2.3. Parametrization, calibration, and evaluation procedures 

The three datasets were used for parameterization/evaluation and 
calibration/evaluation of the ECOSMOS-sugarcane module. A schematic 
representation is shown in Fig. 3. Sites 1 and 2 (Dataset 1) contained a 
flux tower; therefore, they were used for the parametrization of the 
biophysical and physiological processes of the plant, e.g., photosyn
thesis, stomatal regulation, and radiation fluxes, with the initial 
parameter values obtained from previous studies (Cuadra et al., 2021, 
2012; Kucharik et al., 2000). Model parametrization was obtained 
through a series of simulations, wherein the parameters varied to 
pre-defined intervals. A hierarchical structure of parametrization was 
performed, while adhering to the following sequence: by adjusting the 
(i) radiation interception and absorption, (ii) soil-water retention and 
water fluxes, (iii) physiological processes related to photosynthesis and 
evapotranspiration, and (iv) carbon allocation and plant mortality. 

The largest number of in-situ measurements were carried out for Site 
1; thus, the site was used for model parametrization. Site 2 was used to 
evaluate the results. The parameter sets obtained for Site 1 was used for 
Site 2; however, two parameters (namely, specific leaf area and rooting 
profile) were adjusted to account for the different genotypes grown in 
the sites. The parameter sets are available in the Supplementary Material 
(Table S1). 

Dataset 2 was used to calibrate the ECOSMOS-sugarcane module 

according to the variable genotype-by-environment (GxE), to obtain two 
generic parameter sets for the early and mid-to-late maturity genotypes, 
hereafter referred to as EMG and MLMG (Table S1), respectively. A total 
of 41 simulations were performed for Dataset 2 (from Site 3 to Site 20), 
corresponding to the combination of sites and genotypes. The simula
tions were split into two subsets based on the genotypes, as follows: (i) 
early harvest season maturity group (i.e., genotypes CTC9001, 
CTC9003, RB855156, RB855453, RB863129, RB931530, RB966928, 
and RB98710), and (ii) mid-to-late harvest season maturity group (i.e., 
genotypes CTC2, CTC963346, IACSP955000, RB036066, RB72454, 
RB867515, RB921011, RB92579, RB93509, RB962962, SP791011, 
SP801816, SP832847, and VAT90212). For each subset, half of the 
simulations were randomly selected (subset 1) and used for calibration, 
and the other half (subset 2) was used for evaluation. For each subset, we 
performed the same number of simulations, with similar biometrics 
and/or yield-level information, or with only the yield information. The 
full parametrization obtained for Site 1 was maintained for the majority 
of the parameters, and only a few parameters dedicated to the 
ECOSMOS-sugarcane module were re-calibrated; these parameters were 
leaf emergency, thermal time, maximum LAI, specific leaf area, and root 
and leaf allocation parameters. 

Dataset 3 was used to evaluate the calibration obtained from Dataset 
2 and also to carry out an additional calibration that was adjusted to one 
farm group. Datasets 2 and 3 portrayed large GxE variability, but 
Dataset 3 differed from Dataset 2 with respect to the management pro
cess. While Dataset 2 consisted of experimental sites that adopted 
standardized agricultural management, Dataset 3 was limited to oper
ational field plots, wherein farm management had significant influence 
on crop yield. As no genotype information was available for Dataset 3, 
we assigned the parameter set of the early harvest season to the sugar
cane fields harvested before 31st of July; for the plantations harvested 
after this period, we used the parameter sets of the mid-to-late harvest 
season. A third calibration was performed to maximize the module 
performance for simulating the crop yield, referred to as “Farm cali
brations” (Farm-EMG and Farm-MLMG; Table S1), while accounting for 
the effects of management on the yield. 

Similar to Dataset 2, Dataset 3 was split into two subsets as well, with 
half of the simulations being selected (subset 1) randomly and used for 
calibration, and the other half (subset 2) being used for evaluation, 
based on five production environments (i.e., A, B, C, D and E). For 
recalibration, the plots classified into production environment B were 
used as reference, once those had the higher yield. The set of parameters 
related to the sugarcane module adjusted for predicting the yield for 
environment B was maintained for the simulations of the plots classified 
into production environments A, C, D and E. For predicting the yields for 
the environments A, C, D and E, we changed and reduced the potential 
root depth and soil water retention. With respect to root density, for 
production environments C and D, approximately 95% (of the total 
roots) was observed in the top 40 cm of the soil profile; for production 
environment E, approximately 95% was noted in the top 30 cm of the 
soil profile. 

2.4. Simulation settings 

For Dataset 1, we used hourly meteorological data to run the model 
at an hourly time-step. For datasets 2 and 3, the daily meteorological 
data (precipitation, maximum and minimum temperature, solar radia
tion, relative humidity, and wind speed) were obtained locally or from 
external sources (Xavier et al., 2022). Diurnal cycles were synthetically 
generated using the original IBIS functions (Foley et al., 1996). The soil 
physical and hydraulic properties used by the model were soil total 
porosity (volume fraction), field capacity (volume fraction), wilting 
point (volume fraction), Campbell’s “b” exponent (for computing the 
unsaturated soil water fluxes), saturated hydraulic conductivity (m s-1), 
and granulometric fractions for each soil layer. When the data of the 
saturated and drained upper limits and the lower limit of plant 
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extractable water were not available, we used a PTF (Tomasella et al., 
2000). For estimating the saturated hydraulic conductivity of the soil, 
we used the functions proposed by Tomasella and Hodnett (1997). For 
soil-water content initialization, the timeline of the simulations began a 
year before the planting date. 

2.5. Model evaluation 

For Dataset 1, the Nash-Sutcliffe efficiency (NSE) [see Eq. (17)] was 
used to evaluate the prediction of Rn, net ecosystem exchange (NEE), 
GPP, evapotranspiration (ET), LAI, and biomass. The same analysis was 
performed for assessing the biomass of datasets 2 and 3, depending on 
data availability. Additionally, we calculated the relative root mean 
square error (RRMSEs) [Eq. (18)] and mean biases (MBs) [Eq. (19)] for 
all the variables. 

NSE = 1 −
∑n

i=1(ai − âi)
2

∑n
i=1(ai − ai)2 (17)  

RRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(̂ai − ai)2

n

√

∑n

i=1
ai

n

.100 (18)  

MB =

∑n
i (âi − ai)

n
(19)  

where ai denotes the observed values; âi denotes the simulated values; 
and n is the number of observations. 

For Dataset 1, we carried out non-parametric local regression 
(LOESS), with 95% confidence interval and SPAN value of 0.1 (for a 
fraction of the data points used to fit the model), for NEE, ET, Rn, GPP, 
and Volumetric Water Content (VWC). The VWC is defined as the ratio 
of the volume of water to the unit volume of soil (m3 m-3). The confi
dence intervals that overlap the predicted and observed values of NEE, 
ET, Rn, and VWC indicated non-statistical differences along the time 
series. The GPP vs Air Temperature (C◦) and GPP vs humidity (%) were 
graphically analyzed by plotting the quantile of 100% of GPP (to express 
the maximum values against both the variables). The paired t-test with 
95% confidence interval was performed (for the yield), to compare the 
statistical difference between the means of the observed and simulated 
data. The Wilcoxon signed-rank test was used as an alternative for data 
with no Gaussian distribution for residues. The potential water available 
(PAW) is the maximum amount of water stored in a soil profile that can 
be used by plants. In this study, the PAW was normalized between 0 and 
1, representing the absence of water available for plants and the 
maximum capacity of water use by plants, respectively. A graphical 
analysis of PAW was also performed for sites 1 and 2. The analyses were 
performed using R R Core Team (2020). 

3. Results 

3.1. Evaluation of the ECOSystem MOdel Simulator (ECOSMOS)- 
sugarcane model 

The ECOSMOS-sugarcane model consistently simulated (with high 
positive values of NSE and low values of RRMSE and MB, Table 2) the 
Rn, GPP, NEE, ET, and soil water content (Figs. 4–6) for sites 1 and 2. 
This indicated that the model could successfully carry out the parame
terization and evaluation for sites 1 and 2, respectively. 

Despite the individual performance of each variable, the model 
precisely followed the observed seasonality pattern for Rn, NEE, and ET. 
The variables Rn, NEE, and ET fluctuated along the simulation period 
(Figs. 4 and 5), with the highest values of NEE (expressed negatively), 
Rn, and ET being noted in summer, a period with accentuated crop 
growth, and lower values being noted in the post-harvest period (char
acterized by the predominance of belowground plant metabolic). The 

highest positive values of NEE were noted during the periods of litterfall 
and decomposition (Figs. 4 and 5). 

Notably, Rn was calculated as a function of the LAI, leaf angle dis
tribution, radiation interception, and plant and soil reflectance. A robust 
LSM (Pollard and Thompson, 1995; Thompson and Pollard, 1995a, 
1995b) supports biophysics process of Rn, e.g., the surface components 
of reflectance and transmittances that are used in simulation. As 
observed, the model efficiently simulated the Rn along the times series 
for both the sites, while following the periods of the presence and 
absence of green leaves. 

Evapotranspiration (ET) is a function of the stomatal conductance 
and internal concentration of CO2. The BBL model modified by Cuadra 
et al. (2021) account for stomatal opening at low water-vapor concen
tration, which is suitable for developing the simulations for sugarcane, 
as it is a semi-perennial plant (with approximately 12 months of growing 
season), and thus, is exposed to the critical values of vapor pressure 
deficit (VPD) throughout the year, especially in dry season in a tropical 
savanna environment. 

Regarding carbon assimilation, NEE is an important diagnostic var
iable that integrates GPP and ecosystem respiration (Re). In this study, 
NEE fluctuation was observed along the times series; it varied as a 
function of plant growth and harvest time, wherein negative balance 
indicated greater CO2 assimilation by the ecosystem from the atmo
sphere and thus, a higher metabolic activity. The periods with a positive 
balance indicate CO2 losses to the atmosphere, occurring predominantly 
in the harvest and/or post-harvest periods. For both the sites, the model 
captured the fluctuations of the NEE along the season. The NEE is the 
difference between GPP and Re. The Re accounts for autotrophic and soil 
heterotrophic respirations, which were computed in the LSM and 
biogeochemical modules, respectively. 

Although the LOESS algorithm indicated that the simulated and 
observed data (Figs. 4 and 5) were similar along the times series for the 
NEE, we noted low values of NSE (observed in Table 2) for both the sites 
(sites 1 and 2). However, the values were positive, indicating that the 
model simulations were more reliable that the historical observed data. 
Low values of NSE can be explained by a high disparity between the 
observed and simulated values of NEE along the times series, which may 
increase the variance and consequently reduce the NSE. The simulation 
of GPP responded consistently to temperature and humidity for both the 
sites (Figs. 4 and 5). However, an overestimation was observed for 
15–32 ◦C and 25–80% of humidity for site 1 (Fig. 4). The GPP simulation 

Table 2 
Performance of the ECOSystem MOdel Simulator (ECOSMOS) model for 
different variables for the two experimental sites considered in this study 
(Dataset 1). Abbreviations: net radiation (Rn); gross primary production (GPP); 
net ecosystem exchange (NEE); evapotranspiration (ET); leaf area index (LAI); 
dry matter (DM); Nash-Sutcliffe efficiency (NSE); relative root mean square error 
(RRMSE); mean bias (MB).  

Dataset Site Variables Units NSE RRMSE MB 

1 1 Stalk kg DM m-2  0.89  24.21  -0.11 
Leaves kg DM m-2  0.58  30.03  -0.05 
LAI m2 m-2  0.67  26.34  -0.07 
Rn W m-2  0.89  10.74  0.65 
GPP g C m-2 day-1  0.37  109.20  2.70 
NEE g C m-2 day-1  0.03  90.93  -1.80 
ET mm day-1  0.54  30.82  -0.11 
WVC (0-2.7 m) m3 m-3  0.75  3.78  -0.01 
PAW (0-2.7 m) Dimensionless  0.62  35.29  -0.03 

2 Stalk kg DM m-2  0.86  45.53  -0.03 
Leaves kg DM m-2 0.65  43.88  0.03 
LAI m2 m-2 0.62  45.46  0.36 
Rn W m-2 0.72  23.26  1.81 
GPP g C m-2 day-1 0.52  112.42  2.20 
NEE g C m-2 day-1 0.14  99.29  -1.58 
ET mm day-1 0.61  39.39  0.58 
WVC (0-2.7 m) m3 m-3 0.47  13.15  0.01 
PAW (0-2.7 m) Dimensionless 0.49  38.55  -0.02  
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for Site 2 (Fig. 5) was more accurate than that for Site 1. For Site 1, the 
observed values did not exceed 60 µmol CO2 m-2 s-1 for 15–30 ◦C and 
40–80% of humidity, however; for site 2, the value exceeded. A com
parison of the simulated and observed GPP for Site 2 revealed an overlap 
throughout the time series, indicating a consistency of the model (with 
respect to physiological equations). 

Additionally, the observed and simulated data portrayed lower 
abrupt intra-seasonal fluctuations throughout the time series, driven by 
short-term water deficit. The periods of higher water deficit can be 
diagnosticated using VWC and PAW (shown in Figs. 4–6). Water avail
ability for plants is a critical factor for physiological processes. A water 
deficit will reduce the stomata opening, due to the higher vapor pressure 
deficit, leading to lower ET. Consequently, a reduction in the photo
synthesis rate will lower the net exchange with the environment. This 
also explains the lower NEE values observed for the periods of lower 
VWC and PAW. Therefore, high accuracy in soil water prediction is 
critical for modeling the biophysical processes of crops. 

Statistically (Table 2) and graphically (Fig. 6), throughout the time 
series, the simulated PAW values (calculated using Richard’s equations) 

were similar to the observed ones for both the saturated and unsaturated 
water flows along the entire soil profile. The soil water model accurately 
simulated a higher and lower amount of water in the wet and dry sea
sons, respectively, thus, following the climate seasonality (Figs. 4 and 5). 

The stalk and leaf biomasses were simulated consistently (Table 2 
and Fig. 7), despite the differences in genotypes, crop management, and 
plant ages between sites 1 and 2. The evaluated dataset from Site 1 was 
based on the growing year and two consecutive ratoons, and that of Site 
2 was based on the second and third ratoons. The parametrization from 
Site 1 was applied to Site 2, but the parameters of specific leaf area and 
root density were recalibrated, to better express the behavior of the 
genotypes grown in Site 2, as the morphological characteristics of the 
crop can vary significantly between different genotypes. However, a 
slight underestimation was observed for the growing year for Site 1 and 
the 2nd ratoon for Site 2, and an overestimation was noted in the 3rd 
ratoon for Site 2. 

Fig. 4. Simulated and observed daily mean total net radiation (Rn), net ecosystem exchange (NEE), gross primary production (GPP) vs temperature (C◦) and hu
midity (%), daily total evapotranspiration (ET) and volumetric water content (VWC) for Site 1, based on Dataset 1. Blue triangles and red circles denote to the 
observed and simulated values, respectively. Dashed and solid lines represent the results of nonparametric local regression (LOESS), with 95% confidence interval. 
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3.2. Performance of ECOSystem MOdel Simulator (ECOSMOS)- 
sugarcane model: Calibration for early and mid-to-late harvest season 
genotypes 

The simplified classification of sugarcane varieties into two groups, 
EMG and MLMG, provides a better distribution of genotypes across the 
edaphic and climatic gradients at Dataset 2. This approach provides 
greater model robustness for the calibration and evaluation procedures. 
We used one subset for calibration and another for evaluation. 

As shown in Table 3 and Fig. 8, the statistics portrayed high per
formance (high NSE and low RRMSE and MB) in simulating the stalk 
biomass. For leaf biomass (not graphically represented) and LAI simu
lations, we noted a lw performance (low NSE and high RRMSE and MB). 
The results corresponded to the values of leaf biomass and LAI across the 
dataset. Different genotypes present different leaf characteristics; this 
may have contributed to the higher variability of the observed LAIs 
between the sites. 

Regarding crop yield, the t-test and Wilcoxon signed-rank test did not 
portray statistical differences between the early and mid-to-late 

maturity genotype groups (p values of 0.2688 and 0.3692, respectively) 
indicating that, for the calibration dataset in each group, the means of 
the simulated and observed yields were not statistically different. This 
was consistent with the evaluation dataset for the early and mid-to-late 
maturity genotype groups with the p values 0.674 and 0.5212, 
respectively. 

Compared to using the specie parameter set to simulate the two 
subsets from Dataset 2 (results are shown in Table S2 of Supplementary 
Material), we observed better performance when using the generic 
calibration approach to simulate the crop stalk. For subset 1, we noted 
an increase in the NSE from 0.80 to 0.82 and a reduction in the RRMSE 
from 44.08 to 41.76. For subset 2, we noted an increase in the NSE from 
0.85 to 0.9 and a reduction in the RRMSE from 41.66 to 34.96. 
Regarding the yields of all the field plots, a statistical significance was 
observed for the mid-to-late harvest season group of subset 2 (Fig. S1 of 
Supplementary Material), indicating that the means of the simulated 
and observed data were not consistent; however, when applying the 
generic calibration approach, they were consistent (Fig. 8F). 

Fig. 5. Simulated and observed daily mean total net radiation (Rn), net ecosystem exchange (NEE), gross primary production (GPP) vs temperature (C◦) and hu
midity (%), daily total evapotranspiration (ET), and volumetric water content (VWC) for Site 2, based on Dataset 2. Blue triangles and red circles correspond to the 
observed and simulated values, respectively. Dashed and solid lines represent the results for nonparametric local regression (LOESS), with 95% confidence interval. 
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3.3. Yield estimation for sugarcane fields plots 

The t-test and Wilcoxon signed-rank test (Fig. 9) indicated non- 
statistical significance differences between the observed and simulated 
yields only for the production environment A (i.e., no difference was 
noted between the mean observed and simulated values). For produc
tion environments B, C, D, and E, we noted statistical significance dif
ferences between the mean observed and simulated values, indicating 

that the model could not efficiently simulate the yields of these pro
duction environments. The difference between the means of the 
observed and simulated yields (absolute values) of the field plots were 
0.9, 14.5, 2.9, 7.5, and 1.8 Mg ha-1 for production environments A, B, C, 
D, and E, respectively. 

To increase the accuracy of the ECOSMOS-sugarcane module with 
respect to simulating the yields of the field plots, a “farm calibration” 
was proposed, wherein a subset is used for calibration and a second 

Fig. 6. Normalized plant available water (PAW) along the soil depth. The range varies from 0 to 1, where 0 indicates no water availability and 1 indicates maximum 
water availability. The column on the left corresponds to the observed and simulated PAW values for Site 1, and those on the right correspond to the observed and 
simulated PAW values for Site 2. 

Fig. 7. Simulated and observed dry matter for experimental sites 1 (Fig. A) and 2 (Fig. B), based on Dataset 1. Solid and dash lines denote the simulated values for the 
crop stalk and leaves, respectively; blue triangles and green circles denote the observed values for stalk and leaves, respectively. 
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subset is used for evaluation. This calibration was based on production 
environment B, and the novel parameter set of production environment 
B was applied for the other production environments as well; however, 
in such scenarios, the rooting zone was penalized (see Section 2.3). The 
non-statistical significance indicated that the simulated and observed 
data were similar for all the production environments in the dataset used 
for calibration (Fig. 10A) and evaluation (Fig. 10B). The difference 

between the means of the observed and simulated yields (absolute 
values) of the field plots were 0.3, 1.6, 1.8, 2.2, and 0.4 Mg ha-1 for the 
production environments A, B, C, D, and E, respectively, of subset 2. 

4. Discussion 

The Rn calculated using the land surface module (Pollard and 

Table 3 
Performance of the ECOSystem MOdel Simulator (ECOSMOS)-sugarcane module for generic calibration of different variables for the two subsets, based on Dataset 2. 
Abbreviations: Leaf area index (LAI); dry matter (DM); Nash-Sutcliffe efficiency (NSE); relative root mean square error (RRMSE); mean bias (MB).  

Dataset Site Calibration/ evaluation Variables Units NSE RRMSE MB 

2 3 to 20 Calibration (subset 1) Stalk kg DM m-2 0.82 41.76 0.24 
Leaves kg DM m-2 -0.17 136.54 -0.33 
LAI m2 m-2 -1.74 67.23 -1.87 

Evaluation (subset 2) Stalk kg DM m-2 0.90 34.96 0.12 
Leaves kg DM m-2 0.09 191.76 -0.04 
LAI m2 m-2 -1.99 67.69 -2.00  

Fig. 8. Simulated and observed stalk, leaf area index (LAI) and Yield in sites 3 – 20 of dataset 2 used to calibrate (columns on the left, Fig. A, B, and C), and to 
evaluate (columns on the right, Fig. D, E, and F) the ECOSMOS-Sugarcane parameters set as early and mid-to-late maturity genotypes. “NS” indicates non-statistical 
significance between the observed and simulated values for yield (Mg ha-1). 
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Thompson, 1995; Thompson and Pollard, 1995a, 1995b), ET calculated 
using the BBL model modified by Cuadra et al. (2021), and soil water 
(VWC and PAW) calculated using Richard’s equations were simulated 
efficiently throughout the time series. In particular, the GPP at the leaf 
scale was regulated by light, intercellular CO2 concentration, and the 
Rubisco regeneration rate (Farquhar et al., 1980). In this study, the 
maximum Rubisco carboxylation was set up for the air temperature of 
5–38 ◦C, regulated by the parameters explained in Supplemental 

Material Table S1. This range of temperatures regulates the plant 
metabolic activity (in this case, expressed by the GPP), with a subopti
mal metabolic activity noted below approximately 15 ◦C. The optimal 
values were noted for 25–32 ◦C, and an abrupt reduction was noted 
above ~30 ◦C (Figs. 4 and 5). The carboxylation of Rubisco as a function 
of the temperature is well-documented in the literature. In particular, 
sugarcane portrays optimal Rubisco carboxylation activity at 35 ◦C, 
with suboptimal activity below 10 ◦C and an abrupt drop observed 
above 42 ◦C (Vianna et al., 2022). However, a slight variation with the 
optimal activity was noted at 23–29 ◦C during the period of early plant 
development (Guerra et al., 2013). 

Additionally, the module accurately simulated the GPP response to 
the variations in the relative humidity (RH); RH was used to compute the 
VPD at an hourly time scale. At low VPD, which refers to low humidity, 
we noted a reduction in the stomatal opening and consequently, tran
spiration and the photosynthesis rate. The accurate simulation of 
photosynthesis with respect to the threshold of metabolic activity, i.e., at 
high or low temperatures and humidity conditions (or VPD), is crucial 
for any crop model. Investigating the factors that impact GPP based on 
an extensive and global database, Bao et al. (2022) verified that VPD is 
the main driver for GPP in the tropics. Patel et al. (2021) highlighted 
that VPD is the most important variable after PAR, which directly affects 
the net CO2 assimilation in sugarcane in the growing season. Besides 
VPD, temperature and precipitation are the main drivers that will 
determine the pattern of reduction in sugarcane yield for different 
climate scenario estimations for Brazil in the future (Flack-Prain et al., 
2021). 

Overall, sugarcane is an important crop in several countries, espe
cially in Brazil, a country that is responsible for approximately a quarter 
of global sugar production and 50% of global export (Marin, 2016). 
Although the major sugarcane production regions are located at 
Southeast and Midwest Brazil (IBGE, 2022), known to have predomi
nantly Cfa, Cfb, and Aw climates, sugarcane is cultivated in the majority 
of Brazilian states (Fig. S2). Furthermore, it is an important crop for the 
local economy of multiple countries; sugar and ethanol are the major 
sugarcane derivate products, and it is also used to produce distilled 
drinks, animal feed, biodiesel, bio-electricity, biobutanol, chemicals 
(butanediol and biopolymers), several types of enzymes, and organic 

Fig. 9. Simulated and observed stalk (Mg ha-1) for Dataset 3 used to evaluate 
the ECOSystem MOdel Simulator (ECOSMOS)-sugarcane parameters sets for the 
early and mid-to-late harvest seasons in field plots varying the production en
vironments (Dataset 3). “* *” and “NS” indicate the statistical (P < 0.05) and 
non-statistical (P ≥ 0.05) significances, respectively, between the observed and 
simulated values of yield (Mg ha-1) (for each production environments). 

Fig. 10. Simulated and observed stalk (Mg ha-1) for two subsets of Dataset 3 (field plots). The left panel (A) represents the subset used to calibrate the ECOSystem 
MOdel Simulator (ECOSMOS)-sugarcane parameters and the right panel (B) represents the subset used for evaluation. “NS” indicates non-statistical significance 
(P ≥ 0.05) between the observed and simulated values for the stalk (Mg ha-1) for all the production environments (A–E). 
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acid products (Mohlala et al., 2016; Sindhu et al., 2016). Therefore, 
accurately modeling sugarcane growth and yield across different envi
ronmental conditions has implications for several sectors. 

Although sugarcane modeling has been extensively used to investi
gate the current and future sugarcane production in different scenarios 
of climate change in several countries (e.g., Brazil, India, Australia, and 
South Africa), the calibrations and model evaluations in previous studies 
were carried out based on limited data, generally with less than 10 
experimental sites (e.g., Dias et al., 2019, 2021; Hoffman et al., 2018; 
Jones and Singels, 2018; Peng et al., 2020; Singels et al., 2014) and 
rarely with more than ten experimental sites (e.g., Dias and Sentelhas, 
2017; Verma et al., 2023; Vianna et al., 2022). Notably, the majority of 
these studies were caried out in specific climate and soil conditions. In 
this study, the ECOSMOS-sugarcane model was calibrated and evaluated 
based on a dataset that contained 18 agrometeorological experiments 
carried out in contrasting environments and encompassing 22 varieties 
(Dataset 2), which portrayed significant GxE variability. 

Despite the high performance of the sugarcane module simulation of 
the experimental sites, the sugarcane yields for the commercial field 
plots could not be predicted accurately (Fig. 9). However, this was not 
totally unexpected, as the performance of the sugarcane field plots were 
driven not only by the plant’s response to the environmental production, 
but by the farmer’s management practices and technology adopted in 
the sites also. For example, the observed yield was higher for environ
ment B than environment A (which was the environment that had the 
highest productivity potential), thus, portraying contrast. As shown in 
Table 1, we noted a clay-content gradient from production environments 
A to E. The clay content and other soil properties (e.g., bulk density, total 
porosity, field capacity, and permanent wilting point) were responsible 
for soil-water infiltration, flux, retention, and availability. Theoretically, 
the greater the amount of available water, the greater the yield of the 
plant; however, we observed a higher yield for production environment 
B. Furthermore, we speculated a lack of pattern of decreasing yield from 
production environments A to E, resulting from some particularities in 
the management practices, e.g., soil preparation, fertilization, harvest 
time, vigor in regrowth, and difference in the performance of genotypes. 
This phenomenon might have influenced the local yield, leading to an 
unpredictability between the environments (as those factors are rarely 
quantified and thus, not represented in the model). 

The gradual phasing out of pre-harvest burning and manual harvest, 
replaced by mechanical harvesting, also posed different challenges. The 
use of heavy machinery for harvesting sugarcane at the beginning and 
end of the cropping season, coinciding with the end and beginning of the 
rainy season, respectively, over successive years (de Lima et al., 2021), 
might be critical for soil compaction, a reduction in soil porosity (Toledo 
et al., 2021), infiltration rate, and root development, especially in clay 
soils. The management strategy generally used to withstand drought is 
to harvest production environments with lower soil-water retention 
capacity (production environments D and E) at the beginning of the 
season (when there is less water deficit). In such cases, the optimal 
environment (production environment A) is harvested at the end of the 
season. However, if the onset of the subsequent rainy season is early, the 
environments with the highest clay content (with the soil having 
excessive moisture content) are harvested first. Notably, this approach 
accentuates the problem of soil compaction and may even lead to plant 
shock effects and stump uprooting, thus, reducing the plant population 
and yield in the next harvest. Even soils with thicker straw blankets, 
accumulated throughout several ratoons with non-burn mechanical 
harvesting, cannot avoid the risk of soil compaction (Cherubin et al., 
2021). 

To manage water stress, the main driver of yield loss and best fer
tilizers and irrigation practices can be prioritized to ensure a more 
controlled production environment, thus, setting a crop management 
bias that reduces the actual difference in the yield potential across the 
production environments. Using large datasets from actual production 
fields improves modeling, but requires adjustments in crop management 

practices by farmers, posing severe challenges for accurate modeling. 
Therefore, we propose the hypothesis that mechanization (and not less 
favorable soil water conditions) is leading to more yield loss in pro
duction environment A (in comparison to that in production environ
ment B), which was not consistently simulated by the module in the first 
simulation. 

Therefore, we propose a farm-level calibration to increase model 
accuracy, once the management techniques, genotype performances, 
and interactions of different genotypes with the environment were 
analyzed with respect to their implications for crop growth and yield. 
This approach has improved the model accuracy for different crops 
(Colmanetti et al., 2022; Therond et al., 2011). In this study, only two 
parameters were calibrated using the production environment B as 
reference; for the other production environments (A, C, D, and E), the 
rooting zone was penalized. The accumulated root density was reduced 
to a depth of 60 cm for production environment C and 40 cm for pro
duction environments D and E. This approach was successful for this 
study and was based on Zhao et al. (2020), wherein the majority of roots 
(~80%) were in the superficial layers (~50 cm). 

Although sugarcane plays an important role for economy, the sug
arcane sector has experienced several challenges in the last few decades. 
Notably, in Brazil, some issues have limited the increase in the yield, e. 
g., demand of breeding programs for focusing on novel varieties adapted 
to new arable areas, yield decline as a consequence of soil compaction 
and the mechanical damage to the crop ratoons, limited improvement in 
agronomic management, non-upgrades on mechanical no-till planting, 
and the lack of improvements in planning, management practices, and 
yield prediction (Marin, 2016). All these challenges intensify with 
climate change. In this context, sugarcane modeling based on ECOSMOS 
can support: (i) the planning, i.e., determine the ideal period for planting 
or harvesting in a specific season, especially in novel arable areas where 
sugarcane is not traditionally planted and identify arable areas that can 
be potentially used for sugarcane plantation. (ii) Yield prediction, i.e., 
crop modeling can be used to simulate the sugarcane yield in different 
locations in any hypothetical climate scenario. 

Additionally, with the increased demand for food, fiber, and biofuels, 
in the future, the agricultural sector will face enormous challenges 
related to sustainable development, which combines issues related to the 
economic, ecological, and human spheres. The achievement of global 
food and energy security is conditioned by the reduction of negative 
ecological impacts and improvements in environmental benefits, e.g., 
the mitigation of GHG emissions. For the specific case of sugarcane 
cultivation in Brazil, the recent expansion of sugarcane plantations in 
the last few decades occurred in degraded pastures, potentially 
providing environmental benefits, such as enhancing the C budget in soil 
(Bordonal et al., 2018). The results presented in this study demonstrate 
the effectiveness of the ECOSMOS-sugarcane model in simulating water 
and carbon balances and sugarcane growth and yield in tropical envi
ronments. Therefore, ECOSMOS can be applied, for example, to evaluate 
the trade-offs of agriculture production and assess the impacts on 
ecosystem goods-and-services (e.g., carbon storage and hydrology) 
(Anderson-Teixeira et al., 2012; O’Connell et al., 2018). 

5. Conclusion 

The parametrization (specie parametrization) process carried out for 
Site 1, while considering the carbon flux, Rn, ET, soil water content, 
biomass, and yield, was successfully evaluated for Site 2, with the NSE 
values being 0.14–0.86 and RRMSE values, 13–112. 

A generic calibration carried out using a dataset of agro
meteorological experiments with high GxExM variability performed 
satisfactorily in predicting crop yield. As the generic calibration was 
performed for different climates and soil textures, it can be used as a 
reference for other sites in Brazil that have same climate conditions. 
However, this calibration performed poorly when estimating the yield 
for a specific farm. Alternatively, a farm calibration was performed to 
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enhance the accuracy of the yield, and it was consistent between the 
simulated and observed field plots, for all the five production environ
ments. This approach has been proven to be a feasible alternative to 
incorporate local management practices, such as soil preparation, 
fertilization, harvest time, vigor in regrowth, and the differences in the 
performance of genotype practices into the parameters set. 

The ECOSMOS-Sugarcane module can be applied as a tool to better 
understand the effects of sugarcane plantations on carbon sequestration 
and water resources and predict sugarcane growth and yield in tropical 
environments. Additionally, ECOSMOS allows the simulation of two 
canopy levels and more than one crop per level. Therefore, the 
ECOSMOS-sugarcane module can also be applied to evaluate the im
pacts and commercial benefits of sugarcane production in monocrop
ping, intercropping, and crop-rotation systems, especially in Brazil 
where all these agricultural systems are widely adopted. 
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