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ABSTRACT
Surface runoff monitoring is important for the sustainable management of global water resources. Obtaining a practical and 
inexpensive method for collecting data in the field can help to better understand surface runoff and its effects, necessary for the 
management of watersheds. This study sought to elaborate the calibration curves of the ultrasonic sensor due to temperature 
variability, verifying the inaccuracy of the distance between objects and the sensor, and determining the feasibility of using low-
cost sensors in an in-loco experiment installed on Parshall flumes. The experiment was conducted on the Experimental Farm of 
the Federal University of Grande Dourados, Dourados, MS, Brazil. The data were collected by twelve HC-SR04 ultrasonic distance 
sensors , which were coupled to a data acquisition system composed of an expansion board connected to a Raspberry minicomputer. 
Sensor calibration using temperature data resulted in the error correction of ± 8.0 mm of distance reading. On the other hand, the 
R2 of the comparison curves between sensor and control system (laser distance meter and ruler in the flume) resulted in high values 
(above 0.95), showing the feasibility of its use and meeting the specifications for use in the field subject to weather conditions. This 
study demonstrates the performance of ultrasonic sensors as a potential for new application to evaluate surface runoff aiming to 
propose new runoff coefficients.

Index terms: Calibration; HC-SR04; parshall flume; flow rate; surface runoff.

RESUMO
O monitoramento do escoamento superficial é crucial na gestão sustentável dos recursos hídricos globais. Obter um método 
prático e econômico para coletar dados de campo pode ajudar a entender melhor o escoamento superficial e seus efeitos, 
necessários para a gestão das bacias hidrográficas. Este trabalho buscou elaborar calibração de um sensor ultrassônico devido 
à variabilidade da temperatura, verificando a imprecisão da distância dos objetos com o sensor, determinando a viabilidade 
do uso dos sensores de baixo custo em experimento “in loco”, instalados em calhas Parshall. O experimento foi realizado em 
área da Fazenda Experimental da Universidade Federal da Grande Dourados, Dourados/MS. Os dados foram coletados por doze 
sensores de distância ultrassônicos HC-SR04, que foram acoplados a um sistema de aquisição de dados composto por uma placa 
de expansão conectada a um minicomputador Raspberry. A calibração pela temperatura resultou na correção do erro de ± 8,0 
mm da leitura de distância. Já, o R2 das curvas de comparação entre sensor e sistema de controle (trena laser e régua instalada 
nas calhas) resultaram em altos valores de coeficientes de determinação, acima de 0,95, mostrando a viabilidade do seu uso 
e atendendo as especificações para uso em condições de campo sujeito as intempéries climáticas. Este estudo demonstra o 
desempenho dos sensores ultrassônicos como possível potencial de nova tecnologia para avaliar escoamento superficial no 
intuito de propor novos coeficientes de escoamento.

Termos para indexação: Calibração; HC-SR04; calha Parshall; vazão; escoamento superficial.

INTRODUCTION

The need to control the effects of surface runoff 
has driven the development of more efficient and cheaper 

methods for monitoring agricultural production (Meyer et 
al., 2019; Rodríguez-Robles et al., 2020). The sustainable 
management of water resources requires the estimation of 
the rainfall surplus and its actions on the Earth’s surface, 
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especially the negative consequences of water erosion 
(Mohammadifar et al., 2021), which has caused the 
transport of nutrients from the soils, resulting in changes 
in production capacity, in addition to river pollution 
(Martínez-Mena et al., 2020; Wang et al., 2021).

Although most works estimate surface runoff by 
models (Al-Juboori, 2022), some projects have been 
designed to determine surface runoff using empirical 
methods, whose accuracy will depend on the designer’s 
experience. It is due to the need of using reference 
tables when choosing parameters related to surface 
characteristics (Erena; Worku, 2019). Nevertheless, the 
tables present the specificity of the drainage basins for 
which they were developed. Therefore, reference tables 
are generalist and may not cover specific cases, requiring 
further studies and updating of technical references 
(Lapides; Sytsma; Thompson, 2021; Young; Mcenroe; 
Rome, 2009).

Collection containers are one of the methods to 
carry out measurements in in-loco studies, being an 
expensive work because the precipitation is variable, 
implying the need for dynamic monitoring to obtain 
accumulated volumes for each event (Portocarrero; 
Andrade; Campos, 2017). Still, methods that involve 
real-time data collection can be advantageous in 
immediate and accurate decision-making (Sanches et 
al., 2022a).

The use of flumes, such as the Parshall flume, is 
also common in the measurement of surface runoff (Tiwari; 
Sihag, 2020), mainly coupled to level sensors. However, 
they need equipment for data collection and an energy 
source for more remote areas. For example, Abualfaraj 
et al. (2018) used Parshall flumes equipped with pressure 
transducers to measure the flow rate on green roofs and 
observed good results.

The emergence of affordable minicomputers and 
accessories for teaching programming and robotics has 
allowed carrying out experiments previously limited to 
a few institutions. Studies with low-cost sensors have 
already been applied in loco in automatic monitoring of 
phosphate and nitrite in agricultural aquatic environments 
(Lin et al., 2018), such as an intelligent soil moisture 
sensor (González-Teruel et al., 2019). Low-cost sonars 
have been used in experiments applied to plant growth 
monitoring (Trevisan et al., 2018) and automated 
irrigation systems (Rodríguez-Robles et al., 2020) with 
satisfactory results.

However, tests need to be carried out to determine 
the limitations of their use or interference caused by 
bad weather given the fragility of components (Kruger 

et al., 2016; Papa; Ponte, 2018). In the case of sensors, 
we can consider that every measurement 𝑀 is actually 
a measurement of 𝑀 = 𝑀𝑟𝑒𝑎𝑙 + 𝜖, in which 𝜖 indicates 
measurement error (Barcelo-Ordinas et al., 2019). 
However, understanding how sensor error influences 
performance and its accuracy is essential (Placidi et al., 
2020).

Many studies have already been using sonars to 
measure height directly in water bodies to monitor extreme 
high runoff events (Meyer et al., 2019; Panagopoulos et 
al., 2021) but they may present late warning as runoff may 
have already occurred on the surface. Knowing the runoff 
before reaching the rivers is essential to predict the results 
of major rainfall events in advance.

Payero et al. (2021) used the Internet of Things 
(IoT) to develop a surface runoff measurement system 
utilizing H flumes and eTape liquid level sensor, 
including a water collection system for analyzing the 
impacts of runoff in soybean and cotton fields with and 
without coverages and obtained an R2 = 0.99 with the 
calibration. Schallner et al. (2021) monitored runoff 
using low-cost UBeTube technology and concluded that 
the methodology, with proper calibration, could be used 
in pastures.

Therefore, the purpose of this study was to 
elaborate the calibration curves of the HC-SR04 
ultrasonic sensor due to temperature variability, to 
confirm the inaccuracy of the distance between objects 
and the sensor, and to determine the feasibility of using 
low-cost sensors in an in-loco experiment installed on 
Parshall flumes.

MATERIAL AND METHODS

Experimental site

The exper iment  was  carr ied  out  in  the 
unit located in the experimental area of FAECA 
(Experimental Farm) on the campus of the Federal 
University of Grande Dourados (UFGD), in Dourados, 
Mato Grosso do Sul, Brazil (22°24′18″ S, 54°99′47″ 
W, 437 m altitude). The materials were prepared in 
the Laboratory of Hydraulics, in the building of the 
School of Agricultural Sciences, Unit 2 of UFGD, also 
in Dourados, MS, Brazil.

According to the Köppen climate classification, 
the climate of the study area is Am, that is, a tropical 
monsoon climate (Alvares et al., 2013), with a dry 
winter, a mean annual temperature of 22.8 °C, and a 
mean annual precipitation of 1389 mm for the last 30 
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Figure 1: Annual values of temperature and precipitation in the experimental area. Source: (Embrapa, 2022).

Figure 2: Sketch of the experiment.

years (1991–2021), as shown in Figure 1, according to 
(Empresa Brasileira de Pesquisa Agropecuária -2022).

The experimental area consisted of twelve 
experimental plots of 4 m × 10 m, with a 4-m² downstream 
triangle, totaling 44 m². Six hillslopes have a gradient of 
8.2%, whereas the remaining six have a gradient of 18.6%. 

The plots of the higher slope were used from the natural 
land profile. The soil was cut to obtain the lowest slope 
aiming at minimal changes in the natural soil conditions. 
The plots were divided using guides made with the soil 
and the Parshall flumes with sensors were placed at the 
plot outlet (Figure 2 and 3).
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Electronic system

The system used in the experiment was designed for 
using HC-SR04 ultrasonic sensor manufactured by OSEPP 
Electronics, installed in each Parshall flume, and an HC-
SR04 ultrasonic sensor installed at 40 cm from a concrete 
slab that did not undergo reading variation due to rain, 
identified as a standard sensor for comparison purposes. 
A Texas Electronics Inc. TR-525M tipping bucket rain 
gauge was also installed. In addition, a HiLetgo HTU21D 
air temperature and humidity sensor was used. The data 
were stored on an SD card attached to a Raspberry Pi 3 
minicomputer. The language used was Python, which is 
open-source and easy to program.

An expansion board for up to 20 devices was 
required to connect all the sensors to the Raspberry. The 
entire system was connected to a 12V battery powered 
by a photovoltaic board, as there is no power supply at 
the experimental site. A charge controller was installed 
not to damage the battery, limiting the voltage to 13.5V 
(Figure 4).

According to the manufacturers, the HC-SR04 
sensors have a working range between 2.0 and 400.0 cm, 
with an accuracy of 0.3 cm and a field of vision of 15°. The 
HTU21D sensor has an operating range for temperature 

and humidity from −40 to 125 °C, with an accuracy of 
±0.2 °C, being factory calibrated. The rain gauge has a 
resolution of 0.2 mm, an accuracy of 1.0% up to 50 mm 
per hour, a range of 700 mm per hour, and operating 
temperature limits from 0 to 70 °C. 

Parshall flumes (Figure 5) have a rectangular cross 
section and feature a converging inlet section, a throat and 
a diverging outlet section, following the current NBR/ISO 
9826:2008 standard. They were duly calibrated through 
the correlation of the water depth and their output flow 
rate, with a calibration curve according to Equation 1 from 
(Sanches et al., 2022b):

Figure 3: Picture of the implanted system.

1.4638 20.2924 ,  0.99Q H with R  (1)

where Q is the flow rate in m3 h−1 and H is the water depth 
in cm.

The costs for implementing the experiment 
are detailed in Table 1, with a value of US$ 98.02 per 
monitored plot.

Data collection

The data were collected during an approximate 
1-year experimental cycle (April 17, 2020, to June 23, 
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Figure 4: Scheme of experiment connections.

Figure 5: Sketch of the design of the Parshall flume. Measurements in cm.

2021), used in the system adjustments and calibration. 
The area maintenance was carried out weekly to verify 
the functioning and cleaning of the flumes when 
required.

The installation height of each sensor was 
established by the mean of five readings using a Bosch 
GLM40 laser distance meter, with a 1.5-mm precision, 
according to the manufacturer. Forty readings were 
performed for eight well-defined distance variations 
between sensors and Parshall flume in four randomly 

chosen sensors (two from each slope group) to verify the 
sensor reading precision compared to height.

The distances were defined by obstacles with 
height variations of sensors relative to the flumes (Figure 
6) to save water, as it depended on the supply of a water 
truck on site to carry out the verification readings during 
the minimum 80 minutes of collection. Overlapping 
3-mm glass slides, with thickness calculated by the mean 
thickness at 3 points of the slide using a Mitutoyo® 530-
104b-10 8-inch universal Analog Caliper, were used.
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The HC-SR04 sensor sends an ultrasonic wave 
when triggered, being able to signal when the sent pulse 
is received. The Raspberry records the time between 

Table 1: Implementation costs.

Component Item Quantity Unit cost (US$)* Total (US$)

Per flume

HC-SR04 ultrasonic sensor 1 2.22

Parshall flume 1 10.00

Coaxial cable 1 15.22

Installation 1 10.00 37.44

Support 
equipment

HTU21D humidity and temperature sensor 1 4.15

Raspberry Pi Model 3 1 61.54

SD card (16 Gb) 1 8.00

Expansion board 1 50.00

Battery for a mid-range vehicle 60AH (12V) 1 65.23

Solar panel (100W) - existing from another project 1 50.62

TR-525M rain gauge 1 485.15 724.69

Total of the 
experiment

HC-SR04 ultrasonic sensor 13 2.22

Parshall flume 12 10.00

Coaxial cable 12 15.22

Installation 12 10.00

HTU21D humidity and temperature sensor 1 4.15

Raspberry Pi Model 3 1 61.54

SD card (16 Gb) 1 8.00

Expansion board 1 50.00

Battery (12V) 1 65.23

Solar panel (100W) - existing from another project 1 50.62

TR-525M rain gauge 1 485.15 1,176.19

  Cost per flume 98.02
*Dollar in November 2022.

Figure 6: Methods used for data acquisition to 
compare with the values obtained by the sensors. 

sending and receiving and the system calculates how 
far the sensor is from the object. The distance can be 
determined by Equation 2 and time by Equation 3, as 
the speed of sound propagating through the air is known 
(343.40 m s−1 at 20 °C), and the sound traveled twice the 
distance between the sensor and the object.

(2)

(3)

2
tcd 



2dt
c

 

where d is the distance traveled by sound in m, Δt is the 
pulse travel time in s, and c is the speed of sound in m s−1, 
primarily adopted as 343.40 m s−1.
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The system was programmed to measure five 
pulses per reading, recording their simple mean. The 
system performs a test limited to 40 µs of the response 
time before performing the reading, thus verifying the 
functioning between the transmitter and the transducer, as 
50 µs is the limit of repetition of sensor readings, according 
to Zhmud et al. (2018). Faulty is logged after 1 second if 
this condition is not met, warning of sensor problems. The 
sensors were installed in two groups (according to slopes) 
on the expansion board to save system energy. Therefore, 
whenever one sensor presents faulty, there is an indication 
of instability in the group to which the respective sensor 
belongs.

The experiment was programmed to take one 
reading per hour. However, the readings would be taken 
every 15 seconds if there was a record on the rain gauge. 
The date, time, and temperature and relative humidity 
sensor readings were recorded along with the sensor 
readings. Readings ceased 10 minutes after the last 
rain record, totaling at least 40 readings per event and 
collections are returned every hour.

Calibration

Initially, the sound travel time (∆t) is calculated 
using Equation 3. Subsequently, Equation 4, used to correct 
the speed of sound relative to air temperature, was applied 
(Bartoszek et al., 2022). Then, Equation 5 was applied, thus 
obtaining the distance corrected by temperature.

to the air temperature in cm, correlation is the correlation 
between dsound and T, and T is the temperature in °C.

Data analysis

The data were separated by sensors to analyze the 
collected heights relative to the temperature. The distances 
read in Parshall flumes can vary on rainy days and, for this 
reason, only dry days were analyzed, not considering rainy 
days. The values were subjected to the distribution test, 
after which the correlation was calculated, and a linear 
regression curve was modeled for distance x temperature.

After calibration, the dT points were obtained 
(measured after all calibrations), the correlation was 
calculated, and a new linear regression curve was modeled 
for dT x temperature. Subsequently, distance (d) and 
calibrated distance (dT) values underwent descriptive 
analysis (mean, quartiles, standard deviation, and coefficient 
of variation), comparing them and verifying a decrease in 
error 𝜖 by comparing the mean errors Equation 7, absolute 
mean errors Equation 8, and root mean square error 
Equation 9, as proposed by Legates and Mccabe (1999):

 331.85 1 0.00183c T 

100soundd tc 

 –T soundd d correlation T

(4)

where c is the speed of sound in m s−1 and T is the 
temperature in °C.

(5)

in which dsound is the distance traveled by sound corrected 
in cm, Δt is the pulse travel time in s, and c is the corrected 
speed of sound in m s−1.

Subsequently, the correlation of the corrected 
values between dsound and temperature was calculated, 
obtaining how much the temperature impacts the other 
system components. Thus, the following correction is 
applied to obtain the calibrated distance:

(6)

where dT is the calibrated height of the sensor relative to 
the temperature in cm, dsound is the corrected height relative 

(7)

(8)

(9)

in which Hcontrol is the height obtained by the control system 
(ruler in the flume or laser distance) in cm, Hsensor is the 
distance read by the sensor in cm, and n is the amount 
of data.

Finally, the height values obtained in the laboratory 
test and the field with the glass slides of the four flumes 
were analyzed to verify the reliability of the elaborated 
curves, according to the variation of the distance from 
obstacles, modeling a linear regression curve, calculating 
correlation, and obtaining R2, ME, MAE, and RSME.

RESULTS AND DISCUSSION

Temperature

Figure 7 shows the air temperature variation 
collected by the HTU21D sensor after 1 year of the 
experiment, demonstrating a large temperature variation 

control sensorH H
ME

n




control sensorH H
MAE

n
 



 2control sensorH H
RSME

n
 


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even in predominantly hot regions. Several temperature 
values close to 0 and 45 °C were observed in August, 
which has the lowest temperatures. The mean temperature 
obtained in the experimental period was 23.75 °C, very 
close to that observed by Embrapa (2022) in 2020 and 
2021 for Dourados (23.61 and 23.40 °C, respectively), as 
shown in Figure 1.

Reference sensor (Sensor 13) x temperature

First, the IQR (interquartile range) statistical 
method is used to analyze outliers, so that outliers = value 
< (Q1−1.5IQR) or value > (Q3+1.5IQR), as well as Li et 
al. (2023). Of the 13232 readings, 287 data points were 
removed (2.16% outliers) and the remaining data are 
presented in Figure 8. The sensor was positioned to avoid 
abrupt changes in the distances read and failures may have 
been caused by interference from some animal, vegetation 
(Figure 9), or even read failure due to power supply below 
3.6V, as observed by Komarizadehasl et al. (2022) that 
showed high sensibility this type sensors. 

In a solar panel and battery system, voltage supply 
below 3.6V may occur when the battery is discharged or 
when there is an issue in the electrical system that hinders 
proper battery recharging (Chen et al., 2020). Furthermore, 
battery quality and age can also affect the system’s ability 
to supply power. It is important to ensure that the electrical 
system is functioning correctly and that the battery is 
charged enough to supply the necessary energy to the 

system. Regularly monitoring the battery charge level and 
the efficiency of the electrical system can help prevent 
power supply below 3.6V and keep the system operating 
properly (Liu; Gao; Liu, 2022).

The values of uncorrected distances did not 
show a normal distribution but the Spearman correlation 
coefficient between distance and temperature resulted in 
r = −0.933 (significant at α=0.05), demonstrating a high-
temperature interference. After calibration, the values were 
compared with the known references values (installed 
heights) and no statistically significant differences were 
found (r=0.004 at α=0.05) (Figure 10).

The correlation coefficient −0.067 demonstrates 
that the calculated distances without the proper use of the 
speed of sound will be smaller as the temperature increases, 
as the sound moves faster (Kumar et al., 2020), that is, at 
0.622 m s−1 at every 1 °C (Bartoszek et al., 2022), thus 
reducing the response time of the distance sensor.

The dT points were obtained after correcting the 
distance relative to the temperature, showing that the 
sensor-maintained precision despite the low cost, reducing 
the minimum and maximum values. The new equation (dT 
= 0.0001T+41.479) demonstrates that the new slope of 
the trend line is very close to zero with little temperature 
interference, resulting in values close to that of the installed 
height of 41.45 cm.

A descriptive statistical analysis was applied using 
electronic spreadsheets, with the data shown in Table 2.

Figure 7: Temperature variation during 12 months of data collection.
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Figure 9: Examples of vegetation interference in data collection.

Figure 8: Readings performed by Sensor 13.

Table 2 shows the fundamental importance of 
considering the variation of the speed of sound relative to 
the air temperature, which reached minimum and maximum 
values of 0 and 44.60 °C, respectively. Correction led to a 
reduction of up to 229.90% in the range of the obtained values, 
which represents 0.33 m3 h−1 for every 1 cm in the Parshall 
flume flow, according to Equation 1. Sensor 13 showed 
constant values after correcting the total errors, keeping the 
values between 41.01 and 41.98 cm, with a mean of 41.48 
cm. It represented a maximum error of ±5 mm, equal to those 
found by Kumar et al. (2020) with laboratory measurements.

Sensors in Parshall flumes (Sensors 1 to 12) x 
temperature

The same procedure was applied to the other 12 
sensors and the obtained values demonstrated similar 

behavior to the reference sensor (S13) (Table 3). 
However, Sensors 03 and 06 presented a maximum error 
of 8 mm, Sensors 02, 08, 10, and 11 showed a maximum 
error of 7 mm, and Sensors 01, 04, 05, 07, 09, and 12 
presented a maximum error of 6 mm when comparing 
minimum and maximum values with the mean, as 
observed by Pereira et al. (2022) in an experiment 
carried out to analyze the water level in flow channels 
in the laboratory.

The experiment was carried out without any 
weather control, with the sensor installed only 
avoiding direct contact with rain, aiming to undergo 
other interferences present in agricultural activities, 
resulting in higher imprecision compared to laboratory 
experiments (Al-Agele; Jashami; Higgins, 2022). 
Table 4 shows the sensor installation height, means, 
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Figure 10: Relationship between distances obtained directly by the sensor (d), distances calibrated using the 
relationship between sound speed and air temperature (dT) and temperature of the ultrasonic sensor 13 (reference).

Table 2: Descriptive statistics calculated for distance measurement and temperature-corrected distance (cm) for 
the reference sensor (S13).

Value Distance (d) Calibrated distance (dT) Error (%) – 100(dT-d)/dT
Minimum 40.01 41.01 −2.44

1st quartile 40.81 41.32 −1.23
Median 41.28 41.47 −0.46

3rd quartile 41.68 41.64 0.10

Maximum 43.21 41.98 2.93

Range 3.2 0.97 229.90
Mean 41.28 41.48 −0.48

Standard deviation 0.5902 0.2127 177.48
Standard error of the mean 0.008083 0.002913 177.48

Coefficient of variation 1.43% 0.51% 179.11

and standard deviations of the distances obtained after 
calibration compared to that expected, as well as ME, 
MAE, and RMSE, for each data set.

RMSE values are close to that found by Kholopov 
(2015), with 3.2 mm for an inertial navigation system using 
HC-SR04 sensor, very close to the value established by 
the manufacturer (3 mm).

Sensors in Parshall flumes x height variation

The reliability of the heights read after the 
calibrations related to the ambient temperature were 

verified by laboratory and field tests carried out using 
the HC-SR04 sensor compared to readings performed by 
the ruler installed in the Parshall flume, with the linear 
regression shown in Figure 11. 

The results of calibration presented high 
correlations, the R² = 0.99 showed good precision the 
values, corresponding already observed to Abreu et al. 
(2021), Therefore, the results calibrations showed values 
R² near the one with anothers sensors, whose calibrations 
were greater than 0.9 of the coefficients of determination 
(Sanches et al., 2020; 2022b).

Temperature (ºC)

D
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nc

e 
(c

m
)
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Table 3: Descriptive statistics calculated for distance measurement and temperature-corrected distance (cm) for 
12 sensors in Parshall flumes.

Sensor   Minimum Median Maximum Range Mean Standard deviation CV

S01
d 27.75 28.92 30.3 2.55 28.86 0.4551 1.58%

dT 28.52 29.02 29.53 1.01 29.06 0.1846 0.64%
error 100(d-dT/dT) −2.7% −0.3% 2.6% 152.5% −0.7% 146.5% 148.3%

S02
d 28.02 29.17 30.29 2.27 29.15 0.3756 1.29%

dT 28.58 29.06 29.61 1.03 29.06 0.2007 0.69%
error 100(d-dT/dT) −2.0% 0.4% 2.3% 120.4% 0.3% 87.1% 86.5%

S03
d 27.9 28.72 30.05 2.15 28.71 0.3966 1.38%

dT 28.25 28.71 29.35 1.1 28.72 0.196 0.68%
error 100(d-dT/dT) −1.2% 0.0% 2.4% 95.5% 0.0% 102.3% 102.4%

S04
d 27.19 28.68 29.87 2.68 28.65 0.4397 1.54%

dT 28.25 28.83 29.19 0.94 28.85 0.13 0.45%
error 100(d-dT/dT) −3.8% −0.5% 2.3% 185.1% −0.7% 238.2% 240.7%

S05
d 27.43 28.77 30.23 2.8 28.77 0.4764 1.66%

dT 28.62 29.08 29.55 0.93 29.06 0.1869 0.64%
error 100(d-dT/dT) −4.2% −1.1% 2.3% 201.1% −1.0% 154.9% 157.6%

S06
d 28.68 29.55 30.45 1.77 29.55 0.3223 1.09%

dT 28.46 28.92 29.56 1.1 28.97 0.2867 0.99%
error 100(d-dT/dT) 0.8% 2.2% 3.0% 60.9% 2.0% 12.4% 10.2%

S07
d 27.8 28.86 29.86 2.06 28.81 0.422 1.47%

dT 28.94 29.32 29.77 0.83 29.34 0.1695 0.58%
error 100(d-dT/dT) −3.9% −1.6% 0.3% 148.2% −1.8% 149.0% 153.6%

S08
d 26.93 28.8 30.27 3.34 28.79 0.5359 1.86%

dT 28.47 29.19 29.51 1.04 29.15 0.2274 0.78%
error 100(d-dT/dT) −5.4% −1.3% 2.6% 221.2% −1.2% 135.7% 138.7%

S09
d 27.1 28.45 29.85 2.75 28.41 0.4478 1.58%

dT 28.13 28.5 29.07 0.94 28.54 0.1544 0.54%
error 100(d-dT/dT) −3.7% −0.2% 2.7% 192.6% −0.5% 190.0% 191.4%

S10
d 27.92 29.17 30.46 2.54 29.12 0.4073 1.40%

dT 28.58 29.18 29.81 1.23 29.2 0.175 0.60%
error 100(d-dT/dT) −2.3% 0.0% 2.2% 106.5% −0.3% 132.7% 133.4%

S11
d 28.32 29.06 30.01 1.69 29.07 0.2983 1.03%

dT 28.8 29.12 29.69 0.89 29.16 0.2125 0.73%
error 100(d-dT/dT) −1.7% −0.2% 1.1% 89.9% −0.3% 40.4% 40.8%

S12
d 27.78 28.67 29.62 1.84 28.66 0.4021 1.40%

dT 28.14 28.73 29.16 1.02 28.7 0.2092 0.73%
error 100(d-dT/dT) −1.3% −0.2% 1.6% 80.4% −0.1% 92.2% 92.5%
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Subsequently, a statistical analysis was performed 
using the obtained results, as shown in Table 5.

Figure 12 shows the relationship between calibrated 
distances and distances with laser tape. Can be observed 
that the HC-SR04 sensor has good precision with 
compared laser tape, as it presented a linear fit with a high 
coefficient of determination. It should be noted that laser 
measuring tapes have an accuracy of +/- 1.5 mm.

Comparative sensors calibration is very common, 
in work conducted by Sanches et al. (2022a) a mechanical 
vacuum sensor was compared with an automated pressure 
transducer, showing that both showed good correlation as 

Table 4: Height values of installed sensors, means of calibrated distances, and errors of 13 sensors (cm).

Sensor Installed H MEAN SD ME MAE RMSE
Reference sensor (13) 41.45 41.44 0.17 0.14 0.16 0.18

Sensor 1 29.05 29.06 0.18 −0.11 0.19 0.24
Sensor 2 29.05 29.06 0.20 0.21 0.26 0.29
Sensor 3 28.70 28.72 0.20 −0.19 0.25 0.29
Sensor 4 28.85 28.85 0.13 0.06 0.13 0.18
Sensor 5 29.05 29.06 0.19 0.06 0.13 0.16
Sensor 6 29.00 28.97 0.29 −0.21 0.24 0.28
Sensor 7 29.35 29.34 0.17 0.01 0.14 0.18
Sensor 8 29.15 29.15 0.23 0.17 0.27 0.32
Sensor 9 28.55 28.54 0.15 0.05 0.19 0.22

Sensor 10 29.20 29.20 0.18 −0.15 0.20 0.26
Sensor 11 29.15 29.16 0.21 −0.16 0.21 0.25
Sensor 12 28.70 28.70 0.21 0.01 0.18 0.24

Figure 11: Distance sensor x ruler in the flume.

with the present work, in which the results were for r² = 
0.99 (Figure 12).

Table 6 shows the values of mean error (ME), mean 
absolute error (MAE), root mean square error (RSME), 
Spearman’s correlation coefficient (r), and coefficient of 
determination (R2) for the tests performed in the laboratory 
and field.

The results were satisfactory, with the lowest 
r of 0.97 and R2=0.99. Similarly, MAE and RMSE 
values remained within the 3-mm range of factory error. 
The entire experiment was carried out in loco, and the 
deviations in the distances of Sensor 05 may be the result 
of interference of some insect or grass. 

Amorim et al. (2021) conducted a calibration test 
using the same sensor and observed good accuracy and 
low data dispersion, suggesting that the sensor may have 
high applicability in automation and robotics projects. 
Likewise, Pereira et al. (2022) had excellent results using 
the sensors in level flumes, with high accuracy up to 
readings of 20 cm. However, the present study showed 
good results when using distances up to 30 cm, as observed 
by Dusarlapudi et al. (2020).

Al-Agele, Jashami and Higgins (2022) used the 
same sensor model with fixed measurements of 0.5 m in 
the laboratory and found a maximum error of 3.2% in the 
mean, with a standard deviation of 3.3 cm, well above that 
found in the study. On the other hand, the HRXL-MaxSonar-
WR ultrasonic sensor used in a river level measurement 
experiment showed a standard deviation of 0.13 cm 
(Panagopoulos et al., 2021), very close to that of 0.14 cm 
of Sensor 09, but at acquisition cost 10 times higher.
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Table 5: Statistical values for measurements obtained with a laser distance meter and sensor in the laboratory.

Value Laser distance meter (LM) Calibrated sensor (dT) Error (%) – 100(dT−LM)/dT

Minimum 10.73 10.68 −0.47

1st quartile 16.15 16.13 −0.12

Median 17.8 17.83 0.17

3rd quartile 23.5 23.55 0.21

Maximum 29.4 29.54 0.47

Range 18.67 18.86 1.01

Mean 19.77 19.78 0.05
Standard deviation 5.878 5.875 −0.05

Standard error of the mean 0.09154 0.09148 −0.07
Coefficient of variation 29.73% 29.69% −0.13

Figure 12: Relationship of the distances sensor x laser distance meter for Sensors 5 (a), 6 (b), 7 (c), and 9 (d).
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The error should be considered relative to time, 
as fatigue can be representative in long-term experiments 
(Gandha; Santoso, 2020). Implementing a correction 
during data collection, such as the Kalman filter and linear 

prediction, may further reduce total errors (Liu, Kouguchi; 
Li, 2021). Similarly, Abreu et al. (2021) proposed changes 
in software and hardware, which produced an error 
reduction from 7% to 1% without affecting the low cost 
of the sensor.

Figure 13 shows the behavior of the S05 sensor 
with the variation of the water flow for 30 minutes, a field 
test carried out on 04/14/2021. 2000 liters were released 
in plot T5, increasing and decreasing the flow, and the 
data collected showed a drained volume of 437.8 liters, 
resulting in a surface runoff coefficient of 0.219. With the 
end of the flow, from reading 127, it was found a 1.2 cm 
layer of eroded soil present in the Parshall flume. Of the 
120 readings collected during the 30 minutes of testing, 
4 showed negative values and were discarded, resulting 
in 3.33% of outliers.

Table 6: Values obtained in the laboratory test with HC-
SR04 compared to the ruler and in the field compared 
to the laser distance meter (cm).

Sensor ME MAE RMSE r R2

In the 
laboratory −0.003 0.053 0.055 0.99 0.99

Sensor 5 −0.101 0.229 0.276 0.97 0.99
Sensor 6 0.148 0.163 0.176 0.99 0.99
Sensor 7 −0.059 0.157 0.206 0.97 0.99
Sensor 9 0.044 0.130 0.155 0.99 0.99

Figure 13: Data read by sensor S05, simulating water flow.
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CONCLUSIONS
The studied low-cost sensors presented good 

calibration adjustments with excellent results in the 
measured heights, in addition to low absolute mean errors 
and root mean square errors, especially considering the 
excellent cost benefit. The values calibrated and verified 
in water flow were close to those obtained in the field, 
showing the great potential of using HC-SR04 sensors to 
measure the water level in Parshall flumes in the field, as 
long as the ambient temperature is monitored.
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