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A B S T R A C T

The processing of multispectral images acquired with embedded cameras in unmanned aerial vehicles (drones)
has brought new opportunities for precision agriculture. In this study a method for evaluating the number of
corn plants (Zea mays L) in a crop area is presented. Plant density is one of the most important yield factors,
yet its precise measurement after the emergence of plants is impractical in large and medium-scale production,
since significant amount of labor is required. For validation, a dataset of spectral images was gathered from
flights over an agricultural area, and digital image processing techniques were applied, taking into account the
concept of intelligent processing. Therefore, pattern recognition and models to aid decision-making through
machine learning were also used. After image acquisition, the processing of orthomosaics in the spectral
channels, i.e., red (R), green (G), and blue (B), was performed, making it possible to register and organize
all the images. Likewise, techniques for geometric transformation, brightness, and contrast adjustments were
evaluated globally, whereas local adjustments were evaluated based on the use of adaptive equalization
techniques, which were explored based in the choice of the HSV color space. For the post-processing step,
segmentation based on the best observed color threshold technique, in conjunction with Gaussian filtering
and morphological operations, were considered. To enable pattern recognition, techniques that use distance
maps were evaluated, considering the use of Euclidean distance. Thus, the locations of canopy patterns in
maize plants were studied using a template matching algorithm and Chamfer pattern mask. For feature
extraction, chain code and circular pattern map techniques were considered. The analyses made it possible
to establish vectors of features based on patterns related to the number of maize plants occurrences. Finally,
three calibration steps were considered, one related to the plant height versus the canopy opening radius,
other related to the number of maize plants for each position in the crop area versus the radii identified
by the developed model, and the third related to the cross-correlation between the plant counting by human
vision and the new method. In addition, the classification step was established using a set of classifiers based on
support vector machine (SVM). Results have shown an accurate and timely counting methodology for maize
plants, which can guide cultivation to ensure high yield. The results showed that as a new method it can
effectively count the number of maize plants with an average accuracy rate equal to 88.47%. Besides, both
selected SVM classifiers have presented accuracy higher than 84% and precision higher than 83%. Furthermore,
the cross-correlation between the plant counting by human vision and the new method has presented a linear
correlation coefficient equal to 0.98. Thus, the developed method proved to be adequate for counting the
maize plants in the post-emergence stage.
1. Introduction

Increases in the world population have magnified the challenges to
food security. Prospective studies have indicated that there will be a
need to increase agricultural production by approximately 70% to feed
the inhabitants of the planet in 2050 (Popp, 2013). The United Nations
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Food and Agriculture Organization (FAO) reports that in recent years,
food security has been facing challenges due to many factors, such as
climate change and economic recessions, among others (FAO et al.,
2020). The production of maize, rice and wheat have been observed
with special attention, because of their important role in food security
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Fig. 1. Maize growth stages or phenological phases.

compared to those played by all other grains, according to the Brazilian
National Supply Company (CONAB) report (Laborde et al., 2020).

One of the most important pieces of information needed to improve
production in crop fields of maize (Zea mays L.) is related to the
quantity and size of the maize plants. This information, known as plant
density (Liu et al., 2017), is used for planning and estimating growth
and for the maintenance of crop fields (Koc-San et al., 2018). The first
traditional methods of counting plants (Pound and Clements, 1898)
systematically use an area measurable according to their population,
which in the state of the art have different counting variations (Oliver
and Tansley, 1904; Weaver, 1918). Muller has shown that maize culture
presents an exponential behavior in terms of growing for the different
phenological stages (Müller et al., 2005). Likewise, systematic studies
of maize phenology (Ritchie and Hanway, 1989) define the stages of
both growth and reproduction (Fig. 1).

In recent years, there has been a greater use of advanced technology
in agriculture, thus resulting in the emergence of applied technolo-
gies such as precision agriculture (PA), which minimizes losses and
increases the productivity of crops; and remote sensing, which enables
the application of non-invasive methods in agriculture through the use
of optical instruments, radar (Hasituya et al., 2020), and satellites (Ah-
mad et al., 2018), among others. However, these solutions may be
limited by the presence of clouds (Su et al., 2020), and thus, low-
altitude remote sensing methods, including through the use of drones,
have become increasingly employed non-invasive PA, albeit at smaller
scales. On other hand, low-altitude remote sensing may encounter
challenges in the evaluation of plant density, such as dealing with
occlusions, appearances, lighting variations, and different scales.

Many researchers have been using a variety of models to esti-
mate plant density, and these studies can be categorized into three
approaches: identification, counting, and estimation of phenological
phases. These models, in turn, are based on different digital image
processing (DIP) techniques, including: correlation analysis (Cruvinel
and Minatel, 2002), color spaces (Gnädinger and Schmidhalter, 2017),
regions of interest (ROI) (Koc-San et al., 2018), spectral signatures (Hall
et al., 2018), number of leaves (Praveen Kumar and Domnic, 2019),
conic sections for canopy estimation (Veramendi and Cruvinel, 2021),
and vegetation indices (Bah et al., 2020), among others. On the other
hand, estimating the heights of plants or trees on farms using drones
is based on techniques such as three-dimensional point clouds using
LIDAR sensors (Malambo et al., 2018), point clouds using RGB-D
camera (Qiu et al., 2022), digital elevation models (DEM) using mul-
tispectral sensors (Johansen et al., 2018), sun elevation angles with
azimuth values (Koc-San et al., 2018), among others.

Recent advances in drone technology have exhibited the properties
of cameras at different bands, such as in multispectral (Marinello, 2017)
and hyperspectral (Lu et al., 2020) images. In one study, a method for
estimating the densities of wheat plants in the emergence stage using
images obtained by drone at altitudes of 3 m, 5 m and 7 m. Their
experiments showed that the ground resolution of the images should
be greater than 0.40 mm to facilitate the classification of green pixels.
In Pallottino et al. (2021), the use of low-cost drones in the phenotyping
of cereals enabled information about the actual color (with a lower
2

accuracy of 12/256) to be obtained at a height of 15 m. For the above
mentioned methods the hyperspectral sensors normally generate large
amount of data, and should be used only when necessary. Such a
condition may increase computational cost. Additionally, by using low-
altitude drones flights may involve increasing in battery consumption,
as well as limitation for data acquisition in large crop area, which can
be disadvantages.

A mobile application for the classification of plants and soils
(Hernández-Hernández et al., 2017) integrated multiple computer vi-
sion techniques to be able to segment of plants in crop images. The
segmentation algorithm was based on rectangular markers, with color
information and probabilistic histograms. The counting objects were
based on connected components, and the accuracy of the rectangle
detection algorithm was evaluated to be below 0.7 cm, with a maxi-
mum error of 1.64 cm. Moreover, and the cut areas had an average
of 98.3% intersection with the correct areas. In Wang et al. (2018), a
segmentation method was developed based on the Chan–Vese model
and the Sobel operator, using a feature that identifies tones with rela-
tively high levels of green to extract the leaf region, and implementing
the Chan–Vese model and the improved Sobel operator to extract the
contours of the leaves. With regard to its efficiency, the algorithm
exhibited an average error rate of 0.0428, which corresponds to a
decrease of 6.54% in relation to the average error rate of the level
method established by the authors. In Khan et al. (2019), the use
of Clifford’s geometric algebra was proposed to improve segmented
images acquired by drones for different agricultural fields, overcoming
limitations related to the RGB space. Specifically, the authors used the
subalgebra called Clifford quaternions for foreground and background
segmentation, in the form of a 3 × 3 quaternion mask. In Riehle et al.
(2020), an algorithm that performed robust automatic background and
plant segmentation under various imaging conditions was developed.
The algorithm was based on a vegetation index method for approximate
pre-segmentation. This first approximation was used to calculate the
threshold value for segmentation in conjunction with the CIELab color
space. The accuracy of the algorithm reached 97.4%. According to
the presented segmentation methods, challenges still persist for plants
segmentation. In fact, there are overlaps among the leaves within a
single color space. Consequently, it is relevant to explore other color
spaces that can be suitable for analysis related to captured reflectance.

An algorithm for counting oil palms using template matching (TM)
and cross-correlation using treetop templates of drone images was
proposed in Kalantar et al. (2017), were a reduction in the estimation
error of approximately 27% of the trees counted was obtained. In Xie
et al. (2019), a new extended phase correlation algorithm based on
Log-Gabor filtering for imaging with nonlinear radiometric differences
and large-scale geometric differences between pairs of images was
proposed. The authors found certain limitations when the models used
complex transformations, but otherwise demonstrated the rationality
and effectiveness of the algorithm. In Zhang et al. (2022), a dynamic
programming strategy was used with TM based on normalized cross-
correlation to overcome the computational complexity in matching
algorithms. For the detection and counting of citrus fruits from trees to
estimate the citrus productivity of a single tree before harvest, the use
of markers for the object on the Watershed algorithm was proposed. The
results indicated errors less than 8.31% and a coefficient of regression
of 𝑅2 = 0.98. In Fernandez et al. (2018), a method for the automatic
detection of cucumbers grown in agricultural fields was developed
using distance transformation and morphological operations to separate
overlaps, in conjunction with object clipping based on convex hull and
classifier based on bag of visual words. The algorithm was validated
a detection rate of 91.79%, a false positive rate of 2.56%, and an
accuracy that reached 85.65%. As observed in the literature, the TM
algorithms with sub-images patterns have been widespread usage. Nev-
ertheless, it is worthwhile to consider the potential for investigating the
implementation of distance-based patterns or even the use of optimized

masks.
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For the classification problem of counting ears of wheat in a field
using images obtained by a manned ground vehicle, a method was
developed based on a twin-SVM model, resulting in a precision of 0.79−
0.82 and average calculation time of 0.1 s (Zhou et al., 2018). In Chen
et al. (2019), a segmentation method based on monocular vision and
SVM algorithm was proposed for the segmentation of citrus trees.
The results for the regions were calculated using SVM. The proposed
method was verified on datasets of different brightnesses and weeds,
and achieved accuracies of 85.27% ± 9.43%. In Pereira et al. (2019), an
algorithm for recognize peaches was introduced; dimensions such as
volume and weights in the natural conditions of trees in the field were
calculated. Rounding metrics were used as characteristics to train the
SVM, where the contours were found with the aid of the Sobel operator.
Using second-degree polynomial functions for prediction, the algorithm
achieved an accuracy of 72% for orchards with 808 trees/ha. In Wang
et al. (2019), a method for the detection and enumeration of individual
oil palm trees using a hierarchical approach was proposed. The pro-
posed method classified images as vegetation and non-vegetation using
an SVM classifier and features extractor HOG with samples blocks of
16 × 16 pixels and offsets of 8 pixels. An evaluation was conducted
based on manual results, revealing that the proposed method detected
2 590 oil palm trees with an overall accuracy of 99.21%. The literature
review indicated the use of the SVM classifier for a broad range of
agricultural applications. Nevertheless, it would be of interest to assess
its a viability for pattern classifications in agricultural problems relate
to vegetative stages, which would be relevant for AP techniques.

In the context of this study, we present a methodology for eval-
uation the count maize in the post-emergence stage (V2), as well as
their heights to be sure about such a phenological stage, based on the
use of conic sections, DIP techniques, pattern recognition (PR), and
SVM on multispectral images of agricultural fields obtained by Drone.
The rest of the paper is organized as follows: Section 2 introduces the
materials and methods; Section 3 presents the results and discussions;
and Section 4 provides the conclusion.

2. Materials and methods

The organization of the methodology, from drone imagery for
counting plants to classification of the post-emergence phenological
stage (V2), and the main techniques used for its development, are
illustrated in Fig. 2.

The experimental area where the present research was conducted
following the study standards of Embrapa Instrumentação, located
860 m from the geographic coordinates: 21◦ 57′13.9‘‘ S and 47◦

51′10.9‘‘ W at the National Laboratory of Reference in Precision Agri-
culture (LANAPRE) in São Carlos, SP/Brazil.

The experiment for the evaluation of the method was organized in
an agricultural area with maize (Zea mays L.), having 4000 m2, and
sampling grid equal to 10 m × 10 m. Fig. 3 shows each of these site-
specific management, i.e., divided into 40 blocks. In fact, this study
was conducted taking into account not only 37 blocks of maize plants
belonging to the post-emergence stage V2 for computational analysis
but also 3 random blocks for manual counting by an agronomic expert.

The experimental area for validation was conducted with a batch
of maize seeds. Pioneer P4285 hybrid VYHR, characterized by its
flat shape. Sowing was carried out using 5 seeds per linear meter,
resulting in estimated density of 600 plants per blocks. Additionally,
the experimental arrangement was carefully designed, considering a
spacing of 90 cm between rows and the presence of 12 rows per blocks,
which led to the formation of a total experimental area of 60 rows. With
all this information available, the calculation of the number of seeds
used in the experimental area was equal to 24 000.

The experimental area for validation was conducted with a batch
of maize seeds. Pioneer P4285 hybrid VYHR, characterized by its
flat shape. Sowing was carried out using 5 seeds per linear meter,
resulting in estimated density of 600 plants per blocks. Additionally,
3

Fig. 2. Overall method workflow.

Fig. 3. Experimental detail with 40 blocks (from b-01 to b-40), where 37 blocks were
evaluated computationally and 3 from them were examined manually for control (b-08,
b-16, and b-33).

the experimental arrangement was carefully designed, considering a
spacing of 90 cm between rows and the presence of 12 rows per blocks,
which led to the formation of a total experimental area of 60 rows. With
all this information available, the calculation of the number of seeds
used in the experimental area was equal to 24 000.

2.1. Image acquisition

For this module, ground control points (GCP) in the experimental
area were collected by high-precision GPS in conjunction with an RTK
receiver that recorded their geographic coordinates to an accuracy of
±1 cm. In this way, the GCPs were used as input to control the flight
missions of a multirotor Drone DJI Matrice 100. For imaging a sensor
multispectral Micasense RedEdge-M was embedded, and a multispectral
sensor was provided onboard. Additionally, the imaging equipment
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Table 1
MicaSense RedEdge-M specifications.
Description Values Units

Raw image 12 bit
Sensor size 4.8 × 3.6 mm
Focal length 5.4 mm
Frame capture 1 frame/seg
Wavelength red 668 nm
Wavelength green 560 nm
Wavelength blue 475 nm
Spatial resolution 1280 × 960 pixels

Table 2
Dataset RGB.
Description Values

File type GeoTIFF
Bits per pixel 32 Bit
Resolution 96 ppi
Spatial resolution 546 × 546 pixels
Images per band: R, G e B 37
Total images per block 111

includes to a DLS sensor for measuring the influences of the sun’s
brightness, or changes in contrast due to superimposition of clouds in
the sky, thus providing the capacity to correct global changes in light,
the same ones that fluctuate during flight. The specifications of the
MicanSense sensor are detailed in Table 1. Fig. 4 shows details of the
Drone and the multiespectral camera for the images acquisition used in
this study .

Aerial mapping reproduces the phenomenon of stereoscopic vision,
through the superimposition of multiple vertical and horizontal images,
which can be acquired in blocks and with multiple lines during the
flight stage. Overlapping aerial images are strongly linked with the
number of flight lines, and routes used during flight planning, and
are expressed in percentages frontally and laterally. Altogether, for the
present study, the lateral and frontal overlaps were 80% each, following
a flight pattern of parallel lines, along specified routes with waypoints.
Besides, in accordance with the drone settings and the onboard sensor,
the flights were conducted within a time interval from 11 A.M. to 12
A.M., i.e., during the morning periods.

2.2. Characterization of images

In this stage, orthoimages (digital model of the experimental area)
were produced in the bands blue (B), red (R), and green (G). In this
regard, the Pix4D software (Deng et al., 2018) was used for filtering,
matching, and stitching the images in a cloud of points with geo-
metric correction in the geocentric reference system for the Americas
2000 (SIRGAS2000). Finally, the orthomosaic was processed from the
orthoimages of the experimental area with the assistance of QGIS
software, separating them into blocks, thus composing the data set in
the RGB channels, as detailed in Table 2.

2.3. Digital image processing

It should be considered that the orthomosaic blocks have much
black information because of the vectorization process using the QGIS
software. Furthermore, because the images, at their real intensities,
tend to have a lack of brightness and contrast, pre-processing opera-
tions are necessary in this module. In this sense, an extraction of the
region of interest (ROI) was computed mainly by Gaussian filtering
(Eq. (1)) and a minimum rectangular area that calculates the angle
approximation for a rotation operation around the object center (𝑹 -
Eq. (2)).

𝐺 (𝑥, 𝑦) = 1 𝑒−
𝑥2+𝑦2

2𝜎2 (1)
4

𝜎 2𝜋𝜎2
Fig. 4. Drone and hardware setup for image acquisition.

where the Gaussian function 𝐺 at coordinates (𝑥, 𝑦) is controlled by the
variance 𝜎2, and mean (𝜇) of zero.

𝑹 =
⎡

⎢

⎢

⎣

1 0 𝑡𝑥
0 1 𝑡𝑦
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 0 −𝑡𝑥
0 1 −𝑡𝑦
0 0 1

⎤

⎥

⎥

⎦

(2)

where −𝑡𝑥,−𝑡𝑦 correspond to the translation of the object to the origin,
whereas 𝑡𝑥, 𝑡𝑦 shift the object to its original position.

Adjustment operations for brightness and contrast change pixel
values without changing the size, geometry, or local structure of the
image. Thus, Eq. (3) is used to adjust brightness (𝛼) and contrast (𝛽),
and is defined as

𝐺(𝑥, 𝑦) = 𝛼𝐹 (𝑥, 𝑦) + 𝛽 (3)

where 𝐹 (𝑥, 𝑦) and 𝐺(𝑥, 𝑦) are input and output images, respectively.
Histogram adjustments are subject to a first-order probability func-

tion 𝑝𝑟(𝑟𝑘; 𝑥, 𝑦) = 𝑛𝑘 indicating the probability of pixels (𝑥, 𝑦) with 𝑟𝑘
occurrences at the 𝑘th intensity level, in a number of pixels 𝑛𝑘. In
this regard, contrast limited adaptive histogram equalization (CLAHE)
was used, distributing the pixel values in the histogram accumulation
phases. Its equation is defined as

𝒉𝑏∗ ,𝑙∗ (𝑭 (𝑥, 𝑦)) =
∑

𝑺′
𝑥,𝑦(𝑥, 𝑦, 𝑏∗, 𝑙∗) (4)

where 𝑏∗ is the block size, 𝑙∗ is the threshold applied to contrast in a
given block, and 𝑺′

𝑥,𝑦 is a bilinear equation of neighborhood eight.
Starting from the RGB color space, other spaces were explored, as

follows: XYZ, YCbCr, HSV, and CIELab (Gnädinger and Schmidhalter,
2017), with the purpose of looking for a relationship between the
intensities of the maize plants and the reflectances collected from
the pre-processed images. Of these, the HSV color space (H: hue, S:
saturation and V: value) is highlighted, where hue determines tonality,
saturation determines purity of color (i.e., from faint to intense), and
value determines its intensity. Eq. (5) defines the HSV color space from
RGB color space as follows

𝐻 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

60◦( 𝐺−𝐵
𝑀 ′−𝑚′ ), if 𝑀 ′ = 𝑅

60◦( 𝐵−𝑅
𝑀 ′−𝑚′ ) + 120◦, if 𝑀 ′ = 𝐺

60◦( 𝑅−𝐺
𝑀 ′−𝑚′ ) + 240◦, if 𝑀 ′ = 𝐵

𝑆 =

{

𝑀 ′−𝑚′

𝑀 ′ , if 𝑀 ′ ≠ 0
0 otherwise

′

(5)
𝑉 = 𝑀
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where 𝑀 ′ and 𝑚′ represent the maximum and minimum, respectively,
of the RGB tristimulus.

Images can contain several regions, which are connected and have
different features or patterns in relation to some measure, such as
spatial proximity or similarity of theirs attributes. Therefore, for this
work, segmentation by binarization was used with intervals of inten-
sities [𝑳1,𝑳2] (Eq. (6)), subject to intervals in a color space and the
reflectance of the maize plant.

𝐺(𝑥, 𝑦) =
{

1, 𝑖𝑓𝑭 (𝑥, 𝑦) ∈ [𝑳1,𝑳2]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

That being said, to ensure a global segmentation with good results,
it was decided to use a morphological closing operation (Eq. (7)) with
an isotropic elliptical structuring element (𝑩) to provide translation
invariance in addition to noise blurring.

𝑨 ∙ 𝑩 = (𝑨⊕ 𝑩)⊖ 𝑩 (7)

where ⊕ and ⊖ represent dilation and erosion, respectively. That is,
object 𝑨 is being translated by the structuring element 𝑩.

2.4. Pattern recognition

The results of the segmentation step do not necessarily represent
the topology of the canopy shape of the maize plant, being separated
or joined by regions of segmented pixels in raw form. In this regard, it is
necessary to have methods that can represent the segmented regions in
a topological or geometric way, as in the case of the distance transform
(DT) technique, defined as

𝑫(𝑥, 𝑦) = 𝑚𝑖𝑛
𝑠,𝑡∶𝒌(𝑠,𝑡)

𝑑(𝑥 − 𝑠, 𝑦 − 𝑡) (8)

where 𝒌 is a suitable mask to be used in DT, and 𝑑{(𝑥, 𝑦), (𝑠, 𝑡)} is the
Euclidean distance.

Fundamental tasks, such as shape or pattern detection, are per-
formed using template matching (TM), which is based on the corre-
lation between a mask face (𝒌) and the global image. In this work, TM
employed a correlation coefficient (̈) was used, which is defined as

̈(𝑥, 𝑦) =

∑

𝑠,𝑡
(𝑭 (𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑭 )(𝒌(𝑠, 𝑡) − 𝒌)

√

∑

𝑠,𝑡
(𝑭 (𝑥 + 𝑠, 𝑦 + 𝑡) − 𝑭 )2

√

∑

𝑠,𝑡
(𝒌(𝑠, 𝑡) − 𝒌)2

(9)

where ̈ ∈ [−1, 1], if ̈ ≈ 1 indicates a high correlation, otherwise
no similarity. Furthermore, ̈ describes a piecewise local correlation
between 𝒌 and the current subpicture.

The mask used for the search for maize patterns was used with
a Chamfer algorithm (Thiel and Montanvert, 1992) that calculates a
weighted local distance, defined as:

𝑑(𝑥, 𝑦;𝑩′) = 𝑚𝑎𝑥
{

𝑑1(𝑥, 𝑦), 𝑑2(𝑥, 𝑦)
}

(10)

where 𝑩′ = {𝑏(𝑖) ∶ 1, 2,… , 𝑚}, and 𝑑1, 𝑑2 are defined as:

𝑑1(𝑥, 𝑦) = 𝑝∗ +
∑𝑝∗

𝑗=1

⌊

𝑥−𝑦−𝑓 ′(𝑦−1)−1
𝑓 ′(𝑝∗)

⌋

𝑑2(𝑥, 𝑦) = 𝑚𝑎𝑥(𝑥, 𝑦)
(11)

here 𝑝∗ is a periodic sequence of length 𝑩′, e 𝑓 ′(𝑖) =
∑𝑖

𝑗=1 𝑏(𝑗) ∀𝑖 1 ≤
𝑖 ≤ 𝑝∗.

The sequence of steps of Pseudocode 1 compute the map of distances
in relation to the locations of possible canopies of the maize plant, in
addition to the TM with the Chamfer algorithm.

Locations of local maxima obtained in the TM phase take informa-
tion from features that can be evaluated through contour descriptors,
such as the chain code defined by Eq. (12):

𝑷 ′
𝒊 = 𝑯(𝛥𝑠𝑖, 𝛥𝑡𝑖)

(𝛥𝑠𝑖, 𝛥𝑡𝑖) =
{ (

𝑠𝑖+1 − 𝑡𝑖, 𝑠𝑖+1 − 𝑡𝑖
)

0 ≤ 𝑖 < 𝑀 − 1
( )

(12)
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𝑠0 − 𝑡𝑖, 𝑠0 − 𝑡𝑖 𝑖 = 𝑀 − 1
Pseudocode 1: Digital post-processing
Input: Segmented matrix: 𝐼𝑏
Output: Maize plant locations matrix: 𝑀𝑙𝑜𝑐

1 begin
2 𝑀,𝑁 = size (𝐼𝑏)
3 𝑫′ = zeros (𝑀,𝑁)
4 𝒌 ← create Chamfer mask with size b ∗
5 for 𝑖, 𝑗 to 𝑀,𝑁 do
6 𝑑1, 𝑑2 = 𝒌𝑙,𝑟 +𝑫′

(𝑖,𝑗),𝒌𝑙,𝑟 +𝑫′
(𝑖,𝑗)

7 𝑑3, 𝑑4 = 𝒌𝑙,𝑟 +𝑫′
(𝑖,𝑗),𝒌𝑙,𝑟 +𝑫′

(𝑖,𝑗)
8 𝑫′(𝑖, 𝑗) =min(𝑑1, 𝑑2, 𝑑3, 𝑑4)
9 end
10 𝒌 ← create Chamfer mask with size p ∗
11 for 𝑖, 𝑗 to 𝑀,𝑁 do
12 𝑉𝑚𝑎𝑡𝑐ℎ = 𝑪̈𝑁 (𝑫′(𝑖, 𝑗),𝒌)
13 𝑉𝑙𝑜𝑐 = 𝑉𝑚𝑎𝑡𝑐ℎ(𝑖, 𝑗)
14 end
15 𝑀𝑚𝑎𝑡𝑐ℎ, 𝑀𝑙𝑜𝑐 = [𝑉𝑚𝑎𝑡𝑐ℎ, 𝑉𝑙𝑜𝑐 ], max (𝑀𝑚𝑎𝑡𝑐ℎ × 𝑙∗)
16 end

where 𝑴 is the total number of pixels in a contour.
The ROIs can be represented by the chain code, and for this it was

necessary to extract geometric characteristics, which are related to the
radii of the canopy openings of the maize plant. Therefore, we define
𝑥, 𝑦 points for each 𝑥𝑚𝑖𝑛 < 𝑥 < 𝑥𝑚𝑎𝑥 e 𝑦𝑚𝑖𝑛 < 𝑦 < 𝑦𝑚𝑎𝑥, so a bounding
box is defined as

′
𝑑 = ⟨𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥⟩ (13)

where 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, are minimum and maximum pixels,
respectively, of the ROI (𝑨′).

The radius is calculated using diameter information, defined as

ḋ = 𝑚𝑎𝑥
𝑖,𝑗

[

𝑑𝑒(𝑥𝑖, 𝑦𝑗 )
]

(14)

where 𝑑𝑒 is the Euclidean distance, and 𝑥𝑖, 𝑦𝑖 are the minimum and
aximum points, respectively, of the contour of the region.

A vector of (𝑉𝑟) characteristics was also defined for the opening of
ost-emergence maize plants, such as

𝑟 = 1∕2 ×
⌈

𝑚𝑎𝑥 (𝑑𝑒 (′
𝑑 ))

⌉

(15)

Thereby, Pseudocode 2 describes the vector feature extraction pro-
ess and the generation of maps with circles for the purpose of visual-
zing and detecting maize plants (Veramendi and Cruvinel, 2021).

Pseudocode 2: Feature extraction
Input: Map of distances and local max: 𝑫′,𝑀𝑙𝑜𝑐
Output: Feature matrix: 𝑀𝑐

1 begin
2 𝑀,𝑁 = size (𝑫′)
3 𝑃𝑘 = zeros (𝑀,𝑁)
4 for each point (𝑥, 𝑦) ∈ 𝑀𝑙𝑜𝑐,𝑖 do
5 𝑃𝑘(𝑥, 𝑦) = binarize (𝑫′(𝑥, 𝑦))
6 𝑨′(𝑥, 𝑦) = 𝑯(𝑃𝑘(𝑥, 𝑦))
7 end
8 for each point (𝑥, 𝑦) ∈ 𝑨′ do
9 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 = ′

𝑑 (𝑨′(𝑥, 𝑦))
10 𝑉𝑟 = 1∕2 ⌈max (𝑑𝑒 (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥))⌉
11 𝑀𝑐 (𝑥, 𝑦) = createMap (𝑉𝑟)
12 end
13 end

For the counting of maize plants, a histogram analysis of the plants
occurrences can be performed. Therefore, the final quantity of plants
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Fig. 5. In (a) the conic model, and in (b) the radius, and the height of the maize
plant.

for each block is calculated based on the model:

𝑁𝑝 = 𝑓𝑟
𝑁
∑

𝑖=1

√

1.04(𝑟𝑖) (16)

where 𝑓𝑟 is the number of occurrences obtained from the histograms,
i.e., for each block. The variable 𝑟𝑖 represents the radius of the canopy
aperture.

Indeed, the relationship between the radius and the canopy aperture
of the plant was experimentally obtained, considering the different
phenological stages of the maize plant. In this way, a calibration curve
was established, making it possible to use the conic model to estimate
the plant heights as an indicator of their phenological stage. In this
work, the information is applied to the post-emergence stage (V2).

In this way, it is possible to establish a plane 𝜋 that incorporates a
circular base, where a central point (vertex B) located outside the plane
corresponds orthogonally to the center of a such base, thus allowing
to fine the height distance ℎ𝑚. It is noteworthy that a triangle BOC
(Fig. 5) generates a conic section from a rotation axis (vertex O),
determining the meridian section. By integrating these components, the
plant’s height is defined by the properties of the generatrix, given by
ℎ𝑚 = 𝑟

√

3
SVM classifiers provide good generalization even with a small num-

ber of training samples. To use these classifiers, one should find a
hyperplane of parameters (𝐰, 𝑏) such that the distance between the hy-
perplane and training samples is maximized. The training samples are
represent the by a set of radii vectors (𝐱𝑖), derived from the previously
mentioned histograms, and are organized through a threshold with
the computed standard deviation. However, the data may have some
sparsity, which could case some support vectors to be in very small
marginal hyperplanes. Because of this, some atypical features may be
misclassified. In such cases, relaxing constraints on primal optimization
may provide separability (Eq. (17)).

𝑦𝑖(𝐰 ⋅ 𝐱𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 = 1,… , 𝑑 (17)

where 𝜉𝑖 are slack or relaxation variables, such that 𝜉𝑖 ≥ 0.
The slack variables correspond to selecting a hyperplane that min-

imizes empirical error. Because of this, possible minimum errors can
maximize the margin of separation between classes. Thus, a linear
classifier with maximum margin in optimization is defined as:

𝜌 = 𝑚𝑖𝑛
𝐰,𝑏,𝜉

1
2
‖𝐰‖2 + ∗

𝑑
∑

𝑖=1
𝜉𝑖 (18)

where ∗ is a weight constant for training error minimization.
The distribution of the feature space is not necessarily linearly sep-

arable, and a solution may requires the application of a data mapping
for larger spaces, i.e., leading to space vectors of higher dimensions
𝛷 ⊆ R𝑑∗ . Thus, it is necessary to apply the kernel defined by Eq. (19):

𝑘∗(𝑚𝑖, 𝑚𝑗 ) = 𝛷(𝑚𝑖)𝑇𝛷(𝑚𝑗 ) (19)

where 𝛷 is a representation of non-linear functions of the original
mapped features.
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Table 3
Kernels evaluated.

Kernel Function Parameters

Polynomial (𝑥𝑇𝑖 ⋅ 𝑥𝑗 + 1)𝑝 𝑝

Gaussian 𝑒𝑥𝑝(−𝛾 ‖‖
‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

2
) 𝛾

Sigmoid 𝑡𝑎𝑛ℎ(𝑘1𝑥𝑇𝑖 ⋅ 𝑥𝑗 + 𝑘2) 𝑘1 , 𝑘2

𝑝 is the degree of the polynomial, 𝛾 is equivalent to 1∕2𝜎2 which
controls flexibility of kernel function, 𝑘1 is a positive weight and 𝑘2
is an offset value.

In this work, three different types of kernel functions were evaluated
(Table 3), aiming to find the best results in terms of accuracy, precision,
recall, and F1-score.

For validation, the data vectors (𝐱𝑖) were split into training and test
datasets in proportions of 80%−20%, 70%−30% and 50%−50%. Thereby,
Pseudocode 3 shows the training and testing processes for classifying
the canopy openings of maize plants in post-emergence V2.

Pseudocode 3: Feature classification
Input: Feature matrix: 𝑴 𝑐
Output: Accuracy, precision, recall, F1-score

1 begin
2 𝑉𝑡𝑟 = trainingVector(𝑴 𝑐)
3 𝑉𝑡𝑠 = testVector (𝑴 𝑐)
4 for each classifier  do
5 if  ∈ 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 then
6  = (𝑥𝑇𝑖 ⋅ 𝑥𝑗 + 1)𝑝

7 end
8 if  ∈ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 then
9  = 𝑡𝑎𝑛ℎ(𝑘1𝑥𝑇𝑖 ⋅ 𝑥𝑗 + 𝑘2)
10 end
11 if  ∈ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 then
12  = 𝑒𝑥𝑝(−𝛾 ‖‖

‖

𝑥𝑖 − 𝑥𝑗
‖

‖

‖

2
)

13 end
14 params = fit SVM(𝑉𝑡𝑟, 𝐶, )
15 acc, prec, rec, F-1 = test SVM(𝑉𝑡𝑠, params)
16 end
17 end

3. Results and discussions

For the process of image acquisition from the V2 stage, it was
necessary to perform radiometric calibration to convert the metadata of
the digital image to a physical scale. On the other hand, the geometry
of the aerial image was established by the size of the camera sensor, the
focal length, and height of the drone flight, which together determine
its ground sample distance (GSD) (Table 4). The GSD provides the
corresponding measure for the pixels of the surface of the experimental
area or the area covered by the image.

Because of this, it was necessary to establish the percentages of
lateral and frontal overlapping of the aerial images to guarantee good
densities in the image characterization module. The number of reg-
istered images was 300 images for each spectral band, or in a total
of 1500 images for the 5 spectral bands. The total required storage
capacity was 3.69 GB (gigabyte), because the surface width and height
were equal to 27 m × 20 m respectively, and the distances between
each front and side capture were 4 m and 5 m respectively.

For phenological growth analysis, and to estimate the heights of the
maize plants (conic section model), five measurements relevant to the
canopy opening and maize height were manually collected at random.
Thus, to carry out such an analysis, a calibration curve was obtained,
taking in account measurements for different phenological stages of the
maize plants, as the examples shown in Table 5,
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Table 4
Survey specifications.
Description Values Units

Flying altitude 138 m
Mission flying time 12 min
Max. speed of flying 11 m/s
Front and side overlap 80 %
Ground sample distance 5.95 cm/pixel

Table 5
Examples of data manually collected in the experimental area.

Stages Variables Measures (cm)

V2
Lengths 35.0; 33.0; 29.0; 32.0; 31.0
Radii 17.5; 16.5; 14.5; 16.0; 15.5
Heights 27.0; 32.0; 29.0; 33.0; 28.0

V5
Lengths 88.0; 90.0; 86.0; 91.0; 86.0
Radii 44.0; 45.0; 43.0; 45.5; 43.0
Heights 48.0; 50.0; 45.0; 53.0; 47.0

V7
Lengths 104.0; 84.0; 99.0; 83.0; 104.0
Radii 52.0; 52.0; 49.5; 41.5; 52.0
Heights 165.0; 177.0; 168.0; 184.0; 198.0

Fig. 6. Estimation model for the growth of maize plants, obtained from real
measurements in an experimental field conducted for method validation.

Based on these data collected in the field for a random sampling
of maize plants, the mean radius (𝜇𝑟 = 16 cm), mean height (𝜇ℎ =
29.08 cm), and the standard deviation of the height (𝜎ℎ = 2.59 cm) were
calculated. The resulting behavior of the calibration curve agree with
the model presented in Müller et al. (2005). Besides, the correlation
coefficient obtained was 𝑅2 = 0.81, and for the post-emergence stage
(V2) the mean value was found equal to 29.8 ± 2.59cm (Fig. 6).

Collected images were sampled, filtered, and stitched with the help
of Pix4D software, with which orthoimages were generated for each
spectral band of interest (RGB). To generate of orthomosaics from the
experimental field, the experimental area (area where the maize crop
is located), which had a spatial resolution of 3935 × 5019 pixels, Cuts
each channel R, G, and B from the experimental area in blocks of
10 m × 10 m, using the QGIS software. The image bank was evaluated
based on specific site units, also called image blocks, where the red
(𝜆 = 668 nm), green (𝜆 = 560 nm), and blue (𝜆 = 475 nm) spectral
bands corresponding to block 30 are depicted in pseudo colors for vi-
sualization purposes. Each mosaic has a width and height of 546 × 546
pixels, radiometric resolution of 32 bits and digital resolution of 96 dpi.
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Table 6
Parameters for geometric transformation.
Description Parameters Values

Size of kernel 𝑏∗ 3 × 3
Opening for filtering 𝜎 0
Threshold for binarization 𝑙∗ 10
Actual angle for rotation 𝜃 ≈ 25◦

Fig. 7. Geometric transformation of image: (a) filtering and thresholding; (b) contour
detection considering the region of interest (ROI); (c) rotation around center of object
and final image matrix with 410 × 410 pixels (area equal to 100m2).

To closely study only the maize crop, additional information on
the intensities of other elements, such as soil, stones, and other sur-
rounding elements, should be excluded. The area to be cut was iden-
tified, and an angle of inclination was calculated, subject to three
sub-processes: filtering and thresholding, contour detection, and ro-
tation around the center of the object. Fig. 7 shows the process of
geometric transformation.

Gaussian filtering blurring the edges of the area of interest. There-
fore, a kernel size of kernel 𝑏∗ = 3×3 was selected, in conjunction with
the opening standard deviation of 𝜎 = 0. The thresholding step used
a degree of intensity 𝑙∗ = 10, and the actual angle used was 𝜃 ≈ 25◦

rotating the ROI around the center of the object (Table 6). Thus, the
new dimension of the ROI is defined as 410 × 410 pixels in relation to
the sample grid.

An examination of the ROI histogram showed the need to pre-
process the image with adjustments for brightness and contrast, in
addition to local operations due to the variability of luminance in small
regions. Thus, CLAHE was used in a set of color spaces: HSV, YCbCr,
and CIELab. Results for the brightness and contrast parameters were
𝛼 = 1.25 and 𝛽 = 5 in the RGB space. For CLAHE, a window size 𝑏∗ = 16
was used, together with the local threshold 𝑙∗ = 2; the difference is
that these parameters are applied locally in the mentioned color spaces.
This approach was applied an iterative number of times 𝑘 = 2. Table 7
details these parameters.
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Fig. 8. Results of segmentation in HSV color space, (a) enhanced image, (b) image in
HSV space, and (c) segmentation results for maize plants; (area equal to 100m2).

Fig. 9. Results of distance transform: (a) segmented image, (b) binary mask, (c)
Euclidean distance map; (area equal to 100m2).

Table 7
Parameters used for brightness, contrast, and CLAHE adjustments.
Description Parameters Values

Contrast 𝛼 1.25
Brightness 𝛽 5
Window size of CLAHE 𝑏∗ 16
Local threshold CLAHE 𝑙∗ 2

Table 8
Minimum and maximum parameters in HSV.

Parameters Channel H Channel S Channel V

Minimum 45 100 50
Maximum 75 250 250

Experiments were conducted to improve brightness, contrast, and a
Region of Interest (ROI) on a selected image. In addition, an analysis
of histograms on the H, S, and V channels provided a set of minimum
and maximum intensities in reference to the color spectrum reflected
by the maize plants, which are detailed in Table 8. These data make
it possible for the segmentation phase to be used in other applications
involving the natural environment.

In the implementation of the segmentation technique based on color
space, a set of techniques were applied together in the segmentation
step, such as Gaussian filtering with size 5 × 5. Ranges identified for
HSV images were operated using a morphological closure operator fol-
lowing an isotropic structuring element with size 5 × 5 and of circular
shape. Following this method, Fig. 8 illustrates the discrimination of
the maize plant in relation to soil, straw, and other elements possibly
existing in the considered region.

Based on the spatial and geometric variation, in addition to the
heterogeneous patterns in the regions of the maize plants, a Euclidean
distance transform was applied to the segmented image, which origi-
nated a distance map with local intensities representing the object of
interest in relation to its closest distances from the central opening of
the canopy. Fig. 9 illustrates an example of results obtained with the
application of the distance transform technique, where it is possible to
observe that the distance transform technique satisfactorily localized
the presence of maize plants in relation to their geometrically shaped
central distance.

To spatially locate the canopies of maize plants, TM with nor-
malized correlation was employed. In this context, Chamfer masks
were established considering the 𝑝 parameters (𝑝 = 8, 𝑝 = 13 and
8

∗ 1 2
Fig. 10. Distance map for Chamfer mask, with (a) 8 × 8, (b) 13 × 13, and (c) 18 × 18
pixels; (area equal to 100m2).

Fig. 11. Peaks located after using TM with correlation coefficient and Chamfer mask,
for (a) 8 × 8, (b) 13 × 13, and (c) 18 × 18 pixels; (area equal to 100m2).

Fig. 12. Post-emergence V2 locations with geometric descriptors, (a) circular map
locations, (b) circular feature map; (area equal to 100m2).

𝑝3 = 18), The choice of these values for the parameter 𝑝∗ was made
experimentally, considering adjustments to avoid both overlap and dis-
tancing of neighboring circles. Furthermore, given the different canopy
sizes, three different Chamfer masks were used. Fig. 10 illustrates the
standards applied for the use of these masks in conjunction with the TM
technique. Specifically, the three masks were applied to the image that
presents the Euclidean distance map, considering the Chamfer masks
from smallest to largest.

The approach resulted in a range of low and high correlation values,
saving spatial locations to guarantee the presence of a plant according
to the correlation. To evaluate these values in the correlation range, a
threshold of at least 50% of these values was used. Fig. 11 illustrates
the locations derives using Chamfer masks as subimages via the TM
algorithm. Based on the results obtained, the Chamfer pattern for
parameter 𝑝∗ = 13 made it possible to obtain local information more
uniformly compared to those obtained using the other patterns.

Using the descriptor chain code that defines the contours of these
regions, to be binarized in relation to the minimum area of the canopy
opening, made it possible to extract the contour characteristics of the
peaks found in the TM stage. Thus, the presence of maize plants in the
post-emergence stage V2 was visually determined (Fig. 12).

Features of vectors of circular radii, corresponding to the blocks of
the maize crop, were analyzed to validate the proposed method. Specif-
ically, all the blocks were analyzed to validate the method, whereas
three blocks were analyzed also considering the manual counting of
plants from emerged seeds. In this process, a vector with a smaller
dimension of 116 radii (block 7) and a vector with a larger dimension
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Fig. 13. Examples of histograms for number of maize plants occurrences and the observed radii in the blocks.
Fig. 14. Estimation model for counting maize plants, obtained from computational
method.

of 186 radii (block 39) were found. Another characteristic evaluated
was the elaboration of the number of occurrences of circular radii in
relation to the analyzed blocks, to know the canopies of the detected
plants (radii of openings) and, in turn, to infer the number of the maize
plants in each block. Fig. 13 illustrates examples, randomly choice, of
the feature histograms of the blocks analyzed in this work.

To count the maize plants present in the area, it was necessary to
perform a normalization with the minimum (𝑟𝑚𝑖𝑛 = 1) and maximum
(𝑟𝑚𝑎𝑥 = 23) radii. The smallest radius, corresponded to 1 plant of
maize whereas the largest radius 23 corresponded to 5 plants of maize.
Meanwhile, the blocks that had the lowest and highest number of maize
plants were block 7, which had 247, and block 39, which had 527,
respectively.

However, results of counting the maize plants are based on the
calibration of a projected model, which is shown in Fig. 14. This model
included standard deviations for the radii of openings of the canopies.

Therefore, based on the average value of the radii obtained compu-
tationally, which was equal to 12 units of measure, corresponding to a
height of 20.78 units of measure (model of conic sections), a coefficient
𝛼 = 0.69 between these units was found. Based on the calibration of this
model, Fig. 15 illustrates the number of plants emerged per block in the
experimental field.
9

Fig. 15. Number of maize plants counted by the computational model for each specific
site.

The analyzed histograms describe a pattern that is close to a Gaus-
sian distributions, which led to the organization of 503 vectors, each
consisting of a radius and number of occurrences. These values were
categorized according to the ranges of standard deviation values (𝜎𝑚𝑖𝑛 =
1.86 and 𝜎𝑚𝑎𝑥 = 3.42) and means (𝜇𝑚𝑖𝑛 = 5.06 and 𝜇𝑚𝑎𝑥 = 9.09),
with which a threshold (𝜎𝑡 = 2.5) was then established to determine
which observations had dispersions that were greater or lesser than the
occurrences of the distributions. Thus, histograms with 𝜎 ≥ 2.5 formed
class 1, and histograms with 𝜎 < 2.5 formed class 2. Where, class 1 was
composed of 230 vectors, and class 2 of 273 vectors.

To continue the trials for training and testing the classifiers, a
proportion of vectors from each class were assigned to the classifiers.
In this case, the proportions were 80% and 20% from class 1 and class
2, respectively. Thus, Classifier 1 was composed of 184 and 55 vectors
from class 1 and class 2, respectively. On the other hand, Classifier
2 assigned the complementary set of vectors, i.e., 20% and 80% of
the vectors from class 1 and class 2, respectively. Thus, Classifier 2
was composed of 46 and 218 vectors from class 1 and 2, respectively.
To validate the SVM classifiers, they were trained and tested on data
divided according to proportions of 50% for training and 50% for
testing, 70% for training and 30% for testing, and 80% for training and
20% for testing. Table 9 presents a comparison of the results obtained
by the applications of different kernels in the SVM classifiers for the
post-emergence stage V2 patterns.
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Fig. 16. (a) Confusion matrix, and (b) ROC Curve of Classifier 1.

Table 9
Obtained results for the SVM selection.

Kernel Proportions Metrics Classifier 1 Classifier 2

Si
gm

oi
d

50%:50%

Precision 0.81 0.82
Recall 0.92 0.94
Accuracy 0.78 0.79
F1-Score 0.86 0.88
Support vectors 92 109

70%:30%

Precision 0.74 0.78
Recall 0.87 0.76
Accuracy 0.67 0.62
F1-Score 0.80 0.77
Support vectors 55 66

80%:20%

Precision 0.84 0.83
Recall 0.97 0.98
Accuracy 0.83 0.81
F1-Score 0.90 0.89
Support vectors 37 44

Ga
us

sia
n

50%:50%

Precision 0.82 0.84
Recall 0.97 0.94
Accuracy 0.82 0.80
F1-Score 0.89 0.88
Support vectors 92 198

70%:30%

Precision 0.83 0.84
Recall 1 1
Accuracy 0.85 0.84
F1-Score 0.91 0.91
Support vectors 55 66

80%:20%

Precision 0.82 0.84
Recall 1 0.95
Accuracy 0.83 0.81
F1-Score 0.90 0.89
Support vectors 37 44

From Table 9 it was possible to observe the best results for selection
of the SVM classifiers which are highlighted in bold. The Figs. 16
and 17 shows the confusion matrices and ROC curves for the selected
Classifier 1 and Classifier 2.

Through analysis of the results of the experiments conducted to
select the SVM Classifiers, considering the training and testing stages, it
10
Fig. 17. (a) Confusion matrix, and (b) ROC Curve of Classifier 2.

was possible to verify that the precision remained at a satisfactory value
for both, that is, above 74%. This occurred for the classification of the
post-emergence patterns V2, i.e., considering the opening canopies of
maize plants (Zea mays L).

Furthermore, when a Sigmoid Kernel was used for both classifiers,
as well as when based on percentages for training and testing equal
to 70%:30%, low accuracies were observed, i.e., 67% and 62% for
Classifier 1 and Classifier 2 respectively.

Likewise, when a Gaussian kernel was used for both classifiers,
that means, considering the percentages for training and testing equal
to 70%:30%, high accuracies were observed, i.e., 85% and 84% for
Classifier 1 and Classifier 2 respectively. Besides, we also observed
better precision values for such configurations that mean, 83% and 84%
for Classifier 1 and Classifier 2 respectively.

3.1. Discussion of the experimental results

The method developed relates the count of maize plants (Zea Mays
L.) for the V2 phenological stage and then with the percentage of
emergence in the crop area. In fact, emergence occurs when the first
leaves, called coleoptiles, appear above the soil surface due to the
germinating seeds having absorbed water (approximately 30% to 35%
of their weight) and oxygen. Then, for those that germinate, the rootlets
emerge quickly near the tips of the seeds, depending on the temperature
and humidity conditions of the soil.

Results have shown the usefulness by using drone flights and
data acquisition considering 138 m of altitude with a GSD equal to
5.95 cm/pixel for the maize plant counting directly in a crop area. Ad-
ditionally, the use of the MicaSense camera equipped with a DLS sensor
to correct potential shadows was also adequated for such application.
However, it was also observed that when mapping the acquired images,
the minimum and maximum reflectance values should be normalized
before being stored as a geotiff images. The use of RGB spectral
bands have confirmed the feasibility of the developed method in the
visible spectrum. Furthermore, to ensure the assessment of maize plant
density, subdividing the experimental area into blocks units allowed
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Fig. 18. Comparing plant counting models: Human Vision vs. Computer Vision.

the optimization of the computational process for the sequence of
algorithms employed in the developed method.

In addition, as observed in the results, to enable the counting of
maize plants, it was necessary to calibrate the field measurements. For
this study, such a validation was carried out considering simultaneously
for the blocks 8, 16 and 33 note only the computational but also human
measurements doing the post-emergence stage V2 (Fig. 18).

To obtain the plant heights, it was necessary to take in account in-
formation from the ground truth and a calibration curve. Additionally,
for the analyzed blocks, 17 998 maize plants were identified, according
for 75% of the estimated total. Thus, there was a 25% of loss in
emergency.

4. Conclusions

The maize plant population is of great importance to the agriculture
cycle. In this study, a method for evaluate maize plants using images
of maize crop acquired by drone flights was developed and validated.
The proposed method is based on structuring orthomosaics of RGB
channels obtained by embedded multispectral sensors, which enabled
verification of the quality of images collected by drone with a GSD of
5.95 cm/pixel.

The geometric transform of rotation around the object in relation
to the orthomosaics enabled the initial stages of image processing, for
which an inclination angle 𝜃 ≈ 25◦ was determined to be suitable.
Improving the brightness, contrast, and CLAHE led to improvements in
intensities, and it was concluded that the HSV space provides better
viability for the subsequent steps of the image processing. In the
image segmentation step, techniques based on the use of HSV space
established validated color ranges, which, together with morphological
operators, enabled separation between maize plants. Locating of the
maize plants in the crops was made possible by the integrated use
of DT, and the normalized correlation coefficient of TM. With the
inclusion of templates based on Chamfer masks, it became possible to
determine candidates for the location of local maxima in relation to the
DT.

From feature extraction, it was possible concluded that the chain
codes described contours that represented circular features. Likewise,
spectral histogram patterns that describe more open or closed lengths
and widths of leaves, both related to the V2 stage, were observed.

For the classification of the post-emergence stage V2 of maize
plants, the best results were obtained using a training to testing ratio
of 70%–30% for SVM with Gaussian kernel, which demonstrated accu-
racies of 85% and 84% and a precision of 83% and 84%, for Classifier
1 and Classifier 2, respectively.

Finally, can be concluded that the organization of the evaluated
techniques made it possible to validate the count of maize plants in
the post-emergence stage or phenological stage V2, which is of interest
to agriculture 4.0, research and service to the productive sector.
11
For future work, we are considering the possibility to evaluate the
use of sensors that can provide depth information from the aerial
images (Z-axis information) for automatically height maize plants cal-
culation. Also, the evaluation of the use of semantic segmentation
methods in conjunction with artificial intelligence for the evaluation
of the spatial variability in the maize plants emergency and their
productivity.
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