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Abstract. Laboratory methods for soil analysis need to cope with the 
increasing demand for expedited and widespread georeferenced soil data to 
support decisions in digital agriculture, digital soil mapping and natural 
resources monitoring and conservation. A soil visible-near-infrared (VisNIR) 
and X-ray fluorescence (XRF) spectral library containing data from different 
Brazilian states is under construction that will (1) support the development of 
green soil analysis methods, (2) produce data to populate soil geodatabases, 
and (3) allow fast and accurate soil monitoring. The methods used to build the 
spectral library and an overview of the current data are presented. 

1. Introduction 
The increasing global demand for spatial soil data (McBratney et al., 2003; Minasny  
and McBratney, 2016) to calibrate soil prediction models (Collard et al., 2014), support 
digital soil mapping in regions lacking soil maps (Coelho et al., 2021) and other 
applications requires developing methods to produce fast and accurate soil data. Visible- 
near-infrared (VisNIR) and X-ray fluorescence (XRF) spectroscopy can be used to 
predict various soil chemical and physical properties both fast and accurately (Nocita et 
al., 2012; Silva et al., 2021). Other advantages of these approaches include non- 
destructiveness, multi-element capability, ease of use, minimal sample preparation and 
portability (Viscarra Rossel et al., 2006; Weindorf et al., 2012). 

In combination, VisNIR and XRF spectroscopy may expedite soil analysis and 
boost up projects and studies that demand data to assess soil composition, monitor soil 
changes, guide agricultural practices, and address environmental issues. For instance, 
these methods were combined to estimate soil Cr content and complemented each other 
overcoming their individual limitations (Xu et al., 2019). Alos, soil VisNIR and XRF 
spectroscopy were successfully combined to predict soil nutrient (Ca, Mg and others) 
contents in basalt-derived tropical soils (Santos et al., 2023). 

This paper presents the methods used to develop a geographic soil VisNIR and 
XRF spectral library including georeferenced soil property data coupled with soil 
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VisNIR and XRF spectral curves. An overview of the data currently available in the 
library from the Mato Grosso do Sul state, Brazil, is also provided. 

2. Material and Methods 
2.1. VisNIR spectral curves 
To generate a soil VisNIR diffuse reflectance spectral curve, halogen light is directed to 
the sample and causes the molecular bonds of the soil sample to vibrate, absorbing light 
to various degrees according to the wavelength. A soil VisNIR curve is produced by 
measuring the amount of reflected light from the sample at each wavelength in the 
VisNIR range (~350-2500 nm) and plotting them against the wavelengths. 

The resulting soil spectral curve has a characteristic shape that depends on the 
soil constituents, and thus, it can be used for analytical purposes. For instance, soil 
minerals, organic matter and water, control the shape and intensity of soil VisNIR 
reflectance as well as many soil chemical and physical properties that can, in turn, be 
estimated from the VisNIR spectral curves (Terra et al., 2015). 

Soil VisNIR spectral curves were acquired from 508 samples (165 sampling 
sites) from the Mato Grosso do Sul state, Brazil. The samples were ground, sieved (2 
mm), and dried at 45 ºC overnight for 15 hours to harmonize the water content in the 
sample. Then, the samples were placed in a 10 cm Petri dish on an ASD Turntable 
(Malvern Panalytical, Malvern, United Kingdom) rotating at 22 RPM and illuminated 
by a 20W halogen bulb. The soil VisNIR curves were acquired using an ASD FieldSpec 
4 spectroradiometer (Malvern Panalytical, Malvern, United Kingdom), averaging 100 
repetitions per sample. Spectralon® (Labsphere, North Sutton, USA) was used as white 
reference (100% reflectance) and acquired before every block of 10 readings. 

2.2. XRF spectral curves and elemental analysis 
To generate a soil XRF spectral curve, an X-ray pulse is directed to the sample and 
causes electronic transitions from core states to vacant states, emitting secondary X-rays 
referred to as fluorescence. Each element emits XRF at specific energy levels, and thus, 
the amount of emitted XRF varies according to the sample elemental contents. A soil 
XRF spectral curve is produced by plotting the amount of emitted XRF at each energy 
level against the energy level. Elemental identification and quantification can be done 
from curve and peak shapes and intensities (Kaniu et al., 2012). 

Soil XRF spectral curves were acquired from the same prepared (ground, sieved 
and dried) 508 samples from Mato Grosso do Sul. The soil XRF readings were taken 
using a Innov-X Delta Premium 6000 spectrometer (Olympus, Waltham, USA). The 
instrument has two acquisition modes: Geochem and Soil. In Geochem mode, two X- 
ray beams are directed to the sample, each beam measuring specific element sets: Beam 
1 (40 kV) – V, Cr, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, 
Ta, W, Hg, Pb, Bi, Th and U; and Beam 2 (10 kV) – Mg, Al, Si, P, S, K, Ca, Ti and Mn. 
In Soil mode, the instrument shoots three beams, which measure: Beam 1 (40 kV) – Sr, 
Zr, Mo, Ag, Cd, Sn and Sb; Beam 2 (40 kV) – Fe, Co, Ni, Cu, Zn, As, Se, Rb, Hg and 
Pb; and Beam 3 (15 kV) – P, S, Cl, K, Ca, Ti, Cr, Mn and Ba. 

The prepared soil samples were placed in a 2 cm wide dish and scanned in both 
Geochem and Soil modes for 30 s for each beam, totaling 60 s in Geochem and 90 s in 
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Soil mode, respectively. Instrument calibration checks were carried out by scanning a 
certified 316 stainless steel reference coin before every block of 10 readings. 

The soil XRF curves derived from the 2 Geochem and 3 Soil mode beams were 
exported, along with the elemental contents measured by the two modes. Descriptive 
statistics of selected elements measured in Geochem (Mg, Al, Si, K, Ca, Mn, Cu, Zn, Zr 
and Mo) and Soil (P, S, K, Ca, Mn, Fe, Cu, Zn, Zr and Mo) modes were calculated. 

3. Results and Discussion 
Currently there are 508 samples from 165 sampling sites in Mato Grosso do Sul in the 
geographic spectral library. Another 2000+ samples from the same state with both 
geographic coordinates and soil chemical and/or physical property data are under 
analysis or in the queue waiting for analysis (Figure 1) to be included in the library. 

 
 

Figure 1. Samples from Mato Grosso do Sul in the spectral library (red circles) or under 
analysis or in the queue waiting for analysis (white circles). 

 
3.1. VisNIR spectral curves 
The mean soil VisNIR spectral curve of the 508 Mato Grosso do Sul samples along with 
the spectral curves from 30 randomly chosen samples from the library are shown in 
Figure 2. The absorption peaks of O-H at around 1400 and 1900 nm, and of C-H groups 
at around 2200 nm (Vasques et al., 2008) appear in the spectral curves from all samples. 
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Figure 2. Mean soil VisNIR spectral curve of the 508 Mato Grosso do Sul samples (black 
dashed line) and spectral curves from 30 randomly chosen samples from the spectral 

library (colored lines). 

3.2. XRF spectral curves and elemental contents 
The mean soil XRF spectral curves of the 508 Mato Grosso do Sul samples scanned in 
Geochem and Soil modes are shown in Figure 3. Among the elements selected for the 
study, XRF emission peaks of Mn (~6 keV), Cu (~7.5 keV), Zr (~16 keV) and Mo 
(~17.5 keV) are visible in the curve from Geochem beam 1. Geochem beam 2 shows 
XRF emission peaks of Al (~1.5 keV), S (~2.5 keV) and Mn (~6.5 keV). In Soil mode, 
XRF emission peaks include: Fe (~6.5 keV), Cu (~7.5 keV), Zr (~17.5 keV) and Mo 
(~19 keV) for beam 1; Cu (~7.5 keV), Zr (~18 keV) and Mo (~19 keV) for beam 2; and 
P (~1.5 keV), S (~2.5 keV), K (~3.5 keV), Mn (~6.5 keV) and Fe (~7 keV) for beam 3. 

 

 
Figure 3. Mean soil XRF spectral curves from the 508 Mato Grosso do Sul samples in the 

spectral library scanned in Geochem (2 beams) and Soil (3 beams) modes. 
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The descriptive statistics of the elements measured by XRF spectroscopy in 

Geochem and Soil acquisition modes are presented in Tables 1 and 2, respectively. All 
elements selected are measured in both acquisition modes, except Al and Si, which are 
only measured in Geochem mode. Inconsistent Fe, and Mg values were produced in 
Geochem, and Soil modes, respectively, and were left out of the tables, whereas P and S 
contents fell below the limit of detection (LOD) in Geochem mode. 

Table 1. Descriptive statistics of selected elements measured in Geochem mode. 
Element Mg Al Si K Ca Mn Cu Zn Zr Mo 
Nobs (> LOD) 63 503 503 25 9 270 18 96 336 10 
Minimum (mg kg-1) 10500 18900 55400 262 332 77 23 11 24 9 
Mean (mg kg-1) 14863 78515 189438 5665 1520 249 130 31 204 12 
Median (mg kg-1) 14300 71200 208700 2123 961 183 118 24 153 12 
Maximum (mg kg- 
1) 25600 193500 304200 36270 7190 1494 285 108 671 14 

SD (mg kg-1) 2597 28982 59798 8690 2161 209 85 21 145 2 
Nobs (> LOD), number of samples above the limit of detection; SD, standard deviation. 

Table 2. Descriptive statistics of selected elements measured in Soil mode. 
Element P S K Ca Mn Fe Cu Zn Zr Mo 
Nobs (> LOD) 410 61 153 64 489 508 363 433 491 166 
Minimum (mg kg-1) 410 61 55 57 7 508 1 3 38 2 
Mean (mg kg-1) 7318 473 2399 1773 246 33710 14 10 284 4 
Median (mg kg-1) 5346 397 731 836 144 13836 11 6 211 4 
Maximum (mg kg-1) 96334 1904 24767 21466 9956 386629 66 47 930 10 
SD (mg kg-1) 8315 280 4087 2970 511 55648 10 8 185 2 
Nobs (> LOD), number of samples above the limit of detection; SD, standard deviation. 

The mean K, Cu, Zn and Mo contents measured in Geochem mode were larger 
than those measured in Soil mode, whereas the Ca, Mn and Zr contents were similar 
between modes. Although the accuracy of XRF was not addressed in this study, 
previous studies (Zhu et al., 2011) have shown that the method is reasonably accurate 
for many elements. The means and ranges of element contents measured by XRF 
differed from those reported by Zhu et al. (2011) in Louisiana and New Mexico, USA. 

4. Conclusions 
The geographic soil VisNIR and XRF spectral library currently has 508 registered 
samples and is rapidly growing. The preliminary results show the potential of the 
approach to characterize the soil spectral features with minimum sample preparation, 
reduced analytical time and effort, and zero waste. Soil chemical and physical property 
data in the library include pH, exchangeable bases, organic carbon, sand, silt and clay 
contents, and others. The data is stored in Excel tables, which are extracted from 
instruments and are readily available. Subsequently, the analysis is executed through 
visually informative graphics, providing a comprehensive representation of the data. 
The programming language employed for this analytical process is R. The library will 
be expanded to further characterize the VisNIR and XRF spectral properties of Brazilian 
soils and estimate soil properties of interest. 
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