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Abstract: Sugarcane croplands account for ~70% of global sugar production and ~60% of global
ethanol production. Monitoring and predicting gross primary production (GPP) and transpiration
(T) in these fields is crucial to improve crop yield estimation and management. While moderate-
spatial-resolution (MSR, hundreds of meters) satellite images have been employed in several models
to estimate GPP and T, the potential of high-spatial-resolution (HSR, tens of meters) imagery has
been considered in only a few publications, and it is underexplored in sugarcane fields. Our study
evaluated the efficacy of MSR and HSR satellite images in predicting daily GPP and T for sugarcane
plantations at two sites equipped with eddy flux towers: Louisiana, USA (subtropical climate) and
Sao Paulo, Brazil (tropical climate). We employed the Vegetation Photosynthesis Model (VPM) and
Vegetation Transpiration Model (VIM) with C4 photosynthesis pathway, integrating vegetation index
data derived from satellite images and on-ground weather data, to calculate daily GPP and T. The
seasonal dynamics of vegetation indices from both MSR images (MODIS sensor, 500 m) and HSR
images (Landsat, 30 m; Sentinel-2, 10 m) tracked well with the GPP seasonality from the EC flux
towers. The enhanced vegetation index (EVI) from the HSR images had a stronger correlation with
the tower-based GPP. Our findings underscored the potential of HSR imagery for estimating GPP
and T in smaller sugarcane plantations.
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1. Introduction

Sugarcane (Saccharum spp.) croplands supply cane feedstock for biofuel (ethanol) and
sugar production [1]. Sugarcane represents nearly 70% of the sugar production worldwide
and approximately 60% of the global bioethanol production [2—4]. Brazil and the United
States of America (USA) rank first and ninth among the global sugarcane-producing
countries [5]. Brazil produced an average of 538 million metric tons (mmt) of sugar from
1994 to 2019 [6], and through the Renovabio policy it aims to produce 50 billion liters of
ethanol per year by 2030 by improving production and investment infrastructure [7]. The
USA produced an average of 29 mmt of sugar from 1994 to 2019 [6].

Sugarcane crop growth monitoring and assessment provide necessary information for
crop management and sustainable production, as the changes in crop variety, field size and
rotation, management, and climate may affect crop growth, water use efficiency, and yield
prediction [8]. Among the many metrics of crop growth, gross primary production (GPP),
which is the amount of CO, fixed by vegetation photosynthesis, representing the largest
carbon flux in the terrestrial ecosystem [9], is one useful metric, but it has received less
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attention in the crop production community. GPP has been used to calculate net primary
production (NPP), aboveground biomass, and crop yield [10-13]. GPP is used to monitor
crop growing conditions and improve crop management practices and crop production
estimates [13-16]. GPP has previously been utilized to improve crop yield assessments,
which are important for agricultural resiliency and food security [17-19].

There is no method for directly measuring GPP at the ecosystem and landscape
scales [20,21]. The eddy covariance (EC) method is widely applied to measure the net
ecosystem exchange (NEE) between the atmosphere and the land surface [22], and the
half-hourly NEE data are then partitioned into ecosystem respiration (ER) and GPP [23,24].
Several algorithms have been used for the partitioning of the NEE into ER and GPP [25,26].
The resultant GPP (hereafter GPPgc) is utilized as the standard data to evaluate vegetation
phenology, as well as GPP estimates derived from process-based models and data-driven
models over multiple spatial and temporal resolutions [27-29] (p. 200). However, because
of the high cost and complexity associated with the operation of EC sites, to date, the
carbon and water fluxes of sugarcane plantations have only been measured at a few sites
worldwide [30-35]. Time-series data of the carbon and water fluxes from these sites provide
information on sugarcane crop phenology, GPP, and evapotranspiration.

Satellite-based remote-sensing data are widely available and are often used to monitor
crop growth [36-39] and estimate carbon fluxes [40-42]. Light use efficiency (LUE) models,
first applied in agriculture [43,44], can be fed with vegetation indices from remote-sensing
data (surface reflectance) and climate data to calculate GPP [17,45-47]. These LUE models
gained popularity thanks to their simplicity and data availability [47]. The Vegetation Pho-
tosynthesis Model (VPM) [29,48] calculates daily GPP (hereafter GPPypy) as the product
of light absorption by chlorophyll in the canopy (APAR,;) and LUE [29,47,48]. The GPP
estimates from the VPM have been widely evaluated among multiple vegetation types and
across various spatial scales (local, regional, and global) [17,19,29,49,50]. To date, only a
few studies have presented information on GPP estimates of sugarcane plantations from
data-driven models with satellite images [35,51].

Multiple global GPP data products from LUE models are now available to the pub-
lic [52], driven by climate data and satellite images at a moderate spatial resolution
(MSR)-for example, the Moderate Resolution Imaging Spectroradiometer (MODIS) at
a 500 m spatial resolution. These GPP data products at an MSR are useful. Note that most
cropland fields are small in size [53], so the monitoring and assessment of agriculture at
the field scale (tens of meters) would need satellite images at a high spatial resolution
(tens of meters). Furthermore, agricultural management practices [54-56] and land use
changes have driven large spatial variation in the GPP in sugarcane plantations [32,57,58].
The uncertainty of GPP estimates could increase when the GPP is calculated from MSR
images [51,59,60]. Therefore, there is a need to generate GPP data products at a high spatial
resolution (HSR, tens of meters) as, to date, no global GPP data products derived from HSR
images are available.

Transpiration (T) is a pivotal component of evapotranspiration (ET) in agricultural
fields, playing a crucial role in assessing crop growth performance [61]. Data products that
partition ET into T and E (evaporation) offer valuable insights into water use efficiency.
However, the practical application of T and ET data at the field level faces multiple chal-
lenges, including the course spatial resolution of current remote-sensing products [59,62],
the high costs associated with field-scale ground T data, and the intricacies of ET parti-
tioning methods [63]. Multiple models have successfully integrated the Penman-Monteith
(PM) method [64,65] with successful results [66], but the scalability limitations and struc-
tural uncertainties in the vegetation phenology complicate its application in commercial
crops [67,68].

Satellite-derived ET products, like MOD16 [69], are popular for agricultural studies
over large regions due the coarse spatial resolution but face challenges in water-rich crops
(e.g., sugarcane and rice) and more extensively irrigated fields [70,71]. Newer products
(e.g., ECOSTRESS, [72]) offer finer resolutions but have strong limitations, including infre-
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quent data capture and validation issues [73]. Several studies have pinpointed inaccuracies
in ECOSTRESS data across various ecosystems [74,75]. Such inconsistencies compromise
the data’s reliability for precise water management and crop yield forecasting. Given these
challenges, there is a pressing need for a straightforward, accurate, and adaptable method
to derive field-level T estimates in water-rich crops like sugarcane.

The performance of the VPM in estimating the GPP of sugarcane plantations has only
been evaluated at a moderate spatial resolution (MSR) [35]. Therefore, its performance
at a high spatial resolution (HSR) for individual sugarcane plantations still needs to be
assessed and better understood. On the other hand, the vegetation transpiration model
(VIM) has not been tested on sugarcane croplands, and this study evaluated VIM's
potential as a tool to estimate water use efficiency in this crop system. The study employed
an integrated approach utilizing both MSR 8-day MODIS optical data and a combined
time series of HSR data from Landsat and Sentinel-2. This methodology was specifically
designed to derive vegetation indices at both the MSR and HSR levels. The vegetation
indices used in our analysis included the enhanced vegetation index (EVI) and the land
surface water index (LSWI), which served as critical inputs for our modeling efforts. The
primary focus was on leveraging these indices to comprehensively analyze the seasonal
dynamics of the sugarcane crop. By systematically collecting and processing these time-
series data, we were able to effectively utilize them as an input for predicting the temporal
dynamics of GPP and T in sugarcane plantations over two different sites. This approach
underscores the significance of time-series analysis in agricultural studies, where HSR data
availability is limited and an MSR does not represent field patterns well [76], particularly for
understanding and modeling the phenological and physiological changes in crop systems
over time.

Moreover, given the 2030 objectives to increase sugarcane production, there is a need to
assess and compare the VPM performance at distinct sugarcane plantations using MSR and
HSR images before it can be applied to perform GPP estimations with HSR images at the
regional, continental, and global scales. The core objectives of our investigation were: (1) to
evaluate the consistency of satellite-derived vegetation indices (EVI and LSWI) from MSR
(MODIS) and HSR (Landsat and Sentinel-2) images in tracking the vegetation phenology
and sugarcane crop physiology at two distinct sites; (2) to assess the performance of the
VPM in estimating the daily site-level vegetation carbon uptake of sugarcane croplands
with different management practices when MSR and HSR images are used, which would
shed new light on the advantages of estimating GPP with HSR images; and (3) to analyze
the capabilities of the VIM in estimating the daily transpiration of sugarcane croplands.

2. Materials and Methods
2.1. Study Sites

Two sugarcane sites were selected for this study, based on EC flux data availability and
quality: one sugarcane site at Pirassununga, State of Sao Paulo, Southeastern Brazil [31] and
the other in Schriever, Louisiana, USA at the Ardoyne farm [77] (Figure 1). The Louisiana
site is under the management of the USDA-ARS Sugarcane Research Unit, and the Sao
Paulo site is under the management of Embrapa Meio Ambiente.

The Louisiana EC flux tower site (Chacahoula) (29.6341°N, 90.8349°W) had an annual
mean temperature of 23.6 °C and an annual precipitation of 1200 mm. The site had
Cancienne silty clay loam (Fluvaquentic Epiaquepts) type soil. The fields were graded with
a 0.2% slope towards the south, and the elevation of the fields ranged between 2.40 m and
0.61 m over 700-900 m. Sugarcane cultivation in Louisiana dates back to 1850 [78], and the
study site had experienced more than 50 years of continuous sugarcane production. The
field was cultivated with sugarcane variety HoCP 04-838’, reg. no. CV-181, PI 687221, and
the sugarcane plants were spaced at 1.83 m intervals for single-planted rows and 2.44 m
for double-planted rows (<1% total field area). Sugarcane crop green up typically occurs
in April, while it is harvested between October and December. The EC tower on the site
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Figure 1. The two sugarcane locations with EC flux tower sites (red doted polygons; (a) USA and
(b) Brazil) displaying the pixel size of the optical data utilized in the study: 10 m (red polygon,
Sentinel-2), 30 m (blue polygon, Landsat), and 500 m (green polygon, MODIS).

The Sao Paulo EC flux tower site (FAYS) (21.9506°S, 47.3394°W) had an annual mean
temperature of 21.4 °C, annual precipitation of 1410 mm, and gentle slope of <2%. Sug-
arcane new stem cutting (IAC-5000 variety) was completed on 10/2015 (DOY 275), and
the distance between the plotting rows was 1.5 m, with a canopy height of ~5 m during
the growing season. The soil type was clay (65% clay, 21% sand, silt 14%), and the site was
managed under regular tillage, receiving superphosphate (28% P,Os) and 100 Mg ha~! dry
matter of filter cake (sugar production residue) [31]. The flux tower at this site was installed
24 days after planting. Sugarcane is a multi-year ratoon crop; typically, in Brazil, the crop
cycle includes one plant crop and four ratoon crops [30]. The first harvest took place in late
October 2016, and the ground trash was left on the soil; nitrogen fertilizer (80 kg N ha~?)
and potassium (180 Kg K,O ha~!) were applied two days later [31].

2.2. Weather and CO; Flux Data for the Sugarcane Plantations
2.2.1. Louisiana, USA Site

The 10 m tower had an integrated open-path infrared gas analyzer, and climate and
CO; flux data outputs were produced at a 30 min temporal resolution (Irgason, Camp-
bell Scientific, Logan, UT, USA). The ecosystem carbon uptake was estimated using the
difference between the measured net ecosystem exchange (NEE) and daytime ecosystem
respiration (R); daytime and night-time R were calculated based on fitted exponential
equations [25,79]. The data covered three growing seasons at the sugarcane plantation
(01/2018-12/2020). Multiple sensors at the Chacahoula site were recalibrated in the month
of Aprilin 2018 and 2019, resulting in major flags in the CO, flux data during the subsequent
months; for this reason, some of the data were removed from the study.
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2.2.2. Sao Paulo, Brazil Site

The tower had an incorporated open-path infrared gas analyzer. Weather and CO,
flux data were obtained at a 30 min temporal resolution, and the height of the tower was
9 m. Gross primary production (GPP) and R, were calculated at the EC tower based on the
NEE observations using the flux-partitioning REddyProc package [80]. The data covered
two growing seasons for the Sao Paulo site (October 2015-August 2017).

2.2.3. Pre-Processing of CO, Flux and Climate Data

GPP at both the sites was estimated from the partitioning of the half-hourly NEE data
using the algorithms in [25,26]. The estimated half-hour GPP (GPPgc) and photosynthet-
ically active radiation (PAR) data were recalculated into 1-day and 8-day data using the
method presented in [35]. PAR data were estimated as 0.48 of the total incoming short-
wave radiation and converted into photosynthetic photon flux density (PPFD) using the
approximation 1 W m 2~ 457 umolm—2 s~ 1 [81].

Air temperature was averaged into daily daytime mean air temperature (Tpr) and
daily mean air temperature (Tpa). We calculated Tpr as the average temperature over the
half-hour periods that had more than 10 pmol m~2 s~! PAR within a day. We calculated the
8-day averages of Tpt and Tpa. There are notable differences between Tpa and Tpt, and we
used Tpr for the photosynthesis—temperature relationship in our previous studies [35,49].

2.3. Land Surface Reflectance and Vegetation Index Data

We used the surface reflectance data from MODIS (MOD09A1), Landsat (7 ETM+ and
8 OLI/TIRS), and Sentinel-2/A-2/B, which are accessible on the Google Earth Engine (GEE)
platform [82]. For each flux tower site, we selected one MODIS pixel, one Landsat pixel,
and one Sentinel-2 pixel centered on the tower coordinates.

The MOD09A1 Collection 6 product [83] provides surface reflectance at a 500 m spatial
resolution and 8-day temporal resolution. We employed the Google Earth Engine (GEE)
platform [82] to calculate the enhanced vegetation index (EVI) [84] and land surface water
index (LSWI) [85] using the surface reflectance data (see Equations (1) and (2)) and assessed
the quality of individual observations via the quality band.

EVI=25 x (NIR — Red)/(NIR + 6 x Red—7.5 x Blue + 1) (1)

LSWI = (NIR — SWIR)/(NIR + SWIR) )

For Landsat 7 ETM+ and Landsat 8 OLI sensors, atmospherically corrected surface
reflectance data at a 30 m spatial resolution were used to calculate the EVI and LSWI.
We assessed the individual observations” data quality using cloud, shadow, water, and
snow masks [86]. The blue band was used for an additional quality check by detecting the
observations with cloudy and water pixels [87].

Sentinel-2 provides optical data at high spatial resolutions (10 m, 20 m, 60 m) and
a 10-day temporal resolution [88]. S2-A (launched June 2015) and S2-B (launched March
2017) have 13 spectral bands, including visible and NIR bands at a 10 m spatial resolution
and red-edge and SWIR bands at a 20 m spatial resolution [89]. We used the 10 m 52
orthorectified atmospherically corrected surface reflectance available on GEE. We assessed
the quality of individual observations using the cloud bit mask, cirrus bit mask, and blue
band [87].

For each eddy flux tower site, the time-series Landsat and Sentinel-2 observations were
combined to form one time series of collated data. Both systems provide a 12-bit radiometric
resolution with similar reflective wavelengths [88,90,91] and information sensed over the
same areas. The similarities between the Landsat and Sentinel-2 spectral resolutions
facilitates the combined use of their datasets in several different ways, including data
fusion, as reported in previous studies [92]. Landsat and Sentinel-2 were combined without
resampling the Landsat 30 m data into 10 m data, since the pixel chosen was within the
tower’s footprint and there were no changes in the crop management landcover type
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within the 30 m Landsat pixel. In our analysis, we integrated various vegetation indices
derived from different optical datasets and, in cases where there were observations with
overlapping dates, we selected a single observation for each date. This selection was based
on the data quality (maximum NDVI), as in past studies [90,92,93]. Ultimately, the gaps
in the combined Landsat/Sentinel time-series data were filled in, but the data were not
subjected to smoothing. This decision was possible as there was at least one good-quality
observation per week, and we ran the model at weekly intervals.

We analyzed the time-series data of the EVI, LSWI, and GPP at the sugarcane sites to
identify the start, end, and length of the sugarcane growing season (SOS, EOS, GSL). This
information was determined using the VI data with the thresholds of EVI > 0.1 and LSWI > 0
for the SOS and EVI < 0.1 and LSWI < 0 for the EOS. The VI-based GSL was compared
with a GPP-based GSL that used SOS>1gCm 2 day ! and EOS<1gCm~2day ! over
three consecutive 8-day periods as thresholds.

2.4. Vegetation Photosynthesis Model (VPM)

The vegetation photosynthesis model (VPM) produces daily estimates of GPP [29].
The VPM calculates the amount of solar energy absorbed by chlorophyll in the canopy
(APARy) and the light use efficiency (LUEg). The EVIis used as a proxy for FPARy (5).

GPP = APARy, x LUE, 3)
APARy, = FPAR, x PAR (4)
FPARy, = 1.25 x (EVI — 0.1) (5)
LUEg = LUEg X Tscatar X Wecalar (6)

LUEj is the apparent quantum yield or maximum light use efficiency (umol CO,/pumol
PPFD), and it has different values for C3 and C4 plants in the VPM. The LUE value for C4
plants (e.g., sugarcane) is 0.075 mol of CO, mol~! PPFD (0.9 g C mol~! PPFD) according
to earlier works on the vegetation carbon uptake and quantum yield of photosynthesis
for sugarcane [35,94]. The LUE, for C3 plants ranges between 0.42 and 0.65 g CO, mol !
PPFD (5.0-7.8 g C mol ! PPFD) [47,95,96]. The VPM accounts for the presence of C3 and
C4 plants in areas that have both by including the fractions of C3 plants (C3F) and C4
plants (C4F).

LUEy = LUEy 3 X C3F + LUEp.cq X C4F (7)

The effects of temperature and water on GPP [49,97] are introduced by Tycq1ar and
Wscalar, respectively. The LSW1 is used to calculate Wcq1ar- Tscalar iS based on the Terrestrial
Ecosystem Model (TEM) [98].

14 LSWI

Wsealar = o W Imax ®)
(°T — Tmin)(°T — Tmax)

[(°T — Tmin)(°T — Tmax)] — (°T — Topt)2

°T is the air temperature, and Tpin, Topt, and Tmax are the minimum, optimum, and
maximum temperatures for photosynthetic activity, respectively. We defined Ty, as —1 °C
and Tmax as 48 °C using the same cropland biome parameter values as in [47]. Topt was
set as 28 °C, following [35], which estimated Topt from the relationship between the daily
average daytime temperature (Tpr) and either the GPPgc or vegetation index (EVI).

For comparison, we carried out two sets of VPM simulations to estimate daily GPP
using site climate data alongside (1) time-series EVI and LSWI data from Landsat and
Sentinel images (GPPypp.1s) and (2) time-series EVI and LSWI data from MODIS images

(GPPypm-MOD)-

Tscalar =

©)
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2.5. Vegetation Transpiration Model (VTM)

In a crop field, evapotranspiration comprises evaporation (E) from the soil and inter-
cepted canopy water and transpiration (T) from plants [66,99]. During the crop growing
season, transpiration usually exceeds evaporation [100-102]. At the foliar level, there is
a strong linkage between photosynthesis (gross primary production, GPP) and transpi-
ration. This often results in the calculation of the leaf-level water use efficiency as the
ratio between these two (i.e., WUE s = GPP/T, expressed in mol CO,,mol H,O). The
Vegetation Transpiration Model (VITM) predicts daily transpiration as an outcome of GPP
and WUE] .., and it was first tested in grassland ecosystems [103]. Literature data indicate
that the WUE ¢5¢ 3 for C3 plants is 500 pmol CO, /pumol HyO, while for C4 plants, the
WUE] ca ca is 250 pumol CO, /umol H,O [104].

T = (C3F X 1/WUE uys_c3 + C4F  1/WUE ¢ c4) X GPP, (10)
If C3F = 1.0, T (mm H,0/day) = 0.33 (mm H,O/g C/m?/day) x GPP (g C/m?/day) (11)
If C4F = 1.0, T (mm H,O/day) = 0.165 (mm H,O/g C/m?/day) x GPP (g C/m?/day) (12)

2.6. Statistical Analysis

We assessed the biophysical performance of the EVI in terms of GPP changes and
seasonal behavior at the sugarcane plantations. We analyzed data from two growing
seasons for the Brazil site and three growing seasons for the USA site.

GPPypy data were assessed with GPPgc data at daily and 8-day scales. In a similar
way, the Tyt estimates were compared against the ETgc. In addition, 8-day ET estimates
from the MOD16 product were included in the comparison with the ETgc to provide a
reference for the performance of one of the most common data products for this variable.
The metrics for assessment included the coefficient of determination (R-squared, R?), the
Pearson correlation coefficient (p), the mean absolute error (MAE), and the normalized root
mean squared error (NRMSE). Finally, we compared the ETgc:P and Tywv:ETEc ratios for
the periods with data available to better explore the interannual changes and performance
of the model capturing this variability.

3. Results
3.1. Seasonal Dynamics of Climate, Vegetation Indices, and Carbon Fluxes (NEE, GPP)
3.1.1. Seasonal Dynamics of Climate

The Brazil site (Figure 2a) had a tropical climate, characterized by a dry and a wet
season, which is typical in tropical regions, with January being the wettest month (247 mm)
and July the driest month (27 mm) [30,31]. The annual rainfall was higher during the
first crop cycle (1651 mm) than during the second crop cycle (1446 mm). The seasonal
dynamics of the daily mean air temperature (Tpa) ranged between 14 °C and 26 °C. The
mean daily PAR in a year was 39.9 mol m~2 day !, varying from the lowest in June
(19.18 mol m~2 day~!) to the highest in February (55.7 mol m~2 day~!) (Figure 2a).

The USA site had a sub-tropical climate, characterized by four seasons and a moder-
ately cold winter. On average, March was the driest month (48 mm) and August the wettest
month (188 mm) at this site. The second crop cycle was the wettest (1720 mm), and the
third cycle was the driest (1477 mm). The air temperature ranged between 5 °C Tpp in the
winter and 30 °C Tpp in the summer. The daily daytime mean air temperature (Tpt) was
2-3 degrees higher than the daily mean air temperature (Tpa). The average daily PAR in a
year was 18.19 (mol m~2 day ') for the three crop cycles, varying from the lowest in the
winter (1.8 mol m~2 day~! in January) to the highest in the summer (34 mol m~2 day ! in
June) (Figure 2b).
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Figure 2. Seasonal variation in daily temperature, daily mean daytime temperature, 8-day average
photosynthetically active radiation (PAR), and accumulated rainfall (8-day interval) of the sugarcane
EC flux tower sites. (a) FAYS-Brazil site 2015-2017. (b) Chacahoula, USA site 2018-2020.

3.1.2. Seasonal Dynamics of Vegetation Indices

At the Brazil site (Figure 3c), the EVI and LSWI rose rapidly in December, reaching the
maximum value in May 2015. The EVI and LSWI gradually decreased, and by October the
EVI reached below 0.1 and the LSWI below 0. The field was harvested in October 2016. The
Vl-based start of the sugarcane growing season (SOS) at this site was November 2015 for
the first cycle and early December 2016 for the second cycle. The end of the growing season
(EOS) was in late October 2016, according to the thresholds used in our previous study [35],
which were EVI < 0.1 and LSWI < 0. The results indicated a ~12 month sugarcane growing
season length (GSL).
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Figure 3. Seasonal variation in estimated GPPgc and measured NEEgc at 8-day intervals over
the study period. Seasonal variation in vegetation indices (land surface water index (LSWI) and
enhanced vegetation index (EVI)) derived from 8-day MODIS data. (a,c) FAYS Brazil site, 2015-2017.
(b,d) Chacahoula, USA site (2018-2020).

At the USA site (Figure 3d), the EVI and LSWI started to rise in late April and early
May and reached their highest values between July and August. The EVI and LSWI
gradually dropped, reaching LSWI < 0 and EVI < 0.1 by early November. The VI-based
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start and end of the sugarcane growing season (SOS and EOS) at this site were May and
November, respectively, with a growing season length of 7 months.

3.1.3. Seasonal Dynamics of Carbon Fluxes (NEE and GPP)

At the Brazil site (Figure 3a), the GPPgc rose steadily in November 2015 to higher
than 1 g C m~2 day !, reached the top levels in March, and dropped to 1 g C m~2 day ! in
October 2016. The GPPgc rose again in November 2016, which indicated the start of a new
sugarcane growing cycle (Figure 3a). Following the GPP > 1 g C m~2 day ! criterion, the
GPP-based start and end of the growing season (SOS and EOS) at the Brazil site were in
November 2015 and October 2016, respectively, which adequately matched the SOS metrics
outlined by the vegetation indices (Figure 3a).

At the USA site (Figure 3b), the GPPgc began to increase in late April, was high in the
summer, and decreased below 1 g C m~2 day~! by September in 2018 and November in
2019 and 2020, due to sugarcane harvesting. Following the GPP >=1g C m~2 day ! condi-
tion, the GPP-based GSL of sugarcane oscillated between April and November (Figure 3b),
which fit sufficiently with the growing season metrics based on the vegetation indices
(Figure 3d).

3.2. The Relationships between GPPgc and Vegetation Indices from MODIS, Landsat, and
Sentinel-2 Images

For both sugarcane plantations, we assessed in terms of GPP dynamics the biophysical
response of the vegetation indices. Figures 4 and 5 show the agreement during the cane
growing seasons between the GPPgc and EVI at both plantations.
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Figure 4. (Left panel): The relationships between gross primary production (GPPgc) and the
enhanced vegetation index (EVI) derived from moderate-spatial-resolution images (MSR, MODIS)
and high-spatial-resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right
panel): 3 m 4-band planet Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of
vegetation cover in the FAYS Brazil study area. The red circle represents the area used to obtain the
time-series of HSR data.

At the Brazil site, the GPPgc had a sturdier linear relationship with EVIjg.g from
the Landsat and Sentinel-2 images (R? = 0.74) than with EVIyiopis from the MODIS image
(R? = 0.67). The difference between Landsat/Sentinel-2 and MODIS can be attributed to the
MODIS pixel containing information from neighboring fields with different planting and
harvesting dates. Figure 4 illustrates the differences in the crop management of sugarcane
fields around the EC site. In February 2016 and August 2016 (Figure 4a,b), within the
500 m MODIS pixel, the south field (February) and the plantation west of the EC tower
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(August) had bare soil landcover, while the study field had green vegetation. In addition,
the effects of radiation changes and cloud cover on the relationship between the GPPgc
and the vegetation index are supported by Figure 4d, where green vegetation is visible, but
the estimated GPPgc was below 5 g C/m?.
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Figure 5. (Left panel): The relationship between the estimated gross primary production (GPPgc)
and enhanced vegetation index derived from moderate-spatial-resolution images (MSR, MODIS)
and high-spatial-resolution images (HSR, Landsat and Sentinel-2) within the growing season. (Right
panel): 3 m 4-band planet Scope and 5 m RapidEye Ortho tile surface reflectance true-color images of
vegetation cover in the Chacahoula, USA study area. The red circle represents the area used to obtain
the time-series of HSR data.

At the USA site, GPPgc also had a stronger correlation with EVI; sy (R? = 0.76) than
EVIvopis (R? = 0.71) (Figure 5). The sugarcane fields around the EC study field had
different planting and harvest dates (Figure 5a—d), which affected the data analysis of the
relationship between GPPpc and EVI\iop. Wind conditions influenced the tower’s fetch
footprint and varied depending on the season and the landcover type [105,106]. May and
June 2018 had high EVI values (0.628) (Figure 3d), and the field was green in June (Figure 5a),
but there was no vegetation cover on some of the fallowed sugarcane fields nearby, resulting
in a low GPPgc of 3.7 g C/m?. Similar situations were observed on 22 September 2018
(Figure 5b), the date with the highest EVI of 2018 (0.72); October 2019 (Figure 5c¢); and
September 2020 (Figure 5d), for which there were high EVI values (>0.5), relatively low
GPPgc values (<5.45 g C/m?), and a harvested field contiguous with the green sugarcane
plantation EC site. The sugarcane fields adjacent to the EC site were managed differently
and could introduce uncertainty in the MSR data products (i.e., EVI\iop) as some of the
fields were within the 500 m MODIS pixel centered on the EC tower.

The slightly lower R? values at the Brazil site when compared to the USA site were
partly attributed to the effect of cloud coverage, increase in shadow during the rainy season,
fetch footprint changes throughout the seasons, and influence of the crop management (ro-
tation and harvest) of neighboring sugarcane fields, as evinced by the moderate differences
in the vegetation indices (Figure 3a,c).

3.3. Relationships between Air Temperature and GPP and Enhanced Vegetation Index (EVI)

Given the importance of the optimal temperature in multiple biophysical processes
and the limited availability of these data, we assessed the relationships between the GPPgc
and air temperature (Tpt, Tpa) during the growing seasons (Figure 6), as this is one of the
most reliable methods to estimate Topt. For the site in Brazil, tGPPgc increased as the Tpr
and Tpp rose and reached its plateau at ~25 °C and 23 °C, respectively (Figure 6a,c). In the
USA plantation, the GPPgc increased when the Tpt and Tpa rose and found its plateau at
28 °C and 26 °C, respectively (Figure 6b,d).
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Figure 6. Relationships between estimated gross primary production (GPP_EC), mean daily tempera-
ture, and mean daily daytime temperature within the sugarcane growing seasons. (a,c) FAYS Brazil
site, 2015-2017. (b,d) Chacahoula, USA site (2018-2020).

We also studied the relationships between the vegetation index (EVI;s.sp, EVIMopis)
and air temperature (Tpr and Tpy) (Figure 7) as a potential method to calculate Topt. At
the Brazil site, both EVI;gg, and EVIyop had weak but similar relationships with air
temperature (Tpr and Tpa) (Figure 7a,b). For the Tpr, the EVI rose and peaked at 20 °C
with a greater density of high values at 26 °C; the EVI reached its plateau at a Tpa of 23 °C.
The results at the USA location (Figure 7c,d) displayed high EVI values at 28 °C Tpt and
25 °C Tpa. The results were consistent for both sites and similar for HSR EVI;g.g, and
MSR EVIyop. EVIis.sp reached a plateau at slightly warmer temperatures at both sites, but
remained overall close to the EVIjop (~0.15 °C). Following these results, the optimum air
temperature (Topt) for modeling purposes was established as 25 °C (GPP-based) or 26 °C
(EVI-based) for Brazil and 28 °C (GPP-based and EVI-based) for the USA.
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Figure 7. Relationship between enhanced vegetation index derived from MODIS (EVI 500 m) and
Landsat/Sentinel-2 (EVI 10 m) with mean daily air temperature and mean daily daytime temperature
during the growing seasons. (a,b) FAYS Brazil site, 2015-2017. (c,d) Chacahoula, USA site (2018-2020).
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3.4. Comparison between GPP from VPM Simulations (GPPypy) and GPP Estimates from the
Eddy Flux Sites (GPPgc)

At the Brazil site, the seasonal dynamics of the GPPgc and GPPypy agreed reasonably
well (Figure 8a). The Pearson correlation coefficients and R? values indicated that there
was a stronger relationship between the GPPgc and GPPypy 1552 (r=0.86, R? = 0.74) than
between the GPPgc and GPPypymmop (r = 0.78, R? = 0.62) (Figure 8c, Table 1). The seasonal
sums of the GPPrc and GPPypy within the sugarcane growing season differed noticeably
(Table 2).
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Figure 8. GPP estimate time series from the EC flux sites (black line) and the VPM (HSR GPP in blue
and MSR GPP in red). (a) FAYS Brazil site GPP time series estimates (2015-2017). (b) Chacahoula,
USA site GPP time series estimates (2018-2020). Relationship between GPPgc and the VPM (HSR
GPP in blue and MSR GPP in red) (c) FAYS Brazil. (d) Chacahoula, USA site.

Table 1. A comparison of statistical metrics from the correlation analyses between GPPgc (g C m—2 dayfl)
and GPPypy (g C m—2 dayfl) for the Brazil and USA sites.

Brazil USA
Metric GPPyg vs. GPPy( vs. GPPgc vs. GPPg vs.
GPPvpm-MOD GPPvpM_Ls-s2 GPPvpm-MOD GPPvpM_Ls-s2
R2 0.62 0.74 0.63 0.82
CcC 0.78 0.86 0.79 0.90
MAE 2.96 2.03 2.21 1.83
NRMSE 0.23 0.17 0.16 0.12

Table 2. Seasonal sums of GPPgc and GPPypy during the growing the season defined by the
GPP-based method and VI-based method at the Brazil and USA sites.

Site GPP-Based GPPEC GPPVPM_LS-SZ GPPVPM-MOD
Growing Season gCm2yrl) (gCm2yrl (gCm2yr?
Brail 11/05/2015-10/31/2016 2428 2688 2464
razi 11/16/2016-08/26/2017 1722 1817 1974
05/09/2018-09/22/2018 608 766 1102
USA 04/01/2019-11/11/2019 2304 2704 1728

04/09/2020-12/02/2020 2976 2688 1432
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Table 2. Cont.
Site VI-Based GPPEC GPPVPM_LS-SZ GPPVI’M-MOD
Growing season gCm2yr) (gCm2yr’1) (gCm2yr}

1 12/15/2015-10/23/2016 2263 2630 2312

Brazi 12/10/2016-08/26/2017 1642 1794 1952

05/22/2018-10/29/2018 599 700 1287

USA 05/25/2019-11/17/2019 1896 2256 1592

05/10/2020-11/06/2020 2696 2536 1280

At the USA site, the seasonal dynamics of the GPPgc and GPPypy agreed reason-
ably well (Figure 8b). The GPPypp 1552 values had a stronger relationship with the
GPPgc (CC = 0.90, R? = 0.82) than the GPPypyv-mop values did with the GPPgc (CC = 0.79,
R? = 0.63) (Figure 8d, Table 1). The seasonal sums of the GPPgc and GPPypy; throughout
the growing season also differed noticeably (Table 2).

3.5. Seasonal Dynamics of ET as Measured at the Tower Site (ETgc) and Transpiration as
Estimated by VTM Simulations (Tyray)

At the Brazil site, the seasonal dynamics of the ETgc and Tyrm gc agreed reasonably
well (Figure 9a). The peak ETgc values ranged between 4 and 5 mm/day during December
to February, while the peak Tyt gc values varied between 2 and 3 mm/day for the same
peak periods. The Pearson correlation coefficients and R? values indicated that there was a
moderate relationship between the ETgc and Tyt gc (p = 0.68, R? = 0.47) at the Brazil site
(Table 3). The Brazil site had the worst performance of the two sites, as the VIM estimates
had weak to moderate relationships with the ETgc and Tytnp, whereas these relationships at
the site in the USA were moderate to strong. The Tytpm.1sp in Brazil (p = 0.45, R? =0.21) had
a stronger linear relationship than the Tyym-mop, which had the weakest correlation across
the study (p = 0.09, R? = 0.009). The ETgc /P ratio was consistently ~72.5% in Brazil during
the study period, while the Tyrm:ETgc ratio for 2016 (complete calendar year) ranged
between 64% and 75%, compared to the range of 78% to 95% for 2017 (only including data
until August) (Tables 4 and 5).
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Figure 9. ETgc estimate time series from the EC flux sites (black line) and the Tyrm_gc (red line) for
(a) the FAYS Brazil site and (b) Chacahoula, USA.

The USA site displayed stronger and clearer seasonal dynamics. It had peaks during
the summer months, showing ETgc values ranging between 3 and 5 mm/day and Tytm gc
values between 2 and 3 mm /day (2018 and 2019), with higher rates in 2020 ranging between
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3 mm/day and 4 mm/day. The year 2020 was the driest year, with an annual total P of
1438 mm, and 2019 was the wettest with a value of 1721 mm. This site displayed the
strongest Pearson correlation coefficients and R? values of either site. For this site, the
strongest relationship was between ETgc and Tym 1552 (p = 0.78, R? = 0.61), while the
relationship between ETgc and Tytm mop remained moderate (p = 0.72, R? = 0.52) (Table 3).
Tables 4 and 5 display the results of the TyTy estimates derived using the GPPgc (Tytm-EC),
GPPypm-Ls2 (Tvrm-Ls2), and GPPypyv-mopos (Tvrv-mopog). The ETgc:P ratios had a similar
magnitude over the years (45% to 51%), the Tymm:ETgc ratios varied widely, with a 41%
average for 2018, 79% average for 2019, and abnormally high average of 91% for 2020.

Table 3. A comparison of statistical metrics from the correlation analyses between ETgc (mm day_l)
and TyTy (mm dayfl) for the Brazil and USA sites.

ETEc vs. Model Estimates (VIM)

Brazil USA
Tvrmec Tvrmmop Tvimiss2  Tvimec Tvimmop  Tvrm is-s2
R? 0.47 0.009 0.21 0.44 0.52 0.61
P 0.68 0.09 0.45 0.67 0.72 0.78

Table 4. A comparison of the seasonal sums of precipitation, evapotranspiration (ETgc) from the tower
observations, and transpiration (Tyty) from the Vegetation Transpiration Model (VTM) simulations.
Daily ETgc (mm day ') and Tyy (mm day ) from the study sites were aggregated over days with
ET observations.

Annual Totals (mm)

Year
P ETgc Tvrm-EC Tvrm-Ls2 TvrmM-MOD09

2016 1492 1098 706 833 724
Brazil

2017 909 659 517 559 631

2018 1597 815 202 319 473
USA 2019 1721 786 640 659 565

2020 1438 718 826 733 418

Table 5. A comparison of the ratio of transpiration (TyTy) to evapotranspiration (ETgc) according to
the growing season at the Brazil and USA sites. Daily ETgc (mm dayfl) and Tymy (mm dayfl) from
the study sites were aggregated over days with ET observations for the study period within each year.

Study Period Water Return Rates (%)

Year
ETgc:P Tvrm-ec:ETec Tvim-Ls2:ETec Tvrm-mMopo9:ETEC
2016 73 65 75 64
Brazil
2017 72 78 84 95
2018 51 26 40 58
USA 2019 45 81 84 72
2020 50 115 102 58

4. Discussion
4.1. Biophysical Performance of Vegetations Indices from Landsat and Sentinel-2 at
Sugarcane Plantations

The one advantage of MODIS sensors (MSR images) is that they acquire images daily
and could provide enough good-quality observations to track temporal changes in the
vegetation canopy. Many studies have demonstrated that time-series VI data derived from



Remote Sens. 2024, 16, 46

15 of 24

MODIS images at daily and 8-day temporal resolutions can effectively track the seasonal
variation and interannual dynamics of vegetation canopies [29,107-110]. In comparison, as
Landsat and Sentinel-2 (HSR images) acquire images at multi-day intervals (for example,
Landsat has a 16-day revisit cycle and Sentinel-2 has a 10-day revisit cycle), one sensor
often cannot provide enough good-quality observations to track temporal changes in the
vegetation canopy. A few studies have combined Landsat images and Sentinel-2 images
to construct VI time series and then used them to track the seasonal dynamics of the
vegetation canopy [76,111-113]. In comparison to the MODIS time-series data, our results
also showed that a combination of Landsat and Sentinel-2A /B images increased the number
of good-quality observations, providing sufficient data to track the seasonal dynamics and
interannual variation of the sugarcane canopy at the Brazil (tropical climate) and USA
(subtropical climate) sites. Furthermore, our results indicated that despite the limitations of
HSR data in tropical climates, the combined time series of the Landsat and Sentinel-2A /B
images provided a better representation of the vegetation carbon uptake, with a linear
relationship (RZ =0.74) stronger than the linear relationship between EVIyjopis and the EC
site vegetation carbon uptake data (R? = 0.67).

One MODIS pixel (MSR, 500 m) often contains multiple crop fields, which could be
cultivated with different types of crops or the same type of crop with different management
practices, and thus reflects the spectral properties of mixed-crop fields and/or crops under
various management practices [114-116]. For example, within the MODIS pixel for the
USA sugarcane site, there were seven sugarcane fields at different stages in the crop
cycle (e.g., fallow, recently planted cane, and ratooning cane) with different management
practices, which may have affected the relationship between the MODIS-based VI values
and the GPPgc. The results from this study showed that the relationships between the
GPPgc and EVI at the sugarcane plantations were stronger when the EVI was calculated
from the Landsat/Sentinel-2 (HSR) images than when the EVI was calculated from the
MODIS (MSR) images. Other studies have found similar results, highlighting the benefits
of high-spatial-resolution images and their contribution to stronger correlations between
carbon flux data and vegetation indices on grasslands and croplands [117-119]. This is
important for estimating crop performance and vegetation health insurance indices over
farms with multiple types of crops, rotations, and management techniques [119-121].

Sugarcane yields are affected by genotype, environmental conditions, and the time
of harvest [122]. Our results showed that the EVI and LSWI tracked the phenological
dynamics of sugarcane plantations well, providing a detailed cultivation history for the
sugarcane at both plantations [31,77,123]. The LSWI was able to delineate the phenological
metrics (SOS, EOS) and identify the harvest dates, consistent with previous studies on
sugarcane and other crop types [35,124,125]. As the sugarcane plants at these two sites were
harvested while they were still green, the unique phenomenon of the LSWI dropping to <0
reflected the physical system change from green sugarcane fields to brown crop residue
and bare soils after harvest at both sites. The harvest date, or EOS, corresponded with
the time of the initial negative LSWI value. Our results showed that the harvest dates at
the Brazil and USA plantations were accurately recognized by the VI-based algorithms.
However, these algorithms had limitations in identifying the SOS at the USA site, which
was detected 2 to 4 weeks later across the three growing seasons. These differences could
potentially impact the annual total vegetation carbon uptake in the fields. Note that the
seasonal changes in GPPgc and NEEgc could also be used to track and delineate the sur-
face phenology of croplands in terms of physiology. The GPPgc accurately tracked the
vegetation carbon fixation period using the GPPgc > 1 g C/m?/day criterion. Our results
showed that the temporal agreement of the land surface phenology metrics derived from
the VI-based and GPPgc-based approaches was stronger for the USA site when the VI
values from Landsat/Sentinel-2 (HSR) images were used, in part because the MODIS pixel
at the USA site covered several crop fields. Finally, the results agreed well with other stud-
ies, like that of Zhang (2022) [76], which highlighted the potential of Landsat/Sentinel-2
images in representing planting patterns over agroecosystems. Finally, this study demon-
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strated the capabilities and limitations of the VI-based method in determining the growing
season length.

4.2. Comparison of GPP Estimates Using Landsat/Sentinel-2 Data and MODIS Data

In comparison to major grain crops (e.g., maize, soybean, winter wheat, and rice),
only a few studies have assessed GPP estimates of sugarcane plantations from light use
efficiency models with MODIS data [35,47,126]. GPPgc estimates are widely used to assess
GPP calculations from light use efficiency models [47,127,128]. In our study analyzing
data from 2015-2017 in Brazil and 2018-2020 in the USA, the GPP estimates from the VPM
simulations with MODIS images and local climate data agreed reasonably well with the
GPPgc data, being consistent with the results reported in Xin et al. 2020 [35], where GPP
estimates were evaluated using 2005-2007 data from an eddy flux tower site in Brazil and
2017 data from an eddy flux tower site in USA.

The results of our study showed that the temporal agreement between GPPgc and
GPPypp.is-s2 (R? 0.82 and 0.74) was stronger than the temporal agreement between GPPgc
and GPPypyivop (R? 0.63 and 0.62), which could largely be attributed to two factors:
(1) individual MODIS pixels often included multiple crop fields that have different man-
agement practices and cultivation calendars (green-up dates and harvest dates), and (2) the
footprints of the eddy flux tower sites were much smaller than the MODIS pixels (500 m),
corresponding well with the MODIS limitations reported in other studies [129-131] inves-
tigating the vegetation carbon uptake in crops. In comparison, vegetation indices from
Landsat and Sentinel-2 images, which are used to calculate fPAR ) and W,1,,, Often reflect
the vegetation canopy dynamics from one crop field within the footprint of the eddy flux
tower site [132,133].

The stronger correlations between EVIjgsp and GPPgc highlighted in Section 4.1
underscore the influence of vegetation indices on the VPM performance. On the other
hand, the EVI values at both an MSR and HSR displayed similar results in estimating the
site-specific optimal temperature, which is a crucial parameter to enhance the accuracy
of GPP estimates. These results were consistent with other studies, where authors such
as Velez (2022) [134] have highlighted the potential of HSR (10 m) vegetation index time
series in assessing relevant agronomic parameters. In our study, the EVI was used as
opposed to the NDVI given its limitations in canopies, which can become oversaturated,
as with sugarcane. The results of our investigation evidenced the potential of the VPM
fed with Landsat and Sentinel-2 images for estimating the GPP of sugarcane plantations
under different climate zones, sugarcane varieties, and crop practices. Finally, the results
underscored the potential of the VPM as a tool for crop growth monitoring in precision
agriculture that addresses some of the complexity and scalability issues of typical crop
models [135,136].

4.3. Sources of Uncertainties and Errors in VPM Simulations for Sugarcane Plantations

The sources of errors and uncertainties in the GPP estimates from light use efficiency
models comprise the model structure; model parameters; and input datasets, including
satellite images and climate data. Xin et al. (2020) discussed VPM simulations at two
sugarcane sites with a focus on the LUE parameter. The maximum LUE affects the veg-
etation carbon uptake at the ecosystem level [48,137-139] and can be estimated through
a linear regression between the aboveground dry biomass and total amount of radiation
captured by the vegetation [140,141] or based on the relationship between the PAR and
GPP [142]. The LUE values have a large range of variability over sugarcane depending on
the climate conditions, altitude, and crop management [142-146]. Our results suggested
a maximum LUE ranging between 0.7 and 0.9 g C mol~! PPFD for Brazil, similar to the
ranges reported in other studies in the Brazilian region [147]. Xin et al. (2020) [35] reported
that the maximum LUE for VPM simulations was set to 0.9 g C mol~! PPFD for both
sugarcane sites. Further studies are needed to evaluate the maximum LUE parameter over
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sugarcane plantation sites worldwide, as it could introduce a source of uncertainty for the
regional and global GPP estimations.

The comparison of VPM simulations based on MSR images and HSR images illustrates
the error sources and uncertainty associated with landcover types within one image pixel
and the spatial mismatch (inconsistency) between image pixels and the footprints of an
eddy flux tower site [148,149]. One MSR pixel often contains multiple landcover types, often
called a mixed pixel, while one HSR pixel most likely contains one landcover type, often
called a pure pixel [117,150,151]. The presence of different landcover types within a single
pixel affects the model’s representation of the fraction of PAR absorbed by chlorophyll and
the vegetation water response, both strong drivers of vegetation carbon uptake. Moreover,
the number of good-quality observations from satellite optical sensors would decrease
if frequent clouds occurred. In addition, EC flux tower estimates are influenced by the
surrounding fields as the footprint changes with the season, weather conditions, vegetation
height, and vegetation cover [66,106,148]. The sources of uncertainty from the EC tower
increase the challenges of validating GPP estimates, and the sources of error in the system
increase based on the condition of the instruments and sensors. In this study, we also used
the NEE and latent heat flux data from the tower sties to identify additional poor-quality
data in the time series that were not removed by the site’s quality assurance filters.

4.4. Capabilities and limitations of VTM-Forecasted Transpiration for Sugarcane Plantations

The correlation between ETgc and Tyty for the Brazil site was moderate for the
Tytm _pc model (RZ = 0.47) but exhibited lower values for TvT™m MOD (RZ = 0.009) and
Tvr™m Ls-s2 (RZ=0.21), indicating that further improvement and additional variables should
be considered in sites located in tropical environments like the Brazil site, where elements
such as the residual straw and Bowen ratio variability can affect the transpiration and
evapotranspiration rates [152], whereas the more wider spaced rows in Louisiana (1.5 m
single row compared to 1.83 m single row and 2.4 m double row) could have affected
these water rates [153]. Conversely, the USA site showed a robust correlation across all
VTM estimates, especially for the high-spatial-resolution Tytm 15-52 (R% = 0.61), which
outperformed the estimates calculated using the GPPgc data as an input for the VIM.
The observed differences could be attributed to various factors, including the climatic
conditions, soil properties, row spacing, data quality, and sugarcane varieties.

The annual total data in Table 4 underscore the inherent variability in precipitation,
ETgc, and Tyrym across the sites. Ref. [154] highlighted the changes in actual evaporation
and transpiration linked to climate change as one of the leading factors in the interannual
yield variability of sugarcane in Brazil. The USA site exhibited the largest interannual
variation in precipitation, ETgc, and transpiration VIM rates. Ref. [155] emphasized the
impact of soil water conditions as the main driver of the interannual variability in ET and
T, partially explaining some the differences observed in the Tymn:ETgc ratios over time.
Moreover, ref. [156] addressed the significance of row spacing, as it increases soil water
content and provides more space for the sugarcane to grow, significantly increasing tran-
spiration in periods of low rainfall, which could partially explain some of the abnormally
high Ty rates at the USA site in 2020 (driest year). In addition, some of the differences
between the MSR and HSR transpiration estimates can be linked to the fact that the MSR
pixel included multiple fields containing different varieties and, in some cases, different
management practices.

The VIM showed a strong capacity to capture the seasonal dynamics and some of the
interannual variability in the transpiration rates. Despite the simplicity of the approach,
overall, the Tyt results captured the seasonal dynamics of the water flux, underscoring
the potential of this tool and its applications. However, the variability across different
scales in the results suggests that for field-level and commercial applications the time-scale
dependency should be further studied, and additional parameters such as initial water
content and row spacing should be included to provide a better field representation of the
transpiration water flux.
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5. Conclusions

This study successfully explored the use of Landsat and Sentinel-2 imagery to monitor
phenology and as an input for gross primary production (GPP) estimation in sugarcane
plantations in Sao Paulo, Brazil, and Louisiana, USA. Our findings contribute significantly
to the field of remote sensing in agriculture, offering new perspectives and methodologies.
The key conclusions and contributions include:

e Potential of Landsat and Sentinel-2 over cloudy environments: We demonstrated the
effective combination of Landsat and Sentinel-2 time-series images for monitoring
phenology and as an input for GPP estimation in sugarcane plantations. This approach
proved particularly effective in diverse environmental conditions, including cloudy
scenarios where HSR images have the greatest limitations, thereby underscoring the
robustness of these satellite images in capturing agricultural dynamics. Furthermore,
HSR data better represented field vegetation carbon uptake at both sites compared to
MSR data.

e EVlas a proxy for estimating optimal air temperature: The study revealed a novel ap-
plication of the enhanced vegetation index (EVI) in estimating site-specific optimal air
temperature (Topt) for photosynthesis. This correlation between the GPPgc, EVI, and
air temperature variables opens up new avenues for understanding the biophysical
performance of vegetation indices across different pixels and fields.

o  VPM efficacy: Our research highlighted the VPM’s capabilities for accurately estimat-
ing the seasonal dynamics of GPP in sugarcane plantations at a high spatial resolution.
The model’s adaptability to varying environmental conditions was a key finding,
showcasing its potential for broader application. Nonetheless, the field variability of
the ECT footprint introduced some uncertainty into the ground data.

e Transpiration modeling insights: The Vegetation Transpiration Model (VITM) effec-
tively captured the seasonal dynamics of transpiration. However, its dependency on
high-quality GPP data and the need for further research into time-scale dependency
and initial water content impact were noted. The model showed promise in environ-
ments like Louisiana, but additional research is needed in settings like Brazil to refine
its accuracy and address uncertainties.

Future work will include assessments of the models at additional sugarcane planta-
tions with EC flux systems, spatial yield data, and detailed field information including
variety type and row spacing, as this could increase our knowledge regarding likely sources
of uncertainty and the prospects of deploying the models as tools for precision agriculture.
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