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Abstract
Introduction Tan Spot (TS) disease of wheat is caused by Pyrenophora tritici-repentis (Ptr), where most of the yield loss 
is linked to diseased flag leaves. As there are no fully resistant cultivars available, elucidating the responses of wheat to Ptr 
could inform the derivation of new resistant genotypes.
Objectives The study aimed to characterise the flag-leaf metabolomes of two spring wheat cultivars (Triticum aestivum L. cv. 
PF 080719 [PF] and cv. Fundacep Horizonte [FH]) following challenge with Ptr to gain insights into TS disease development.
Methods PF and FH plants were inoculated with a Ptr strain that produces the necrotrophic toxin ToxA. The metabolic 
changes in flag leaves following challenge (24, 48, 72, and 96 h post-inoculation [hpi]) with Ptr were investigated using 
untargeted flow infusion ionisation-high resolution mass spectroscopy (FIE-HRMS).
Results Both cultivars were susceptible to Ptr at the flag-leaf stage. Comparisons of Ptr- and mock-inoculated plants indi-
cated that a major metabolic shift occurred at 24 hpi in FH, and at 48 hpi in PF. Although most altered metabolites were 
genotype specific, they were linked to common pathways; phenylpropanoid and flavonoid metabolism. Alterations in sugar 
metabolism as well as in glycolysis and glucogenesis pathways were also observed. Pathway enrichment analysis suggested 
that Ptr-triggered alterations in chloroplast and photosynthetic machinery in both cultivars, especially in FH at 96 hpi. In a 
wheat-Ptr interactome in integrative network analysis, “flavone and flavonol biosynthesis” and “starch and sucrose metabo-
lism” were targeted as the key metabolic processes underlying PF–FH–Ptr interactions.
Conclusion These observations suggest the potential importance of flavone and flavonol biosynthesis as well as bioenergetic 
shifts in susceptibility to Ptr. This work highlights the value of metabolomic approaches to provide novel insights into wheat 
pathosystems.

Keywords Tan Spot disease · Pyrenophora tritici-repentis · Wheat · Flow-infusion electrospray mass spectrometry · Plant 
defence

1 Introduction

Tan Spot (TS) disease of wheat (syn. yellow Spot), caused 
by Pyrenophora tritici-repentis (Ptr), can lead to yield losses 
of up to 60% (Rees & Platz, 1989). Most of the yield loss 
is attributed to TS disease development on the flag leaves, 
leading to smaller grain sizes (Bhathal et al., 2003; Rees & 
Platz, 1989). Ptr is a necrotrophic pathogen where differ-
ent strains can produce one or more phytotoxic effectors, 
(ToxA, ToxB, and ToxC) that can induce necrosis and chlo-
rosis in sensitive lines (Effertz et al., 2002; Sarma et al., 
2005; Strelkov et al., 1999). Such necrotrophic mechanisms 
can also involve the elicitation of host programmed cell 
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death (PCD) (Kariyawasam et al., 2023) although this has 
not been clearly established for TS. Ptr strains are classified 
into different races based on the production, either singly 
or in combination, of these toxins (Lamari et al., 1995). 
Worldwide, ToxA-producing Ptr races are the most common 
(Abdullah et al., 2017; Ali & Francl, 2003; Gamba et al., 
2012; Kokhmetova et al., 2020; Lamari et al., 2003). ToxA 
is a proteinaceous necrotising effector that is internalised to 
chloroplasts and binds to the ToxABP1 protein (Manning 
et al., 2007, 2008) to compromise photosynthesis (Abey-
sekara et al., 2010; Effertz et al., 2002; Friesen & Faris, 
2004). Some quantitative trait loci (QTL) for TS resistance 
have been defined and designated as Tsr (Tan spot resist-
ance) loci (Anderson et al., 1999; Chu et al., 2008, 2010; 
Faris & Friesen, 2005; Faris et al., 1996, 2013; Gamba & 
Lamari, 1999; Hu et al., 2019; Li et al., 2011; Singh et al., 
2008, 2010, 2016; Tadesse et al., 2006a, 2006b). Eight major 
Tsr genes (Tsrl, Tsr2, Tsr3, Tsr4, Tsr5, Tsr6, TsrHar, and 
TsrAri) have been mapped to different points on the wheat 
genome (McIntosh et al., 2013).

The development of resistant germplasm could be 
improved if the underlying mechanism(s) of TS disease 
development were more fully understood. This is particu-
larly the case with metabolomic assessments, and no such 
study has been undertaken on TS on wheat. Recent advance-
ments in mass spectrometry technologies have enabled 
high throughput quantitative and qualitative assessments of 
metabolic compounds, including from plants and microor-
ganisms (Allwood et al., 2021). As a result, metabolomics 
has become an important technology for plant breeders and 
phytopathologists, especially when integrated with systems 
biology tools (Aliferis et al., 2014; Kumar et al., 2017; 
Rosato et al., 2018; Weckwerth, 2003). More specifically, 
metabolomics has been employed in other wheat–pathogen 
interactions to deliver new insights. For example, metabo-
lomics has been used to characterise responses to Bipolaris 
sorokiniana (Ye et al., 2019), or Puccinia striiformis f. sp. 
tritici, the cause of yellow rust (Mashabela et al., 2023). 
Some metabolomic changes have been linked to defensive 
responses in wheat, for example, against Fusarium gramine-
arum (Gauthier et al., 2015), and stem rust caused by the 
pathogen Puccinia graminis f. sp. tritici (Maserumule et al., 
2023). Equally, metabolomic changes can suggest the mech-
anisms of “systemic induced susceptibility” by Zymosep-
toria tritici (Seybold et al., 2020) or how the toxin deox-
ynivalenol (DON) contributes to F. graminearum caused 
Fusarium head blight. Defensive responses are often linked 
to changes in phenylpropanoid metabolism which feeds into 
flavonoid biosynthesis well as hydroxycinnamic acid and 
monolignol production which could reinforce cell walls 
(Allwood et al., 2021; Maserumule et al., 2023; Seybold 
et al., 2020). Changes in the levels of phytoanticipins such 
as benzoxazinoids have also been noted (Mashabela et al., 

2023; Seybold et al., 2020). Other metabolomic changes are 
consistent with bioenergetic changes in for example, the tri-
carbonic acid (TCA) cycle and γ-aminobutyric acid (GABA) 
shunt and wide impacts on primary metabolism on such as 
amino acid and lipid processing (Mashabela et al., 2023). 
The power of metabolomics is such that it can also iden-
tify key signalling components in pathogenesis; for exam-
ple, sphingolipids influencing appressorial development in 
Magnaporthe oryzae (Liu et al., 2019).

In this study, we focused on two cultivars emerging from 
a Brazilian-based wheat breeding programme. Fundacep 
Horizonte (FH) (Cooperativa Central Gaúcha Ltda Tecno-
logia/FUNDACEP) and PF 080719 (PF), the latter showing 
some evidence of resistance to TS following field assess-
ments (Cunha et al., 2016). FH is a high-yielding spring 
wheat cultivar widely grown in southern Brazil. PF is also a 
highly productive variety with significant resistance to wheat 
leaf rust, powdery mildew, and leaf blotch. We characterised 
the metabolomic responses of PF and FH to Ptr. Flag leaves 
provide carbon assimilates to the grain as it develops (Evans 
& Rawson, 1970) and so these are vital to good grain yields 
in cereals (Carmo-Silva et al., 2017; Khaliq et al., 2008; 
Wazziki et al., 2015). Photosynthetic performance in flag 
leaves is influenced by genetic background, the use of fer-
tilizers as well as abiotic and biotic stresses (Evans, 1983; 
Guóth et al., 2009; Inoue et al., 2004; Wazziki et al., 2015). 
Therefore, the ability to sustain carbon assimilation activ-
ity during such as Ptr infection could be a valuable trait for 
wheat breeding (Araus et al., 2002; Carmo-Silva et al., 2017; 
Yang & Luo, 2021).

Focusing on flag leaves, we used untargeted metabo-
lomics approach allowed the detection of key metabolites 
and pathways underlying the responses of each cultivar to 
Ptr infection as well as the genotypic differences between 
them. We observed mostly different individual metabolite 
changes in PF and FH, but many could be mapped to com-
mon pathways particularly, “flavone and flavonol biosynthe-
sis” and “starch and sucrose metabolism”. This suggest were 
targeted as the metabolomic changes linked to ultimately 
failed defences and sugar/bioenergetic changes.

2  Material and methods

2.1  Host classifications based on lesion scores

Seeds from Triticum aestivum cv. PF and cv. FH were sown 
in John Innes No2 compost and grown in controlled-envi-
ronment growth chambers (Conviron, UK) under a 16 h light 
period at 21 °C and 8 h of darkness at 18 °C. The cultivars 
were either mock-inoculated (M) or inoculated with Ptr (I). 
Each treatment was applied to three replicates (25 cm diam-
eter pots × 20 cm high pots) that were grown in a randomised 
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manner within the growth chamber. The treatments were 
applied at either of two growth stages: GS13 (three-leaf 
seedlings) and GS65 (flowering/anthesis).

2.2  P. tritici‑repentis infections

The Ptr strains (BR13, BR29 and BR154) used in this study 
were isolated from naturally infected wheat fields in south-
ern Brazil. Mycelial plugs of Ptr cultures were transferred to 
Petri dishes containing V8 media (agar = 15 g;  CaCO3 = 3 g; 
V8-Juice = 150 mL,  dH2O = 850 mL). The plates were sealed 
and incubated upside-down for 5 days under continuous 
darkness at 25 °C. Following the protocol of Lamari and 
Bernier (1989), the Petri dishes were flooded with steri-
lised ultrapure water and the mycelia were flattened with 
the bottom of a sterile test tube. The resulting suspension 
was discarded, and the plates were incubated at 25 °C for 
24 h in constant light, followed by 24 h in total darkness at 
15 °C. The mycelia were displaced using a paintbrush into 
a solution of ultrapure water with 0.5% (v/v) Tween 80. The 
mycelial suspension was then sieved and vortexed to aid 
conidial detachment. Conidia concentrations were adjusted 
to 3000 conidia/mL with ultrapure water with 0.5% (v/v) 
Tween 80. Plants sprayed with to run-off with the conidial 
suspensions. Inoculated plants were maintained at ~70% 
humidity in a humidity chamber for 24 h. Mock-inoculated 
plants were treated only with sterile ultrapure water with 
0.5% (v/v) Tween 80. Lesion phenotypes were scored as 
R = resistant; MR = moderately resistant; MRMS = moder-
ately resistant to moderately susceptible; MS = moderately 
susceptible; S = susceptible.

2.3  Metabolite extractions

Disks (1 cm diameter) (n = 5 discs per biological replicate; 
i.e., “pot”) were punched out from fully extended flag leaves 
from each genotype at 0, 24, 48, 72, 96, and 168 h post-
inoculation with the Ptr. The samples were immediately fro-
zen in liquid nitrogen and stored at −80 °C until processed. 
Samples of 40 mg (±1 mg) of leaf tissue was placed in 2 mL 
sterile microcentrifuge tubes, each containing one acetone-
cleaned stainless-steel bead. The samples were flash-frozen 
in liquid  N2 and homogenised using a ball mill system. Then, 
1 mL of chloroform:methanol:dH2O (1:2.5:1) solution was 
added to each sample, followed by incubation in a shaker at 
4 °C for 15 min. The samples were centrifuged at 5000 × g 
for 5 min and the supernatant was transferred to a new 
microcentrifuge tube from which 100 μL was transferred to 
a glass vial and sealed. Untargeted metabolite fingerprint-
ing was performed by Flow Infusion Electrospray Ionization 
High-Resolution Mass Spectrometry (FIE-HRMS), where 
the mass-to-charge ratio features (m/z) were generated in 
negative and positive ionisation modes using a Q Exactive 

hybrid quadrupole-Orbitrap mass spectrometer (Thermo-
Scientific, UK). Two, 20 μL, injections were performed for 
each sample as technical replicates.

2.4  Metabolomic data processing and analysis

The raw data was filtered based on the relative standard 
deviation of 0.5 and a minimum occupancy of 2/3 in each 
class using the R package metabolyseR version 0.14.6. The 
m/z data was normalised based on total ion count (TIC) 
normalisation and visualised using unsupervised princi-
pal component analysis (PCA). Differentially accumulated 
metabolites (DAMs) were identified in each genotype based 
on pairwise comparisons between mock- and Ptr-inoculated 
samples within each time point. Datasets were designated as 
PF24, PF48, PF72, PF96, FH24, FH48, FH72, and FH96 to 
reflect genotype and timepoints. Samples collected before 
treatment were compared between both genotype and the 
outputs designated as PF/FH. Two-sided Welch t-tests were 
performed in all these comparisons and the features with 
adjusted P-values < 0.05 after Bonferroni correction were 
considered significant DAMs. The peak intensity data was 
summarised by mean in each subset of genotype/treatment/
hpi after  log2(x + 1) transformation. Fold changes were then 
calculated between inoculated (I) over the mock-treated sam-
ples, (M) (i.e., (I − M)/M).

Molecular formula were assigned to the explanatory 
features using the R package MFassign v0.7.7. Functional 
enrichment was performed by mapping the assigned features 
to KEGG metabolic network using hypergeometric, Pag-
eRank and Diffusion methods within the FELLA package 
(Kanehisa et al., 2012; Picart-Armada et al., 2018), using 
Aegilops tauschii as the reference metabolome. To extract 
a significant sub-network, the diffusion method was used 
to score the enriched nodes. After normalisation through 
z-scores, the nodes with P-value < 0.05 were selected. The 
resulting graph was imported to Cytoscape v 3.8.2 (Shannon 
et al., 2003) for visualisation.

3  Results

3.1  Phenotypic characterisation of Ptr interactions 
with FH and PF

We first evaluated responses to Ptr challenge in FH and 
PF at two different developmental stages; the seedling 
stage (GS13) and during flowering, when the flag leaf had 
fully emerged (GS65). Plants were inoculated with three 
ToxA positive strains with varying levels of virulence 
(BR13 = mild; BR154 = moderate virulence; BR29 = highly 
virulent), in two independent experiments. Scoring for dis-
ease severity indicated that response in PF widely varied 
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from resistant to susceptible dependent on the Ptr virulence 
and growth stage (Table 1; Fig. 1).

At the seedling stage PF exhibited a resistant phenotype 
when challenged with the BR13 but was only moderated 
tolerant to moderately susceptible (MRMS to MS) when 
infecting with either BR154 or BR29. Adult PF plants were 
highly susceptible to BR29. FH seedlings exhibited MRMS 
to MS phenotypes, but adult plants were clearly susceptible 
to all strains of Ptr. PF had exhibited minimal chlorosis fol-
lowing interaction with Ptr by 168 hpi in seedlings (Fig. 1). 
At the adult stage, chlorosis was observed in PF from 120 
hpi. In FH, both chlorosis and coalescence of the fleck-like 
lesions were observed from 120 hpi when infecting at either 
growth stage (Fig. 1).

3.2  Metabolomic characterisation of Ptr 
interactions with FH and PF

Given the importance of the wheat flag leaf, metabolomic 
assessments of Ptr inoculation focused on that stage. Flag 
leaf samples were collected from FH and PF at 0, 24, 48, 
72, and 96 h post inoculation (hpi) with Ptr strain BR154. 
Samples were extracted and profiled using FIE-HRMS and 
the derived data were assessed by PCA. The major sources 
of variation (18.43% of the variance) across the first prin-
cipal component (PC1) discriminated between genotype 
(FH vs. PF) (Fig. 2a). There were no significant differences 
between mock and inoculated samples when all time points 
were considered together. When different time points were 
considered, the different sampling times did show discrete 
clustering. Interestingly, samples from mock-inoculated (M) 
plants exhibited a greater variation compared to inoculated 
(I) samples in both genotypes (Fig. 2b).

Given the minor metabolomic changes seen with Ptr chal-
lenge, pairwise comparisons between I versus M samples 
from each line in each time point were performed using 
Welch’s two-sided t-test to identify differentially accumu-
lated mass-ions (DAMs). A total of 1002 DAMs were identi-
fied (Fig. 3; Table S1).

The significant differences seen between PF and FH at 0 h 
(206 DAMs) were taken as indicating innate genotypic dif-
ferences. Most of the explanatory features underlying geno-
typic differences between PF and FH were present at higher 
levels in PF, with  log2 fold changes up to 34.85 (Table S1). 
Of these DAMs, approximately 80% are products from the 

Table 1  Classification of disease scores against P. tritici-repentis 
infection in the wheat lines PF 080719 (PF) and Fundacep Horizonte 
(FH) at different growth stages

Classificationa

Stage Ptr Strain
PF FH

BR13 R MRMS

BR29 MRMS MSSeedlings

BR154 MRMS MRMS

BR29 S S

Adults

BR154 S S

R resistant, MR moderately resistant, MRMS moderately resistant to 
moderately susceptible, MS moderately susceptible, S susceptible
a Based on mean scores from assessments at 336  h post inoculation 
(hpi)

Fig. 1  Tan Spot symptoms on leaves from PF 080719 (PF) and 
Fundacep Horizonte (FH) wheat cultivars challenged with P. tritici-
repentis (Ptr) strains BR13, BR29 and BR154. Images of representa-
tive leaves at 72, 120 and 168 h post inoculation (hpi) with Ptr. Scale 
bar = 1 cm
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negative ionisation reaction. Considering DAMs that could 
be identified, these indicated different levels of hippurate, 
diacetyl, acetone cyanohydrin, and the flavonoids dihy-
drophaseic acid (DPA), desulfoglucotropeolin (UGT4B1), 

3,7-Di-O-methylquercetin, apigenin 7-O-[beta-d-apiosyl-
(1→2)-beta-d-glucoside], and 1-O-vanilloyl-beta-d-glu-
cose (Table S1). Two mass ions annotated as the flavonoids 
apigenin 7-O-neohesperidoside (m/z = 615.14032, negative 

Fig. 2  Principal component analysis of the metabolomes (a) mock-treated (M) versus leaves infected with P. tritici-repentis strain BR154 (I) 
from the wheat lines PF 080719 (PF) and Fundacep Horizonte (FH). Also (b), comparing PF and FH at 0, 24, 48, 72 and 96 h post inoculation

Fig. 3  Metabolomics comparisons between the wheat lines PF 
080719 (PF) and Fundacep Horizonte (FH) challenged with P. trit-
ici-repentis strain BR154. a Number of differentially accumulated 
metabolites (P < 0.05) in mock-treated (M) versus infected (I) sam-
ples in each line and also comparing basic genotypic differences 

between unchallenged PF and FH (PF/FH). b Venn diagram display-
ing number of common and unique differentially accumulated mass-
ions (DAMs) in PF and FH. c Scatter-rugged plot showing DAMs dif-
ferentiating between ionisation mode (negative/positive) and  log2(fold 
change) between I and M at 24, 48, 72 and 96 hpi



 L. C. Ferreira et al.   19  Page 6 of 14

mode) and vitexin (m/z = 431.09912 and 432.1022, negative 
mode) were the only compounds that could be annotated that 
were found at higher levels in FH compared to PF  (log2FC 
values between 0.75 and 0.89).

We next considered how many of the Ptr-induced changes 
in each genotype. Following infection, FH had the most 
DAMs at 24 hpi, which accounted for 72% of the total for 
this genotype. Conversely, PF showed most DAMs at 48 hpi 
compared to the M samples (Fig. 3a). Only 56 DAMs were 
seen in both PF and FH following challenge to Ptr (Fig. 3b; 
Table 2). Of these, Ptr infection significantly increased the 
levels of 53 metabolites, a decrease in one compound in both 
genotypes, but two metabolites had opposite accumulation 
patterns in PF and FH (Table 2).

Following DAM annotation, Ptr was seen to induce 
increases in S,S-dimethyl-beta-propiothetin, piperideine, 
umbelliferone, phytosphingosine, but there was a lowering 
in the levels of anthranilate, l-valine, and N-methylethanola-
mine phosphate at 24 hpi in FH. At 72 hpi, levels of the flavo-
noids quercitrin, vitexin, and vitexin 2ʺ-O-beta-d-glucoside 
were significantly increased in flag leaves infected with Ptr. 
By 96 hpi, there was the downregulation of 6-deoxydihy-
drokalafungin (DDHK), an intermediate in the biosynthesis 
of type II polyketide products. With PF there was an accu-
mulation of phenylpropanoids and flavonols (e.g., coumarin 
and 1-O-sinapoyl-beta-d-glucose), but at only 48 hpi which 
represented a quicker response than seen with FH. PF also 
saw, there was an accumulation of glucosinolates at 48 hpi. 
Wider changes at 48 hpi in PF included d-glucosaminate, 
xanthohumol, DDHK, l-homomethionine, 3-O-alpha-myca-
rosylerythronolide B and l-valine (Table S1). PF samples 
from 48 hpi also saw significant decreases in sucrose in the 
infected flag leaves. Strikingly, phosphatidylinositol diphos-
phate (m/z = 339.8223, negative mode [M −  3H]3−), exhib-
ited a × 11.5-fold increase in inoculated flag leaves from 
FH at 24 hpi compared the controls, but it was significantly 
downregulated in PF at 96 hpi (fold change of × 1.66). A 
converse pattern was seen with metabolite with the predicted 
molecular formula  C15H16N2O3 (m/z = 274.12589, positive 
mode), showed significant increases in PF at 72 and 96 hpi 
but was suppressed at 24 hpi in FH compared to controls 
(Table 2).

3.3  Insights into responses to Ptr through pathway 
enrichment and network analysis

To provide an overview of key metabolic changes occur-
ring following Ptr infection, pathway enrichment, and inte-
grative network analyses were performed. The explanatory 
features identified by our pairwise statistical analysis were 
mapped to KEGG Compound entries and screened against 
the KEGG metabolic network using PageRank, hypergeo-
metric, and diffusion algorithms. The over-representation 

analysis targeted seven significantly enriched pathways at 
different times and between genotypes. These were “flavone 
and flavonol biosynthesis” (FH72), “galactose metabolism” 
(PF48), “starch and sucrose metabolism” (PF48), “ABC 
transporters” (PF48), and “glycosphingolipid biosynthesis” 
(PF48), (Table S2). PageRank and diffusion models also tar-
geted these pathways, except for “sphingolipid metabolism” 
which the hypergeometric test suggested was enriched in 
PF48 (Table S2).

We then used a diffusion model to visualise our data (Pic-
art-Armada et al., 2017), and show enrichment in a discrete 
set of metabolic processes at each genotype/hpi (Fig. 4). 
At 24 hpi, FH was enriched in the reductive acetyl-CoA 
pathway, NAD biosynthesis, and tryptophan, sulphur, and 
one-carbon (C1 unit) metabolism. No significant pathways 
were enriched in FH at 48 hpi, but at 72 hpi there were 
shifts in N- and O-glycosylation related pathways and in the 
biosynthesis of flavonoids. At 96 hpi, Ptr infection affected 
biosynthetic pathways of secondary metabolites and tocoph-
erol. Menaquinone, ubiquinone, phylloquinone, and plasto-
quinone metabolism were also targeted. As these are com-
ponents of photosynthetic processes, could reflect the effects 
of chloroplast targeting by ToxA. In PF, uridine and pyrimi-
dine metabolism as well as pantothenate and CoA biosyn-
thesis were prominent at 24 hpi. By 48 hpi, the metabolic 
changes were linked to the enrichment of keratan sulphate, 
glycosphingolipids, nucleotide sugar, trehalose glycogen, 
starch, sucrose, galactose, and other glycans, metabolism as 
well as glycolysis and glucogenesis pathways.

To evaluate the metabolic changes in wheat plants 
induced by Ptr infection, an integrative network was con-
structed using the diffusion enrichment scores. Our network 
analysis resulted in a sub-graph populated with two key 
pathways: “flavone and flavonol biosynthesis” and “starch 
and sucrose metabolism” (Fig. 5). These two pathways are 
linked via d-glucose, UDP-glucose, UDP, UDP-l-rhamnose. 
Importantly, the photoassimilate sucrose connects both path-
ways. This links photosynthetic and bioenergetic changes in 
the responses of PF and FH to Ptr. Furthermore, the network 
analysis points to three enzymes involved in glycosyltrans-
ferase activity (galactinol-sucrose galactosyltransferase, 
flavonol-3-O-glucoside l-rhamnosyltransferase, inositol 
3-alpha-galactosyltransferase) and one involved in hydrolase 
activity, acting on glycosyl bonds (alpha, alpha-trehalase). 
These enzymes could be key roles in the metabolic changes 
triggered by Ptr.

4  Discussion

In this study, we have dissected responses of two wheat 
genotypes which are agronomical important in Brazil to Ptr 
infection using an untargeted metabolomics approach. PF 
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Table 2  Common differentially accumulated metabolites (DAM) found in pairwise comparisons between Ptr-inoculated samples FH and PF at 
24, 48, 72, and 96 h post-inoculation and their respective uninoculated controls

m/za FH24 FH48 FH72 FH96 PF24 PF48 PF72 PF96 MF Isotope Adduct

p359.12054 2.07 12.30 C14H20N3O6P 13C [M +  H]1+

p419.1235 8.71 11.17 C16H26O10 13C2 [M +  K]1+

n805.33246 4.89 7.64 C37H60O15P2 [M −  H]1−

n129.0379 10.84 6.95 C6H9OP 13C2 [M −  H]1−

p325.03995 2.94 6.60 C16H15O3P [M +  K]1+

n598.3089 11.79 6.21 C28H50O11 13C [M +  Cl]1−

p338.1908 4.14 6.02 C14H29N2O5P 13C [M +  H]1+

n789.31079 5.39 5.72 C36H55O17P [M −  H]1−

p543.24054 2.35 4.80 C23H38N2O11 18O [M +  Na]1+

p316.09979 2.73 4.65 C9H13N7O6 [M +  H]1+

p835.40015 9.69 4.22 C38H60NO16P [M +  NH4]1+

n433.19092 9.65 4.00 C21H32O7 13C2 [M +  Cl]1−

p196.05597 2.33 3.97 C5H11N2O4P 13C [M +  H]1+

p442.1196 14.13 3.96
p302.10339 2.30 1.03 3.94 C15H13N3O4 13C2 [M +  H]1+

p143.07237 3.28 3.90
p410.24127 3.06 3.63 C19H31N5O5 [M +  H]1+

p295.168 7.91 3.18 3.56 C12H25N2O4P 13C2 [M +  H]1+

p197.05678 2.47 3.55 C5H11N2O4P 18O [M +  H]1+

p373.06198 4.64 3.35
p210.07156 13.17 3.18
p409.22824 3.85 2.96 0.90 C16H32N4O8 [M +  H]1+

p346.04242 2.13 2.95
n518.18787 5.55 2.85 C22H33NO13 [M −  H]1−

p394.24567 4.55 2.77 C17H36N3O5P [M +  H]1+

n535.2688 4.16 2.74 C26H44O9 [M +  Cl]1−

p614.22638 1.86 2.73
n640.11554 8.35 2.59 C26H27NO18 [M −  H]1−

n569.29651 4.77 2.56 C34H44O5 13C2 [M +  Cl]1−

p178.04535 8.71 2.55
p212.03348 1.71 2.39 C5H8NO3PS 13C [M +  NH4]1+

n114.03838 2.83 2.36 C5H8NP 13C2 [M −  H]1−

p395.24908 5.52 2.30 C17H36N3O5P 13C [M +  H]1+

n525.30792 3.02 2.07 C28H46O9 [M −  H]1−

p300.14139 2.48 2.05 C9H21N3O8 [M +  H]1+

p391.21811 1.56 1.97 C19H33N3O3 13C [M +  K]1+

p497.14703 1.74 1.88 C23H30O8P2 [M +  H]1+

n432.18832 2.95 1.82 C21H32O7 13C [M +  Cl]1−

n280.02603 3.30 1.76
p440.25189 9.71 1.71 C43H74O18 [M +  2H]2+

p201.07129 5.07 1.70
n420.15143 5.05 1.69
p308.18015 3.08 1.66 C14H24O4S 13C2 [M +  NH4]1+

p132.08009 1.19 1.56
p171.06078 2.03 1.49 C3H10N2O6 [M +  H]1+

p111.03996 1.69 1.49
p177.05382 2.32 1.41 C5H13O3P 18O [M +  Na]1+

p130.04926 1.41 0.86 C6H9OP 13C [M +  H]1+

p137.05547 0.89 0.76 C4H10NO2P 13C [M +  H]1+
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Numbered cells represent the relative  log2 fold change values from each significant comparison, whereas blank cells are non-significant interac-
tions
MF molecular formula
a The prefix letters indicate the ionisation modes: n = negative, p = positive

Table 2  (continued)

m/za FH24 FH48 FH72 FH96 PF24 PF48 PF72 PF96 MF Isotope Adduct

n551.19818 5.64 0.72 C25H40O7P2 18O [M +  Cl]1−

p326.05203 1.66 0.60 C7H18N3O7P [M +  K]1+

p168.04987 1.45 0.51 C9H20NO10P 13C [M +  2H]2+

p337.8598 −0.60 −0.83 C9H2NO3P3S [M +  K41]1+

n339.8223 3.53 −0.73 [M −  3H]3−

n467.15039 0.90 1.71 C20H30O10 [M +  Cl37]1−

p274.12589 −0.62 1.31 2.77 C15H16N2O3 13C [M +  H]1+

Fig. 4  KEGG pathways and modules enriched by explanatory fea-
tures from wheat lines PF 080719 (PF) and Fundacep Horizonte (FH) 
at 0, 24, 48, 72 and 96 h post inoculation (hpi) with P. tritici-repentis 
strain BR154. The width of connector lines represents the enrichment 
significance (−log10(P-value)) computed with the diffusion model. 

The dashed lines indicate overrepresented pathways (P < 0.05) identi-
fied with hypergeometric test. The square brackets represent the num-
ber of compounds found in the pathway (first figure) compared to the 
total number in the pathway (second figure)
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and FH both proved to be susceptible to Ptr at the flag leaf 
stage, although PF appeared to show some moderate resist-
ance at the seedling stage. In addressing these aspects, we 
chose to focus on a metabolomic assessments of responses 
in flag leaves and these have direct impact on grain yield 
(Bhathal et al., 2003).

Although many facets of the wheat-Ptr pathosystem 
are well established, the metabolic changes occurring with 
disease development are understudied. These are likely to 
include changes which are linked to mobilisation of nutrients 
to the host, an inadequate defence response, the suppression 
of the defences by Ptr and the unregulated effects of symp-
tom development and host cell death (Allwood et al., 2010). 
Although the disease components are generally specific to a 
pathosystem, phytopathogens such as Magnaporthe grisea 
are able to induce identical metabolic responses in rice, bar-
ley, and Brachypodium distachyon (Parker et al., 2009). In 
our study, whilst there was some overlap in the responses of 
the two wheat cultivars to Ptr (7.9%), most proved to be host 
specific (Fig. 3b). Before, considering these cultivar-spe-
cific responses, those DAMs that were upregulated (53) and 
downregulated (1) could still represent metabolomic events 
which are commonly TS susceptibility. Unfortunately, it was 
not possible to unambiguously identity these metabolites, 
but they should be assessed in future experiments.

Considering responses in FH following challenge with 
Ptr, we observed major changes in flavonoids (quercitrin, 
vitexin, and vitexin 2ʺ-O-beta-d-glucoside), and coumarin 
(umbelliferone) (Table S1). These metabolite classes are 
both derived from the phenylpropanoid pathway and often 
have direct phytoalexin (anti-microbial) activities or are 
intermediaries in the production of phytoalexins (Dixon & 
Paiva, 1995). In wheat, enhanced defences have also been 
attributed to the antioxidant properties of phenylpropanoid 
and flavonoid compounds (Gunnaiah & Kushalappa, 2014). 
The classes of compounds have been linked to resistance to 
Fusarium spp. (Chrpová et al., 2021). For instance, vitexin 
and quercetin, among other flavonoid compounds, signifi-
cantly increased with the inoculation of Fusarium culmo-
rum in wheat (Buśko et al., 2014). However, our previous 
transcriptomic-based network analysis has suggested the 
overexpression of the phenylpropanoid-associated genes 
phenylalanine ammonia lyase (PAL) and chalcone synthase 
(CHS), are part of a failed defence to Ptr (Ferreira et al., 
2022). Similarly, in this study, the accumulation of key fla-
vonoid compounds and umbelliferone would have appeared 
to be ineffective in controlling Ptr. This would imply that 
phenylpropanoids/flavonoid production is most effective 
only when part of a wider defence response, possibly co-
ordinated by relevant resistance genes (Faris et al., 2013) 

Fig. 5  Sub-network showing relevant metabolites, reactions, enzymes, and pathways to wheat-Ptr interactome. Explanatory features in the input 
are highlighted as green squares to indicate the changes leading to enrichment of the presented pathways
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which were lacking in the Ptr-FH interaction. A similar 
phenomenon could be observed with the tryptophan bio-
synthetic pathway which was significantly enriched in FH. 
Tryptophan is a precursor of metabolites with phytoalexin 
properties, alkaloids, glucosinolates, and auxins (Radwanski 
& Last, 1995). We identified the toxic alkaloid piperideine 
(Matsuura & Fett-Neto, 2015) in FH at 24 hpi and glucosi-
nolates in PF at 48 hpi (Table S1). We hypothesise that Ptr 
may be able to overcome the antimicrobial properties of such 
compounds.

The enrichment analysis also showed significant changes 
in tocopherol/tocotrienol, phylloquinone, plastoquinone 
(PQ), ubiquinone (UQ), and “other terpenoid-quinone” in 
FH at 96 h post Ptr infection (Fig. 4). It is relevant that 
tocopherol (vitamin E) and phylloquinone (vitamin K1) 
these metabolites, along with PQ, these are chloroplast 
located and play essential roles in such as photosynthesis, 
electron transportation, antioxidation, and membrane stabil-
ity (Havaux, 2020; Munné-Bosch & Alegre, 2010; Swieze-
wska, 2004). As the wheat plants were challenged with a 
ToxA-producing strain of Ptr, these results likely reflect the 
effects of this toxin on chloroplasts and reflect the necro-
trophic infection strategy of this pathogen. Wider disease 
effects which may arise from plant cell death may be indi-
cated by shifts in one-carbon (C1) metabolism, biosynthesis 
of NAD, ubiquinone (UQ), and other terpenoid-quinone in 
FH. The one-carbon metabolism takes place in the cytosol, 
peroxisomes, mitochondria, and chloroplast, whereas NAD 
and UQ pathways are mostly in the mitochondria (Gakière 
et al., 2018; Hanson & Roje, 2001; Liu & Lu, 2016). Due 
to the intimate interplay between mitochondria and chlo-
roplasts (Yoshida & Noguchi, 2011), these changes may to 
represent the effects of ToxA.

Considering specific changes in PF, these included rela-
tively rapid (24 hpi) alterations in the biosynthesis and 
metabolism of pyrimidine (Fig. 4). This was seen in the 
rapid change in uridine metabolism which is part of the de 
novo pyrimidine synthesis pathway. As uridine monophos-
phate is associated with salvage, phosphotransfer and car-
bohydrate metabolism, (Zrenner et al., 2006), this could 
reflect alterations in bioenergetic primary metabolism to 
feed ultimately defeated defences and/or mobilise nutri-
ents to the pathogen (Bolton et al., 2008). Alterations of 
biosynthesis and metabolism of pyrimidine pathways have 
been shown to be an early signalling for PCD (Stasolla 
et al., 2004) which would be in line with the necrotrophic 
lifestyle of Ptr. If this were the case, it would suggest 
that PF is particularly susceptible to chloroplast pertur-
bations provoked by ToxA. Pyrimidine nucleotides are 
heavily involved in the metabolism of sugars (Kafer et al., 
2004). Equally inhibition of de novo pyrimidine synthesis, 
stimulates the compensatory salvage pathway which has 
been linked to increased levels of uridine nucleotides and 

the formation of starch from sucrose (Geigenberger et al., 
2005). Therefore, the enrichment of galactose, trehalose, 
starch, and sucrose metabolism pathways seen in PF at 48 
hpi could be linked the alterations in pyrimidine metabo-
lism at 24 hpi.

The lowering of sucrose levels in both genotypes likely 
reflects its mobilisation to pathogen as also seen with F. 
graminearum infections of wheat (Guenther et al., 2009; 
Hadinezhad & Miller, 2019). As sucrose is the primary 
photoassimilate in wheat (Takahashi et  al., 1998), its 
reduction is indirect evidence of injuries in the photosyn-
thetic machinery caused by Ptr. Furthermore, lower sugar 
content in flag leaves will likely have a negative effect 
on yield (Xu-Dong et al., 2003). However, sugars have 
wider roles in host responses to phytopathogens (Morku-
nas & Ratajczak, 2014). For instance, trehalose partially 
induces resistance of wheat to powdery mildew (Blumeria 
graminis f. sp. tritici) (Reignault et al., 2001), besides reg-
ulating key biological processes such stomatal conduct-
ance (Figueroa & Lunn, 2016) which could influence the 
efficacy of host penetration by the pathogen.

5  Conclusions

Our metabolomic characterisation of flag leaves during 
Ptr infection suggested metabolomic changes which whilst 
distinctive to the two genotypes were apparently consist-
ent in their strategy. In both genotypes, there appeared to 
be an initiation of defences, particularly those based on 
phenylpropanoids, which can be assumed to be defeated 
by Ptr. This defensive suppression include the promotion 
of host cell death, most likely through ToxA effects in our 
experiments. This study also implies that saccharides play 
a role in TS disease development as part of wide bioen-
ergetic changes. This illustrates the usefulness of untar-
geted metabolomics to uncover key information underlying 
plant–pathogen interactions, as well as to generate testable 
hypotheses.
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