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ABSTRACT
Coffee Rust (Hemileia vastatrix) is considered the primary coffee disease in the world. The pathogenic fungus can find favorable environmental conditions 
in different countries, constantly threatening coffee producers. The previous detection of the incidence of coffee rust in a region is crucial because it 
provides an overview of the disease’s progress aiding in coffee plantations management. The objective of this work was the development of a vegetation 
index for remote monitoring of coffee rust infestation. Using satellite images from the MSI/Sentinel-2 collection, the Machine Learning classifier algorithm 
- Random Forest, and the cloud processing platform - Google Earth Engine, a supervised classification was performed to determine the most sensitives 
bands in coffee rust detection, namely B4 (Red), B7 (Red Edge 3) and B8A (Red Edge 4). Thus, the Triangular Vegetation Index method was used to create 
a new vegetative index for remote detection of coffee rust infestation on a regional scale, named Coffee Rust Detection Index (CRDI). A linear regression 
model was created to estimate rust infestation based on the performance of the new index. The model presented a coefficient of determination (R²) of 
63.21%, and a root mean square error (RMSE) of 0.103. In addition, a comparison analysis of the new index with eight other vegetative indices commonly 
used in the literature was carried out. The CRDI obtained the best performance in coffee rust detection among the others. This study shows that the new 
index CRDI could serve as a crucial tool for monitoring coffee rust infestation on a regional scale.
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1 INTRODUCTION

Planting coffee (Coffea arabica L.) has significant 
economic, social and cultural relevance worldwide. The global 
coffee production in 2022 was approximately 174.3 million 
60-kg bags (United States Department of Agriculture - USDA, 
2023). The success of cultivation often depends on natural 
factors such as the weather and the infestation of pests and 
diseases. This way, proper crop management ensures good 
productivity, generates greater economic returns for producers, 
and causes a less environmental impact on the ecosystem.

Among the diseases that affect coffee, coffee leaf 
rust represents a significant threat to producers worldwide, 
especially in countries with warm and damp climates, 
where the pathogenic fungus finds favorable environmental 
conditions to proliferate (Pozza; Carvalho; Chalfoun, 2010). 
The disease can cause losses of up to 50% if no control 
measures are employed (Kushalappa; Eskes, 1989; Zambolim, 
2016). The situation worsens in coffee-growing regions where 
there is still widespread use of susceptible cultivars. The 
continued utilization of this cultivar type primarily stems from 
the challenge of replacing coffee plants, considering the crop’s 
prolonged growth cycle. 

The evolution of coffee rust in crops is associated with 
a combination of three factors: the environment (climatic 

conditions), the host (coffee plant), and the pathogen, with 
interaction between them (Moraes, 1983). Climatic factors 
favorable to the disease are temperature in the range of 20°C 
to 25°C and humidity at levels suitable for spore germination 
(Pereira; Camargo; Camargo, 2008). Currently, the control of 
coffee rust is carried out in a total area with systemic protective 
fungicides on the leaves or soil application. In large coffee 
producing countries, such as Brazil, Colombia and Vietnam, 
agrochemical spray applications are calendar based, starting in 
November/December and continuing through April (Empresa 
Brasileira de Pesquisa Agropecuária - EMBRAPA, 1999). 
It is important to emphasize that the spatial and temporal 
distribution of the incidence of coffee rust is heterogeneous 
in the plantations, suggesting that the current strategy of 
controlling rust in the total area can be replaced by the 
management located in the foci of incidence of the disease 
(Alves et al., 2009).

The adoption of localized management techniques 
is a common practice in precision agriculture. With the 
advancement of geotechnologies and remote sensing, pest 
and disease management has become increasingly efficient 
and accurate, directing management only to the necessary 
places (Queiroz et al., 2022). This occurs because variations 
in reflectance of plants in specific regions of the spectrum can 
provide important information about senescence problems and 
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plant stresses (Jensen, 2009). For this purpose, vegetation study 
methods are adopted for important measure characteristics of 
the crop, such as vegetative vigor, productive potential, and 
infestation of pests and diseases. These analyzes are performed 
using vegetation indices (VIs).

Succinctly, VIs are mathematical operations 
involving two or more bands, allowing spatial and temporal 
intercomparisons of photosynthetic activity of the canopy 
structure of the vegetation (Huete et al., 2002). The principle 
of using VI is that the reflected energies of specific bands 
in the electromagnetic spectrum are directly related to the 
photosynthetic activity of the canopy, as well as the assumption 
that the use of two or more spectral bands can substantially 
minimize the primary sources of noise that affect the response 
of vegetation (Ferreira; Ferreira; Ferreira, 2008). 

The development of new specific vegetative indices 
for disease monitoring can fill gaps left by traditional generic 
indices, allowing for a more targeted and adaptable assessment 
of the specific characteristics of diseases that affect vegetation. 
For this detection, it is necessary to capture the reflectance of 
specific sensitive bands of the spectrum. The Multi-Spectral 
Instrument (MSI) sensor embedded in the Sentinel-2 satellite 
obtains spectral reflectance information from the Earth’s 
surface by recording it in 13 different electromagnetic 
spectrum bands (European Space Agency - ESA, 2019). It is 
important to emphasize that five of these 13 bands are located 
in the near-infrared (NIR) spectral region. More specifically, 
three of these five are located in the zone of rapid reflectance 
growth when evaluating the plant canopy, known as Red-
Edge. Chemura, Mutanga and Dube (2017) discriminated 
the severity of coffee rust on coffee leaves under greenhouse 
conditions based on the reflectance of Sentinel-2 satellite 
sensor bands. According to the authors, the bands located in 
the spectral position of the Red Edge can help detect diseases 
and evaluate the status of the coffee crop.

By determining the most sensitive bands for detecting 
a pest or disease, VIs can be developed specifically for this 
function. Recently, many methods have been used to select 
the most sensitive traits for pest and disease detection in crops 
(Domingues; Brandão; Pereira, 2022). Among the methods 
used, the Random Forest (RF) algorithm has performed this 
function well. This method makes it possible to rank variables 
based on their importance when performing a supervised 
classification, providing valuable information for building 
models and designing vegetation indices. Using the RF 
algorithm, Fletcher and Reddy (2016) demonstrated that 
shortwave-infrared bands were the most critical variables in 
discriminating the pigweeds (Amaranthus viridis) on soybean. 
Chemura, Mutanga and Dube (2017) used the importance 
ranking of variables to select the four most essential bands in 
the discrimination of coffee leaf rust on a canopy scale. The 
RF algorithm has shown satisfactory results in the scientific 

literature, helping to create models for detecting pests and 
diseases in crops.

The study and processing of bands in satellite images 
have been advancing over the years. Analyzing and creating 
VIs has been facilitated using Geographic Information 
Systems (GIS) software, like the popular ones QGIS and 
ArcGIS, and online platforms such as iSpatial and Google 
Earth Engine. In the development of geoprocessing works, it 
is essential to use one of these programs, as they provide the 
tools for analyzing satellite images and obtaining parameters 
of interest, thus enabling the achievement of the proposed 
objectives.

Among the software and platforms available, the current 
highlight is the recent platform launched in 2010, developed 
by Google, the Google Earth Engine (GEE). The GEE is a 
Google-hosted cloud-based computing platform that provides 
direct access to satellite imagery and geospatial datasets, 
including the entire Landsat catalog from EROS (USGS/
NASA), MODIS, and Sentinel-2. In addition, it is possible 
to obtain updated climate data such as precipitation, altitude, 
and surface temperature from any part of the world. The great 
advantage of GEE is to provide an Application Programming 
Interface (API) enabling the development of algorithms in 
JavaScript or Python programming language, performing all 
the processing in the cloud. This fact allows analysis on a 
planetary scale, for any time scale, with operational capacity 
and speeds higher than conventional software. In addition, the 
GEE platform is currently free and open for developing non-
profit research, making it an accessible tool for elaborating 
works in several areas.

Starting from the hypothesis that it is possible to 
detect changes in the spectral behavior of plants due to the 
presence of coffee rust through orbital remote sensing this 
work’s objective was to develop a new VI for remote detection 
of coffee rust incidence on a regional scale using the GEE 
platform and the RF algorithm.

2 MATERIAL AND METHODS

2.1 Study Sites and data
The study was carried out in four experimental 

fields of the Agricultural Research Company of Minas 
Gerais (Epamig), located in the municipalities of Machado 
(EFMA), São Sebastião do Paraíso (EFSP), Patrocínio 
(EFPC) and Três Pontas (EFTP) in the state of Minas 
Gerais (MG). Data were collected over four consecutive 
years (2019, 2020, 2021 and 2022), generating a database 
used throughout the study. A rural property near the coffee 
region of Ribeirão de São Domingos-MG was selected to 
test the new index. In Figure 1, we can see the location of 
the municipalities considered in the study.
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The database used in the study contains information about 
four consecutive years (2019, 2020, 2021 and 2022), with three 
categories of data, climatological data of the regions: average 
temperature and precipitation; phenological data of the plants: 
number of leaves, number of internodes and average foliage; 
and data on the infestation of pests and diseases: percentage 
of coffee rust (Hemileia vastatrix), leaf miner (Leucoptera 
coffeella) and cercosporiosis (Mycosphaerella coffeicola). The 
Data were recorded month by month over the three years.

The edaphoclimatic characteristics of experimental fields 
from 2019 to 2022 and the information on the cultivar planted in 
each stand are shown in Table 1. The rainfall data were obtained 
from the Climate Hazards Group InfraRed Precipitation with 
Stations – CHIRPS database (Funk et al., 2015) and temperature 
from the Latest Climate Reanalysis Produced by ECMWF / 
Copernicus Climate Change Service - ERA 5 database.

The observation and analysis of all the information 
available in the database were fundamental for elaborating 
the work, as it made it possible to direct the study to a single 

variable of interest, which in this case was the percentage 
of rust infestation in the stands. For this purpose, data from 
months with high precipitation (>150 mm) and a record of 
high infestation (>30%) of leaf miner and Cercosporiosis were 
excluded from the analysis.

Based on the database, the study sought a more suitable 
month for analysis. A month that provided data with different 
degrees of infestation and the presence of coffee rust was 
the most relevant factor among all other available data. The 
importance of choosing a month with a record of different 
degrees of infestation was to analyze the different spectral 
behavior of the stands. After searching the entire database, the 
most representative month chosen for the study was August 
2021. The data recorded for the month can be seen in Table 2.

2.2 Obtaining and processing the satellite images
After defining the month and the data to be analyzed in 

the study, the Google Earth Engine (GEE) platform was used 
to process and obtain satellite images of the regions of interest. 
The use of GEE provided agility in all stages of the work due 
to cloud processing and the code creation tool. Most of the 
work was developed by elaborating an algorithm to perform 
the necessary analyses. All the steps described below were 
carried out by developing programming codes within the GEE 
platform in JavaScript.

Analyzing all the collections of satellite images 
available on the GEE platform was defined to use the Sentinel 
- 2A collection in the study due to its excellent spectral 
resolution of 13 bands and temporal resolution of five days, 
parameters considered adequate for the proposal of the work. 
Table 3 shows the number of bands recorded by this collection, 
their denominations, the central wavelength value, the width 
of the spectral bands, and their respective spatial resolutions.

For the elaboration of the study, a plot was selected in 
each experimental field with the following areas: EFTP (2,575 
m²); EFSP (930 m²); EFMA (2,279 m²), and EFPC (1,609 
m²). Considering that the spatial resolution of the Sentinel 2 
A satellite is 10 meters for bands B2, B3, B4, and B8; and 20 
meters for bands B5, B6, and B7, the plot areas were enough 
to meet the Sentinel 2A resolution.

Figure 1:  Location and area of the experimental fields and 
the local selected for test in the state of Minas Gerais. EFTP: 
experimental field of Três Pontas, EFSP: experimental field 
of São Sebastião do Paraíso, EFMA: experimental field of 
Machado, EFPC: experimental field of Patrocínio, and RSD: 
Test field of Ribeirão de São Domingos.

Table 1: Edaphoclimatic characteristics and cultivar type of experimental fields

Characteristics EFMA EFSP EFPC EFTP
Cultivar Catuaí 99 Catuaí 99 Rubi Mundo Novo

Altitude (m) 970 880 997 916
Precipitation† (mm) 816 857 845 720
Temperature† (°C) 21.5 22 21.7 21.4

Geographic Coordinates 450 28’ 59.452”W 210 20’ 
37.014”S

470 7’ 20.341”W 200 54’ 
42.023”S

46059’21.700”W
180 59’28.284”S

450 28’ 59.452”W 210 20’ 
37.014”S

W: West, S: South.
†Annual average.
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From the geographic coordinates of the experimental 
fields, satellite images, also called scenes, were searched for 
each region for the selected month of August 2021. Scenes 
from 08/17/2021 were selected for EFPC and EFSP, and 
scenes from 08/19/2021 for EFMA and EFTP. The scenes were 
chosen following criteria of less cloud coverage and being as 
close as possible to the data recorded in the field.

Subsequently, image processing was performed by 
applying a cloud filter through a cloud mask function within the 
GEE. After processing, the scenes of each experimental field 
were joined into a single image to obtain only one object of 
study for the development of further analyses. All the following 
steps were performed on this single image already processed.

2.3 Selection of sensitive bands for coffee rust 
identification

One of the study’s main objectives was to identify 
the most influential bands for coffee rust detection for the 
development of the index. In the scientific literature, different 
methods have already been used for this purpose in different 
cultures. The most used methodologies are based on a 
combination of indexes, linear regression models, or Machine 

Learning algorithms, as can be seen in the works of Zheng, 
Huang, and Cui (2018), Liu et al. (2020), and Marin et al. 
(2021). This study identified the most influential bands for 
coffee rust detection based on the Machine Learning classifier 
algorithm – Random Forest, a method widely used for 
supervised classification and regression problems. According 
to Marin et al. (2021), RF is one of the most used and relevant 
tree-based algorithms since it can return a more complex 
model and solve non-linear tasks.

The Random forest (RF) is an ensemble of learning 
algorithms proposed by Breiman (Fletcher; Reddy, 2016). 
It consists of a set of independent, unpruned decision trees. 
According to Genuer, Poggi and Tuleau-Malot (2015), RF 
assumes an initial training set with “N” instances and each 
instance with “M” attributes. During the forest construction 
process, the algorithm performs in two aspects: (1) It samples 
a new training set with replacement at each iteration, and the 
new training set is the same size as the original set; (2) Rather 
than choosing the best split among all attributes, “m” attributes 
are randomly chosen from “M” at each node, and then these 
“m” attributes are used to split the node according to the 
principle of the decision tree algorithm, where “m”  <<  “M”, 
and it is held constant during the forest construction process. 

Once the algorithm does not use all samples for model 
training at one time, it is possible to use the remaining samples 
(out-of-bag data) to evaluate the out-of-bag error (OOB error). 
Moreover, the principle of the feature importance ranking is to 
compare the difference in OOB error of each feature before and 
after adding noise to determine the importance of each feature. 
Thus, the importance of each feature is directly proportional to 
the calculated difference (Genuer; Poggi; Tuleau-Malot, 2015).

Table 3:  Spectral bands and resolutions of the sentinel-2A sensor MSI.

Spectral Band Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)
B1 Coastal aerosol 443 20 60
B2 Blue† 490 65 10
B3 Green† 560 35 10
B4 Red† 665 30 10
B5 Red-edge 1 (Re1) † 705 15 20
B6 Red-edge 2 (Re2) † 740 15 20
B7 Red-edge 3 (Re3) † 783 20 20
B8 Near-infrared (NIR) † 842 115 10

B8A Red-edge 4 (Re4) † 865 20 20
B9 Water vapor 945 20 60
B10 Shortwave infrared/cirrus 1375 30 60
B11 Shortwave infrared 1 (SWIR1) † 1610 90 20
B12 Shortwave infrared 2 (SWIR2) † 2190 180 20

† Bands used by the Random Forest algorithm.
Source: (ESA, 2019).

Table 2: Infestation data, monthly average temperature, and 
precipitation from experimental fields for August 2021

Characteristics EFMA EFSP EFPC EFTP
Coffee rust infestation (%) 100 46 24 0

Monthly average 
temperature (°C) 20.0 21.6 21.4 19.8

Precipitation (mm) 6.2 2.0 1.8 16.0
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The supervised classification performed in the study 
was made by indicating the infested and healthy samples based 
on the database. The experimental field of the municipality 
of Machado (EFMA), which recorded 100% infestation in 
August 2021, was defined as the infested sample, and the 
experimental field of the municipality of Três Pontas (EFTP), 
which recorded 0 % infestation as of August 2021, as the 
healthy sample.

Based on this information, the algorithm performs 
a reflectance analysis of bands of each pixel at samples 
indicated as infested and healthy, using this information to 
classify other regions. The reflectance of the main bands 
captured by the Sentinel-2A satellite collection was defined 
as the base parameter of the classification, namely: B2 
(Blue), B3 (Green), B4 (Red), B5 (Red Edge1), B6 (Red 
Edge 2), B7 (Red Edge 3), B8 (NIR), B8a (Red Edge 4), 
B11 (SWIR 1) and B12 (SWIR2). The bands: B1 (Coastal 
aerosol), B9 (Water vapor), and B10 (Shortinfrared/cirrus) 
were not considered, according to Chemura, Mutanga and 
Dube (2017), due to their low significance in studies of 
this nature.

The methodology developed in this study focused 
solely on employing the Random Forest model to identify and 
rank the most important variables used to classify infested 
and healthy plots. For this, only the model training phase was 
perfomed. Therefore, as it is not common to evaluate only the 
training stage, no conventional results of machine learning 
performance metrics will be presented.

After running the algorithm, a ranking of the most 
relevant bands used for classification was generated. As 
explained, this importance is measured by comparing the out 
bag error. In this way, each band’s influence on the algorithm 
appointment was quantified.

2.4 Development of the new index
With the information of three relevant bands to 

discriminate a particular feature and the central wavelengths 
of each one, it was possible to create a new index using the 
Triangular Vegetation Index (TVI) method described by Broge 
and Leblanc (2001). The TVI method is based on calculating 
the area of a triangle on the multispectral graph with vertices in 
the three selected bands. The area of this triangle is calculated 
by the determinant of a matrix composed of the wavelengths 
of the bands and their respective central wavelengths, as can 
be seen in equations 1 and 2.

where: B1, B2, and B3 are the recorded reflectance values of the 
selected bands; and C1, C2, and C3 are the central wavelengths 
of each band, respectively. The central wavelength values are 
fixed values obtained from the official Sentinel 2-A mission 
website (Table 3).

2.5 Models comparison with other vegetative 
indices

According to the literature, several vegetation indices 
(VIs) have been used to identify crop diseases. Eight indices 
commonly used for vegetation studies were selected in the 
study for comparison with the new index created. The aim 
was to analyze its ability to detect coffee rust in stands. The 
VIs chosen for comparison were NDVI, NDVIre1, GNDVI, 
NREDI1, NREDI2, NREDI3, EVI, and SR, their definitions, 
formulas, and references can be seen in Table 4.	

It was then developed for each index, including for 
the new index created, linear regression equations using as 
parameters the average value of the index in the stands and 
the rust infestation registered in the field. Thus, the value of 
rust infestation estimated for each VIs was obtained, making 
it possible to compare with the real infestation value measured 
in the field.

The regression models created for each VI were 
compared using the performance criteria: coefficient of 
determination (R²) and root mean error square (RMSE). These 
parameters were calculated on the statistical software “R”. 
It was used for these analyses satellite Images from August 
2019, 2020, 2021 and 2022, and the infestation data recorded 
in each experimental field available in the study (Table 5).

Data that recorded infestation greater than or equal to 
90% were removed from this analysis to avoid the possible 
effects of saturation of the vegetative indices, which is very 
common in this kind of study. This phenomenon occurs when 
the vegetative index reaches a maximum invariant value, even 
with differences in vegetation characteristics (Ponzoni et al., 
2012). In addition, there was no record in the database for 
August 2019 in EFPC, data that could not be used for analysis.

2.6 Monitoring coffee rust on a regional scale
Finally, an appropriate value of infestation percentage 

was sought in the scientific literature in which it would be great 
to issue a phytosanitary alert to the producer. According to the 
manual of recommendations for coffee cultivation in Brazil, 
infection percentages above 40% already indicate significant 
losses in production due to defoliation caused by coffee rust 
(Matiello et al., 2010). Thus, the value of infestation percentage 
equal to or greater than 40% was defined in the work as an 
alert parameter for monitoring coffee rust on a regional scale.
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Using the equation obtained in the linear regression model 
that estimates the rust infestation based on the new index, a value 
representing the critical level of 40% infestation was determined. 
In this way, the remote detection of coffee rust proposed in work 
was done by elaborating a map indicating the infested areas 
(>40%).  To determine if the pixel is considered infested or 
healthy, the new index value calculated for that pixel is compared 
with the adopted critical value. The pixel is considered infested 
when the calculated value is equal to or greater than the critical 
value. If lower, the pixel is considered healthy.

It was proposed in the study the monitoring using the new 
index of coffee rust in a different region from the experimental 
fields studied. The intent of testing in a different location is to 
validate the application of the index to any location in the state. 
Thus, a rural property in the coffee region to the east of the state 
was chosen, located near Ribeirão de São Domingos - MG, 
geographical coordinates: 42º 20’ 46.9854” O; 20º 27’ 29.4804” 
W (Figure 1). Since the main database used for the development 
of the new index was related to the month of August, it was 
decided to carry out this regional monitoring analysis also for 
the month of August, but for the year 2022.	

Table 4. Indices commonly used for vegetation studies

Names Formula Reference

Normalized Difference Vegetation Index (NDVI)
( )
( )
NIR RED
NIR RED




Rouse et al. (1974)

Normalized difference vegetation index red-edge1 
(NDVIre1)

1
1

NIR RE
NIR RE




Rouse et al. (1974)

Green normalized difference vegetation index 
(GNDVI)

NIR GREEN
NIR GREEN




Gitelson and 
Merzlyak (1998)

Normalized red-edge1 index (NREDI1)
2 1
2 1

RE RE
RE RE




Gitelson and 
Merzlyak (1994)

Normalized red-edge2 index (NREDI2)
3 1
3 1

RE RE
RE RE




Gitelson and 
Merzlyak (1994)

Normalized red-edge3 index (NREDI3)
3 2
3 2

RE RE
RE RE




Gitelson and 
Merzlyak (1994)

Enhanced Vegetation Index (EVI)
2,5*( )

( 6* 0,5* 1)
NIR RED

NIR RED BLUE


   Justice et al. (1998)

Simple ratio (SR)
NIR
RED

Jordan (1969)

Table 5: Coffee rust infestation data from the experimental fields in August 2019, 2020, 2021 and 2022

Coffee rust infestation  (%) EFMA EFSP EFPC EFTP

August 2019 91† 12 x† 29
August 2020 95† 10 50 4
August 2021 100† 24 46 0

August 2022 49 14 11 12
† Data excluded from the analysis.

The following steps were carried out in the GEE to 
perform the monitoring: obtaining all satellite images from 
the Sentinel – 2A collection of the study sites, available in 
August 2022; processing the images through a cloud filter 
function; selection of the most representative satellite image 
of the month using the median function, processing that sorts 
the collection of images obtained and selects the median 
value of each pixel in the image, selecting then the best pixel 
among all available images; application of the new index in 
the processed image for slicing regions based on the adopted 
critical infestation value. Finally, these processes resulted in 
a map of the rural property with the indication of possible 
healthy regions and regions with a degree of infestation equal 
to or greater than 40%.

Regrettably, due to practical constraints, it was not 
possible to carry out a numerical validation of the results, 
relying solely on visual assessments. However, it is important 
to remember that the inclusion of this topic in the work was not 
with the intention of validation but rather providing insights 
into the application of the developed index. The intention is 
that future studies will be carried out with this aim.
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3 RESULTS

3.1 The Spectral characteristic of the fields
After processing the satellite images of the experimental 

fields on the 17th and 19th of August 2021, the spectral 
characteristics of each field were analyzed by elaborating 
multispectral graphs. The result of the analysis can be seen in 
Figure 2.

It is possible to observe similar reflectance values from 
all fields in bands B1 to B5. The multispectral graphs show 
considerable differences from bands B6 to B9. The bands B11 
and B12 did not show any noticeable pattern. As expected, 
it is possible to observe that the significant differences in 
reflectances are between the least infested sample (EFTP) and 
the most infested sample (EFMA), as highlighted in Figure 2.

Figure 2: Multispectral reflectance graph of the experimental fields located in the municipalities of Três Pontas (EFTP), Machado 
(EFMA), São Sebastião do Paraíso (EFSP), and Patrocínio (EFPC) for August 2021.

3.2 Supervised Classification using Random 
Forest

The RF algorithm was used to perform the supervised 
classification of satellite images from the experimental fields. 
Figure 3 displays the points sampled in each plot used for 
model training. There were a total of 12 points in the infested 
sample and 14 in the healthy sample. The background image in 
the figure does not depict the satellite image used for analysis; 
instead, a higher-resolution base map was chosen to enhance 
visualization.

Thus, a model that estimated the possible healthy areas 
and areas with rust infestation was trained. The classification 
was based on the reflectance of the ten selected bands from 
the Sentinel 2A satellite collection (Table 3), resulting in the 
following ranking of bands based on their importance for 
coffee rust detection (Figure 4). 

Figure 3: Location of sampling points in the EFMA and EFTP plots that were used for model training.
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It is possible to observe the great relevance of the bands 
in the Red-Edge spectrum (B5, B6, B7, and B8a) on coffee 
rust detection. Surprisingly, the B8 band (NIR), traditionally 
used for vegetation studies, came in fourth place in the ranking 
of importance. The B4 band (Red) had the highest sensitivity 
for coffee rust detection at the visible spectrum.	

3.3 The Conception of the new index
To obtain a more representative triangle area, a 

modification of the Triangular Vegetation Index method was 
proposed. Instead of selecting the three most important bands 
identified in the ranking, only the two most important were 
selected: B8A (Red Edge 4) and B7 (Red Edge 3); the third 
selected band was the most important band in the visible 
spectrum: B4 (Red). It is understood in the present study that 
the proposed modification will improve the performance of 
the new index because it increases the calculated difference 

obtained between a healthy and a diseased plant, allowing 
better discrimination of the coffee rust infestation.

So, the triangles’ vertices were established in the 
selected bands B4, B7, and B8A, in the multispectral graph 
(Figure 5), as indicated by the TVI method.

Thus, the creation of a new index named “Coffee Rust 
Detection Index” (CRDI) was proposed, in which its value 
represents the area of the triangle of vertices in the bands B4, 
B7, and B8A. This area is calculated from the determinant of 
the matrix according to the TVI method (Equations 1 and 2). 
In such a manner, the new index is determined as shown in 
Equation 3:	

Figure 4. Ranking of Sentinel-2A bands based on their 
importance for coffee rust detection through RF algorithm.

Figure 5: Triangles in the multispectral graphs of the EFTP and EFMA experimental fields with vertices in the three most sensitive 
bands in coffee rust detection (B4, B7, and B8A).

(665 865) ( 7 8 ) (783 865) ( 4 8 )
2

B B A B B ACRDI       
 (3)

where: B4, B7, and B8A are the reflectance values of bands of 
a particular pixel in the image; 665, 783, and 865 are the center 
wavelengths of each band, respectively.

3.4 Comparison with other vegetative indices
Using satellite images and data from August 2019, 

2020, 2021 and 2022 (Table 5), a model was created using 
the infestation percentage values estimated by the CRDI index 
and the actual infestation values measured in the field recorded 
in the study database. This analysis resulted in a coefficient 
of determination (R²) of 0.6321 and a root-mean-square error 
(RMSE) of 0.103, as shown in Figure 6.

The same analysis was done with the others eight VIs 
presented in Table 4, thus making it possible to compare the 
performance in detecting rust infestation of the new CRDI 
index with the other relevant VIs in the literature. The result of 
this analysis can be seen in Table 6.



Coffee Science, 18:e182170, 2023

New vegetation index for monitoring coffee rust using sentinel-2 multispectral imagery

As we can observe in Table 6, the new CRDI index 
model had the best performance among the others since it had 
the highest R² value and the lowest RMSE value, followed 
by the GNDVI and later the NREDI1. The worst performance 
was presented by the model of the NREDI3 index. Considering 
that the same methods and data were used for the analysis, 
we can assume that the new CRDI index is a good option for 
detecting coffee rust on a regional scale.

3.5 Using the new index for detecting coffee 
rust on a regional scale

According to the equation obtained in the linear 
regression model (Figure 6), the numerical value of the CRDI 
that represents 40% of coffee rust infestation was 3.942. Thus, 
to exemplify the application of the CRDI, an analysis for the 
detection of coffee rust infestation was proposed in a coffee 
plantation near the city of Ribeirão de São Domingos - MG.

In Figure 7, it is possible to observe the location of the 
plantation and the representative satellite image obtained for 
August 2022. In Figure 8, we can observe the application of 
the CRDI index for the study site. Finally, in Figure 9, we can 
see the final objective of the analysis, the map of coffee rust 
detection for values greater than 40% of an infestation.

The producer’s visual assessment indicated that the 
generated map successfully detected coffee rust outbreaks in 
the plots. However, it’s recognized that a numerical assessment 
is essential to validate this observation.

4 DISCUSSION
The results obtained in the study highlight the usefulness 

and potential of the Sentinel 2 – MSI sensor characteristics for 
discriminating disease infections in commercial crops such as 
coffee, a previously challenging task using the multispectral 
broadband sensors, for example, from the Landsat series.

Table 6: R² and RMSE of models that estimate coffee rust 
infestation, based on vegetative indices, for August from 2019 
to 2021.

Vegetative Index R2 RMSE
CRDI 0.632 0.103
NDVI 0.373 0.139

NDVIre1 0.395 0.136
GNDVI 0.472 0.128
NREDI1 0.448 0.130
NREDI2 0.406 0.135
NREDI3 0.063 0.170

EVI 0.447 0.131
SR 0.325 0.144

Figure 6: Comparison between the model created to estimate 
coffee rust infestation based on the CRDI and data recorded 
in the field.

Figure 7: Satellite images from the Sentinel-2 collection for August 2022 of the coffee plantation located near the city of Ribeirão 
de São Domingos – MG.
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That reflectance differences point to a reasonable 
possibility of discriminating the infestation through satellite 
images using vegetative indices, considering the capacity of 
VIs to highlight reflectance characteristics of specific bands 
in the spectrum, allowing comparisons between patterns in the 
multispectral graph (Rumpf et al., 2010). Thus, by identifying 
sensitive regions for a particular trait (infested or healthy), 
it was possible to develop a specific vegetative index to 
discriminate this aspect accurately.

The presence of stress factors alters the properties of 
plants, which in turn influences the radiation emitted across 
the spectrum. Alteration in the spectrum is produced mainly 
by changes in leaf water content (Mottram et al., 1983; Pinter 

et al., 1979), and this can also be detected in the early stage of 
coffee rust (Chaerle et al., 1999; Costa; Grant; Chaves, 2013; 
Omasa, 1990). The different reflectance patterns observed in 
the samples can be adequately justified by the physiological 
symptoms that coffee rust causes in plants.

The multispectral analysis carried out in the study 
confirms the general effect of vegetation under different types 
of biotic stresses of increases in reflectance in the red edge 
region. The authors Chemura, Mutanga and Dube (2017) 
and Mahlein et al. (2013), when comparing the reflectances 
of diseased plants with healthy plants, also observed more 
significant differences in the region of the red edge in the 
electromagnetic spectrum in their studies.

Figure 9: Mapping of the detection of critical levels of coffee rust infestation (>40%) based on the CRDI index, in August 2022, for 
a coffee plantation near the city of Ribeirão de São Domingos - MG.

Figure 8: Utilization of the CRDI index in the satellite image of the Sentinel 2A collection for a coffee plantation near the city of 
Ribeirão de São Domingos - MG.
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The result of the selection of the most sensitive bands 
for coffee rust detection (B4, B7, B8A) using the RF algorithm 
follows the study carried out by Chemura, Mutanga and Dube 
(2017), which sought to discriminate the levels of rust infection 
in coffee leaves using Machine Learning methods at Sentinel-2 
MSI spectral resolutions. Two bands selected in the current work 
(B7 and B4) were identified in common as the most sensitive 
bands for detecting coffee rust, indicating a similar reflectance 
pattern between the healthy and infested plants studied. The 
divergent result of selecting the third most sensitive band in 
detecting rust infestation can be justified by the scale adopted 
in each study. Chemura, Mutanga and Dube (2017) performed 
the reflectance analyses in greenhouses with a controlled 
environment, while in the present work, the reflectance analyses 
were performed on coffee plantations in the field.

Regarding the TVI method, as seen in Figure 5, 
different area values were obtained using the selected bands 
B4, B7, and B8A as vertices of the triangle. This fact reinforces 
the ability to distinguish between a healthy and an infested 
plant of the new index, as its value represents precisely 
the area of the triangle in the multispectral graph. As seen 
in Figure 5, a healthier region will have a larger triangle area 
and, consequently, a higher CRDI index value. The opposite 
reasoning will also be valid; a more infested region will have 
a smaller triangle area and, consequently, a lower CRDI index 
value. This direct relationship is due to the reflectance pattern 
of the bands that compose the new index and the reflectance 
that plant infested by rust present.

The comparison of the CRDI index with the other 
eight vegetative indices showed good performance of the 
model for detecting coffee rust infestation as seen in Table 
6. The CRDI model obtained the best performance in the 
statistical criteria R² and RMSE, reaching values of 0.631 and 
0.103, respectively, followed by the GNDVI and NREDI1. 
The consistent performance also achieved by these two 
other indices can be justified by the bands involved in their 
calculations (NIR, Re1, and Re2), also identified in the study 
as relevant in the discrimination of coffee rust infestation.

The use of the new index to detect critical levels of 
coffee rust infestation can be a valuable tool for controlling the 
disease in large coffee plantations. The generated map provides 
essential information on the disease progression overview in 
the region, which can be used to issue phytosanitary alerts. 
In addition, the monitoring through the CRDI index can also 
be carried out month by month over the years, allowing the 
development of studies to characterize the incidence of coffee 
rust in any region of the world.

Overall, the incidence of any coffee pest or disease 
considerably affects the spectral reflectance of the crop. 
Its crucial to emphasize that the analysis conducted in this 
research attempted to focus on coffee rust, by excluding 
data with high infestation records (>50%) of leaf miner and 

cercosporiosis. However, this filtering approach also brings 
practical limitations to the work, considering that this situation 
frequently occurs in the field.

5 CONCLUSION

Based on the conducted study, three bands of the Sentinel 
2A sensor (Red, Red-edge 3, and Red-edge 4) have been 
identified as efficient for monitoring coffee rust infestation. 
The findings suggest that the newly developed vegetative index 
(CRDI) could serve as a crucial tool for monitoring this disease 
in coffee plants. Moreover, further studies using the CRDI must 
be carried out to validate the index and support global coffee 
rust control efforts. Additionally, the methodology employed in 
this research has the potential to be extended to other types of 
crops and diseases, offering improved monitoring strategies for 
this issue that impacts multiple crops.

6 AUTHORS’ CONTRIBUTION

GDMC wrote the manuscript and performed the 
experiment, EFV supervised the experiment and co-work the 
manuscript, RAS and ALRF review and approved the final 
version of the work, WPMF conducted all statistical analyses.

7  REFERENCES

ALVES, M. C. et al. Modeling spatial variability and pattern of 
rust and brown eye spot in coffee agroecosystem. Journal 
of pest science, 82(2):137-148, 2009. 

BROGE, N. H.; LEBLANC, E. Comparing prediction power 
and stability of broadband and hyperspectral vegetation 
indices for estimation of green leaf area index and canopy 
chlorophyll density. Remote sensing of environment, 
76(2):156-172, 2001. 

CHAERLE, L. et al. Presymptomatic visualization of 
plant–virus interactions by thermography. Nature 
biotechnology, 17(8):813-816, 1999.

CHEMURA, A.; MUTANGA, O.; DUBE, T. Separability 
of coffee leaf rust infection levels with machine learning 
methods at Sentinel-2 MSI spectral resolutions. Precision 
Agriculture, 18(5):859-881, 2017. 

COSTA, J. M.; GRANT, O. M.; CHAVES, M. M. 
Thermography to explore plant: Environment 
interactions. Journal of Experimental Botany, 
64(13):3937-3949, 2013. 

DOMINGUES, T.; BRANDÃO, T.; FERREIRA, J. C. 
Machine learning for detection and prediction of crop 
diseases and pests: A comprehensive survey. Agriculture, 
12(9):1350, 2022.



Coffee Science, 18:e182170, 2023

CASTRO, G. D. M. de et al.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA 
- EMBRAPA. Controle da ferrugem o cafeeiro (Hemileia 
vastatrix) no estado de Rondônia. 1999. Available 
in: <https://ainfo.cnptia.embrapa.br/digital/bitstream/
item/76700/1/FOL-7730-0001.pdf>. Access in: 18 
December 2023.

EUROPEAN SPACE AGENCY - ESA. Sentinel-2 user 
handbook. 2019. Available in: <https://sentinel.esa.int/
documents/247904/685211/Sentinel-2_User_Handbook>. 
Access in: 18 December 2023.

FERREIRA, L. G.; FERREIRA, N. C.; FERREIRA, M. 
E. Sensoriamento remoto da vegetação: Evolução e 
estado da arte. Acta Scientiarum. Biological Sciences, 
30(4):379-390, 2008. 

FLETCHER, R. S.; REDDY, K. N. Random 
forest and leaf multispectral reflectance data 
to differentiate three soybean varieties from 
two pigweeds. Computers and Electronics in 
Agriculture, 128:199-206, 2016. 

FUNK, C. et al. The climate hazards infrared precipitation 
with stations: A new environmental record for monitoring 
extremes. Scientific data, 2(1):1-21, 2015. 

GITELSON, A.; MERZLYAK, M. N. Quantitative 
estimation of chlorophyll-a using reflectance spectra: 
Experiments with autumn chestnut and maple 
leaves. Journal of Photochemistry and Photobiology 
B: Biology, 22(3):247-252, 1994. 

GENUER, R.; POGGI, J.-M.; TULEAU-MALOT, C. 
VSURF: An R package for variable selection using 
random forests. The R Journal, 7(2):19-33, 2015. 

GITELSON, A.; MERZLYAK, M. N. Spectral reflectance 
changes associated with autumn senescence of 
Aesculus hippocastanum L. and Acer platanoides L. 
leaves. Spectral features and relation to chlorophyll 
estimation. Journal of plant physiology, 143(3):286-
292, 1994.

GITELSON, A. A.; MERZLYAK, M. N. Remote sensing 
of chlorophyll concentration in higher plant leaves. 
Advances in Space Research, 22(5):689-692, 1998.

HUETE, A. et al. Overview of the radiometric and 
biophysical performance of the MODIS vegetation 
indices. Remote sensing of environment, 83(1-2):195-
213, 2002. 

JORDAN, C. F. Derivation of leaf- area index from quality 
of light on the forest floor. Ecology, 50(4):663-666, 
1969.

JUSTICE, C. O. et al. The moderate resolution imaging 
spectroradiometer (MODIS): Land remote sensing 
for global change research. IEEE transactions on 
geoscience and remote sensing, 36(4):1228-1249, 1998.

JENSEN, J. R. Sensoriamento remoto do ambiente: 
Uma perspectiva em recursos terrestres. Tradução José 
Carlos Neves Epiphanio et al., São José dos Campos/
SP, 2009. 40p.

KUSHALAPPA A. C.; ESKES A. B. Coffee rust: 
Epidemiology, resistance, and management. CRC Press, 
Boca Raton. p. 171-292, 1989. 54p.

LIU, L. et al. A disease index for efficiently detecting wheat 
fusarium head blight using sentinel-2 multispectral 
imagery. IEEE Access, 8:52181-52191, 2020.

MAHLEIN, A.-K. et al. Development of spectral indices for 
detecting and identifying plant diseases. Remote Sensing 
of Environment, 128:21-30, 2013.

MARIN, D. B. et al. Detecting coffee leaf rust with UAV-
based vegetation indices and decision tree machine 
learning models. Computers and Electronics in 
Agriculture, 190:106476, 2021. 

MATIELLO, J. B. et al. Cultura de café no Brasil: Manual 
de recomendações. Rio de Janeiro: MAPA/Procafé, 2010.

MORAES, S. A. A ferrugem do cafeeiro: Importância, 
condições predisponentes, evolução e situação no Brasil. 
Campinas: Instituto Agronômico, 1983. 50p.

MOTTRAM, R.; DE JAGER, J. M.; DUCKWORTH, J. 
R. Evaluation of a water stress index for maize using 
an infra-red thermometer. Gewasproduksie Crop 
production, 1983.

OMASA, K. Image instrumentation methods of plant 
analysis. Physical methods in plant sciences, 1990. 
243p.

PEREIRA, A. R.; CAMARGO, A. P.; CAMARGO, M. P. 
Agrometeorologia de cafezais no Brasil. Campinas: 
Instituto Agronômico, 2008. 127p.

PONZONI, F. J.; SHIMABUKURO, Y. E.; KUPLICH, T. M 
Sensoriamento remoto no estudo da vegetação. 2. ed. 
São Paulo: 176p. 2012.

POZZA, E. A.; CARVALHO, V. L.; CHALFOUN, S. M. 
Sintomas de injúrias causadas por doenças em cafeeiro. 
In: GUIMARÃES, R. J., MENDES, A. N.; BALIZA, 
D. P.  Semiologia do cafeeiro: Sintomas de desordens 
nutricionais, fitossanitárias e fisiológicas. Lavras: Editora 
UFLA, p. 68-106, 2010. 

https://ainfo.cnptia.embrapa.br/digital/bitstream/item/76700/1/FOL-7730-0001.pdf
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/76700/1/FOL-7730-0001.pdf


Coffee Science, 18:e182170, 2023

New vegetation index for monitoring coffee rust using sentinel-2 multispectral imagery

PINTER JR, P. J. et al. Remote detection of biological 
stresses in plants with infrared thermometry. Science, 
205(4406):585-587, 1979.

QUEIROZ, D. M. et al. Agricultura digital. 2 ed. São Paulo: 
Oficina de Textos, 2022. 224p.

ROUSE, J. W. et al. Monitoring vegetation systems in 
the great plains with ERTS proceeding. Third Earth 
Reserves Technology Satellite Symposium, Greenbelt: 
NASA SP-351. 1974. 

RUMPF, T. et al. Early detection and classification of 
plant diseases with support vector machines based on 

hyperspectral reflectance. Computers and electronics in 
agriculture, 74(1):91-99, 2010.

UNITED STATES DEPARTMENT OF AGRICULTURE - 
USDA. Coffee: World markets and trade. United States 
Department of Agriculture: Washington, DC, USA, 2023. 
Available in: https://apps.fas.usda.gov/psdonline/circulars/
coffee.pdf. Access in: 21 December 2023.

ZAMBOLIM, L. Current status and management of coffee leaf 
rust in Brazil. Tropical Plant Pathology, 41(1):1-8, 2016.

ZHENG, Q.; HUANG, W.; CUI, X. New spectral index for 
detecting wheat yellow rust using sentinel-2 multispectral 
imagery. Sensors, 18(3):868, 2018.

https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf
https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf

