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Homogeneous management zones (HMZs) delineation is important for the application of precision agriculture 
because farm management decisions are based on it. Diverse soil chemical characteristics are important for 
the HMZs delineation. However, summarizing several variables into homogeneous zoning while taking into 
account the spatial distribution pattern of soil chemical characteristics is a challenge. Addressing this challenge 
is important to produce HMZs oriented for practical use for the farmers. In this work, 17 soil chemical variables 
were jointly analyzed for HMZ delineation by using indicator kriging (IK) to interpolate a soil fertility index 
(SFI). Soil samples were taken from a 4.5 ha area in a quasi-regular grid at 0 - 0.20 m depths in November 2019 
(66 samples) and May 2021 (40 samples). Soil P, K, Ca, Mg, S, Na, H, Mn, Fe, Zn, B, cation exchange capacity, 
aluminum saturation, total organic carbon, base saturation, and organic matter were analyzed. In May 2021 the 
coffee yield was sampled together with the soil. Applying the SFI and then interpolating it using IK were effective 
for summarizing soil chemical variables into binary HMZs, showing a zone with higher priority for fertilization 
(therefore, lower general soil fertility) and another zone with low priority for fertilization. The summarizing 
process of several variables into binary HMZ was validated by evaluating the boxplots of each variable in each 
HMZ. Also, higher soil fertility areas presented a higher average coffee yield. Results indicated that joint use of 
SFI and IK was adequate to delineate HMZs in terms of summarizing soil fertility and separating coffee yield 
average variability. Delineating management zones by using the SFI approach is flexible for relatively limited 
sampled studies (less than one hundred samples) where machine learning and geostatistical methods may fail 
for lack of data.
1. Introduction

According to Barros et al. [12], coffee is one of the most impor-
tant crops for the Brazilian economy. According to the Specialty Coffee 
Association [63] definitions, specialty coffee “refers to the highest qual-
ity green coffee beans roasted to their greatest flavor potential by true 
craftspeople and then properly brewed to well-established SCAA devel-
oped standards.” These standards include scoring higher than 80 points 
on the quality scale and excellent or outstanding quality in fragrance, 

aroma, flavor, aftertaste, acidity, body, uniformity, balance, clean cup, 
sweetness, and overall better taste [63]. Specialty coffee refers to a mod-
ern demand for exceptional quality coffee, both farmed and brewed to a 
significantly higher than average standard and is related to the farmers 
and the brewer in what is known as the third wave of coffee [3].

Spatial and temporal variation in soil properties and meteorological 
conditions may affect coffee growth, grain development, quality, and 
yield [5,68,26,28,70,27,11,8,7,44,6]. To increase farmers’ profitability 
and environmental protection, management practices need to adapt to 
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variable site conditions [29,21], following the principles of Precision 
agriculture (PA) of considering its spatial variability [39].

A relevant topic on PA is the use of homogeneous management zones 
(HMZs), which are defined as sub-regions of a field and within which 
the effects on the crop of seasonal differences in weather, soil, man-
agement, etc. are expected to be uniform [56,18]. HMZs delineation 
is important for the application of Precision Agriculture because farm 
management decisions are based on it to make decisions on where 
and how much to apply when scheduling fertilization strategies [67]. 
However, high heterogeneity between different soil chemical variables 
makes summarizing it into unique zones a challenge that involves agro-
nomical, mathematical, and computational aspects [22]. Ignoring the 
heterogeneity may result in the under-application or over-application 
of fertilizers at specific sites [30,16].

Most of the researches about HMZs focus on using ordinary kriging 
to interpolate variables to use them as input for clustering such as fuzzy 
k-means cluster analysis [33,48], fuzzy c-means clustering algorithm 
[10,46] or apply a dimensionality reduction tool over these interpolated 
maps as the principal components analysis (PCA) [53,78,41,23,48], 
spatially-weighting PCA [9,32], or factorial kriging [18,20,19]. Accord-
ing to the geostatistical paradigm, any soil or crop attribute is consid-
ered a random regionalized variable that varies continuously and its 
variation can be described by a spatial covariance function [47]. The 
kriging-based technique can provide the best linear unbiased estima-
tion for the soil properties at unsampled locations [38,25]. However, 
the use of geostatistical methods as the ordinary kriging for interpo-
lating maps is not enough to ensure the delineation of HMZs, since it 
requires summarizing several maps into a single one in a rational way in 
terms of agronomical and practical reasons, what is not always achiev-
able by using pure computation methods like clustering [67,66,2]

Synthesizing different chemical variables is a challenge because 
when adding high variability to a model, the interpretation of the model 
becomes more complex [36]. Addressing this challenge leads to a gain 
of knowledge and applicability of the HMZs maps because usually, 
HMZs have an arbitrary number of zones, decided by the agronomi-
cal expert together with the farmer [40]. Nevertheless, in PA it may 
be sensible to divide the field into a few practical management zones. 
To ensure spatial contiguity because of spatially continuous variation 
[52,64,22], a probability-based approach in a smoothed manner may 
be used to make the HMZs more useful and applicable in the field.

In this context, the objective of this study was to propose a novel 
approach named soil fertility index (SFI) for summarizing several spatial 
variables in order to delineate binary homogeneous zones (HMZs). In 
the case study, we summarized 17 chemical soil variables in a coffee 
crop from Southern Minas Gerais over two years. Finally, we analyze the 
relation between HMZs delineation and observed coffee yield samples 
over the last year.

2. Material and methods

2.1. Description of the study site and agronomic practices

The field experiment was carried out at the municipality of 
Paraguaçu, southern Minas Gerais, Brazil, in a 4.5 ha area of coffee 
cultivation (Coffea arabica L.), cultivar Catucai Amarelo SL 134, trans-
planted in 2012, with spacing of 3.8 m between rows and 0.75 m 
between plants, totaling 3500 plants ha−1. Uniform fertilization over 
the entire coffee plot was done directly on the soil in November 2019 
and May 2021, by applying around 42, 10, and 42 kg.ha−1 of N, P, K.

The maximum altitude of this area is 894.3 m. The field bound-
aries and grid sampling point were delimited in the studied area using 
a GPS (Garmin GPSmap 62s). The soil of the area was classified as Ox-
isol according to the Brazilian soil classification system [62] and the 
local climate is characterized as mild, tropical high-altitude, with mod-
erate temperatures, hot and rainy summer, classified as Cwa according 
2

to Köppen’s classification. Fig. 1 shows the study area and soil sampling 
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distribution in November 2019 and May 2021 overlapping an image 
taken on April 11 2019 by an original non-interchangeable camera on-
board an unmanned aerial vehicle (UAV) model DJI Mavic 2 Pro, using 
an interface software “DJI Ground Station Pro”. The mosaic building 
software was the OpenDroneMap [51] with the flight at 40 m height. 
The image has a ground sample distance of 0.94 cm/pixel−1.

2.2. Soil sampling and laboratory analyses

A quasi-regular sampling grid was delimited in the studied area with 
points spaced by grid variable by 20 m x 10 m, totaling 66 georef-
erenced sampling points in November 2019, and with points spaced 
by grid variable by 30 m × 10 m, totaling 40 georeferenced sampling 
points in May 2021. In May 2021 coffee yield was sampled together 
with soil in groups of 2 trees around the spatial position of soil samples; 
for this reason, the sampling grid changed. Silva et al. [67] explored 
how soil samplings for geostatistical studies in Brazil are low sampled, 
in most of the cases less than one hundred sample points are collected, 
even for areas larger than 100 meters.

Soil samplings were performed by collecting subsamples under the 
crown projection in the layer of 0-20 cm, using a Dutch auger, in each 
plant composing the sampling point. These subsamples were homoge-
nized to form a composite sample representative of the point in question 
and sent to the Laboratory of Soil Analysis. The following soil chemical 
attributes were evaluated: pH (CaCl2 extractor), availability of phospho-
rus (P) (Mehlich), availability of potassium (K) (Mehlich 1 extractor), 
availability of sodium (Na) (Mehlich 1 extractor), availability of iron 
(Fe) (Mehlich 1 extractor), availability of manganese (Mn) (Mehlich 1 
extractor), availability of zinc (Zn) (Mehlich 1 extractor), availability of 
boron (B) (wet extractor), exchangeable calcium (Ca2+) (1 mol L−1 KCL 
extractor), exchangeable magnesium (Mg2+) (1 mol L−1 KCL extractor), 
sulfur (S) (phosphate extractor), aluminum saturation (m), hydrogen 
(H), cation exchange capacity (CEC), base saturation (V), and organic 
matter (OM), following the methodology described by Alvarez et al. [4].

2.3. Indicator kriging (IK)

Indicator kriging (IK) is based on assigning a binary indicator of 1 
or 0 depending on whether the observation is greater or less than a 
threshold value. Also, IK is a non-parametric approach. Non-parametric 
geostatistics is based on no assumed parametric model of error dis-
tribution and makes the modeling of uncertainty a priority [35]. This 
uncertainty is modeled as a probability distribution of the variable of 
interest rather than an estimation error, as in kriging [65]. For the IK 
approach, the experimental indicator semivariogram was estimated by 
Eq. (1):

𝛾𝐼(ℎ, 𝑧𝑘) =
1

2𝑁(ℎ)

𝑁(ℎ)∑
𝑖=1

[𝐼(𝑢𝑎, 𝑧𝑘) − 𝐼(𝑢𝑎 + ℎ, 𝑧𝑘)]2 (1)

where 𝛾𝐼(ℎ, 𝑧𝑘) is the estimated semivariogram; 𝐼(𝑢𝑎, 𝑧𝑘) and 𝐼(𝑢𝑎 +
ℎ, 𝑧𝑘) are the observed values of the indicator coding at location 𝑢𝑎 and 
𝑢𝑎 + ℎ; 𝑁(ℎ) is the number of observation pairs separated by distance 
h.

The indicator semivariogram measures how often two values of Z 
separated by a vector h are on opposite sides of the threshold value 𝑧𝑘 .

IK requires that the attribute values be modified according to a 
non-linear transformation, which is called indicator coding. Lloyd and 
Atkinson [45] cite that indicator kriging can also be calculated from 
cutoffs of a continuous variable. Statistical parameters and geostatisti-
cal analyses were performed for all variables, focusing on the spatial 
continuity and dependence of chemical soil properties.

2.4. The soil fertility index (SFI)

For this work, using a new binary variable F for each soil variable 

observed value is proposed according to Eq. (2):
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Fig. 1. UAV image of the study area with soil sampling points in November 2019 and May 2021.
{
𝐹 = 0 if Z is classified as “bad”
𝐹 = 1 if Z is classified as “good”

}
(2)

where 𝐹 is the binary indicator of fertility status and 𝑍 is the observed 
values of each variable.

Using a simple percentage index (Eq. (3)) to convert single indicator 
rules (from Eq. (2)) into the “fertilization needs” index (SFI), the higher 
this percentage is, the higher the number of variables are classified as 
“higher fertilization need”:

𝑆𝐹𝐼 = 100
𝑁∑
𝑖=1

𝐹𝑖

𝑁
(3)

where 𝐹𝑖 is the binary indicator of fertilization needs for each soil vari-
able observed value, 𝑁 is the number of variables.

The IK semivariogram will be set by applying an arbitrary threshold 
value (𝑧𝑘) for the SFI.

2.5. Performance evaluation

Prior to the application of IK algorithms, the SFI observed values 
were checked by the Kolmogorov–Smirnov (K–S) test to verify whether 
they were normally distributed [42].

The evaluation of the performance of IK application was performed 
based on the mean error (ME), mean squared error (MSE), kriged re-
duced mean error (KRME), and kriged reduced mean squared error 
(KRMSE) generated by the cross-validation procedure. The ME (Eq. (4)), 
MSE (Eq. (5)), KRME (Eq. (6)), and KRMSE (Eq. (7)) of the IK estimates 
were calculated accordingly:

𝑀𝐸 = 1
𝑁

𝑁∑
𝑖=1

(𝑧0,1 − 𝐼𝑝,𝑖) (4)

𝑀𝑆𝐸 = 1
𝑁

𝑁∑
𝑖=1

(𝑧0,1 − 𝐼𝑝,𝑖)2 (5)

𝐾𝑅𝑀𝐸 = 1
𝑁

𝑁∑
𝑖=1

(𝑧0,1 − 𝐼𝑝,𝑖)
𝑠

(6)

1
𝑁∑[ (𝑧0,1 − 𝐼𝑝,𝑖)

]2
3

𝐾𝑅𝑀𝑆𝐸 =
𝑁

𝑖=1 𝑠
(7)
where 𝑧0,1 is the observed value at location i, 𝐼𝑝,𝑖 is the predicted value 
at location i, 𝑁 is the number of pairs of observed and predicted values, 
and 𝑠 is the standard deviation of the observed values.

The mean error and kriged reduced mean error values near zero 
indicates a better model prediction performance [66]. As a practical 
rule, the MSE should be less than the variance of the sample values and 
KRMSE should be in the range 1 ± (2

√
2)/N [1].

The spatial dependence ratio was calculated as the proportion (per-
centage) of the nugget effect in relation to the sill (Eq. (8)), which, 
according to [17], can be classified as: (a) strong spatial dependence, <
25%; (b) moderate spatial dependence, 25 to 75%; and (c) weak spatial 
dependence, > 75%.

𝐷𝐷 =
𝐶0

𝐶0 +𝐶
× 100 (8)

where 𝐶0 is the nugget effect and 𝐶0 +𝐶 is the sill.
The nugget effect (𝐶0) is a parameter of the semivariogram that 

shows the non-explained variability, which may occur due to mea-
surement errors or non-detected variation by the sampling scale. The 
structural component (𝐶) corresponds to the difference between the sill 
and the nugget effect and represents the spatially structured semivari-
ance [17]. The nugget effect was expressed in relation to the sill to 
simplify the comparison of the spatial dependence degree (𝐷𝐷) of the 
studied variables.

2.6. Methodology overview and validation of the HMZ

Fig. 2 presents an overview of the methodology presented in pre-
vious sections. This is a general methodology, applicable for different 
datasets and summarizing needs. A validation strategy for applications 
in coffee crops is presented here.

Boxplots of the soil chemical variable samples in each HMZ obtained 
by IK were generated to evaluate each variable individually. It could 
indicate the ability of the methodology to summarize and generalize 
several soil chemical variables without losing local information, crucial 
for the actual application of fertilizers.

A boxplot of coffee yield in each HMZ in May 2021 was generated 
to assess the ability of the methodology to significantly separate higher 

from lower yields following the soil fertility. Also, analysis of variance 
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Fig. 2. Overview of the methodology for summarizing several soil chemical variables and producing binary HMZs.
(ANOVA) was performed to assess the significance of coffee yield dif-
ferences in each HMZ.

2.7. Open-source software for research

All statistical and modeling procedures were performed with the R 
software [58] using the following packages: data.table [24], devtools 
[77], ggplot2 [76], gstat [55], and tidyverse [75].

3. Results

3.1. Plot characterization

The basic statistical parameters of all the analyzed variables are pre-
sented in Table 1. The higher the CV, the more heterogeneous the data 
set. Soil pH (extracted using CaCl2), OM, TOC, CEC, Fe, and H had 
medium variability, with a coefficient of variation (CV) between 10% 
and 30%. All other soil chemical variables present high variability, with 
a coefficient of variation (CV) higher than 30%. pH values showed a 
trend in soil acidity, presenting an average pH of 4.55. The results re-
ferring to the variables pH, Ca, and Mg are similar to those reported by 
Santos et al. [61]. The result of the variables P, K, CEC, 𝑚 and OM is 
similar to that found in [69].

A Pearson correlation matrix summarized the relationship between 
the soil chemical variables and yield data of the coffee datasets (Ta-
ble 2). The correlation matrix showed both positive and negative cor-
relations between some soil nutrients. However, the correlation matrix 
did not provide a clear interpretation regarding soil nutrients concern-
ing yield suggesting the relationships may be non-linear and a more 
complex approach is needed to find HMZs.

Considering the high variability of almost all soil chemical variables, 
the study area can be considered suitable for receiving different and 
site-specific management practices as long the soil samples show differ-
ent chemical behaviors in different spatial positions of the coffee crop. 
As there are heterogeneous variables that generate variability in crop 
yields, the most used techniques in data analysis for developing HMZs 
are the geomathematical and geostatistical models [13].

The 2021 frost caused damage to crops, and one of the factors is 
the low level of K, which is one of the main drivers of frost resistance 
4

[71,34].
3.2. Conversion of soil chemical variables into SFI

The soil chemical variables were transformed into probability in-
dicators following Eq. (2) by using the cutoff thresholds presented in 
Table 3.

After performing the coding step, the SFI (Eq. (3)) was calculated. 
Mean, variance, coefficient of variation, minimum value, maximum 
value, K-S value, skewness, and kurtosis of SFI were obtained (Table 4) 
to verify the existence of a central trend and to determine the disper-
sion of the index values. According to [14], these standard statistical 
parameters are useful in evaluating the magnitude of the data disper-
sion around a central tendency value. Based on the values presented 
in Table 3, the SFI is distributed normally, as indicated by the prox-
imity to zero for the skewness and kurtosis coefficients [66]. Also, K-S 
values are inside the range of its critical-values (𝛼 = 0.34). Data nor-
mality does not constitute a requisite in geostatistics [54] but it has 
been noticed empirically as an important property for improving semi-
variogram structuring [14]. According to the preliminary exploratory 
analysis, it was assumed that distributions were symmetric enough and 
long-tailed. It was also assumed a non-occurrence of proportional effect, 
enabling the development of well-defined semivariograms.

3.3. Definition of the HMZs by using indicator kriging (IK)

The geostatistical analysis of SFI for interpolation was performed 
by fitting the theoretical semivariogram model to the experimental 
semivariogram. The IK interpolation is based on this model. The main 
variables of this analysis are the nugget effect (𝐶0) and the structural 
component (𝐶). The range (𝐴) of the experimental semivariogram can 
determine the spatial dependence limit; thus, samples that show dis-
tances between them higher than the value of the range have random 
distributions and are independent of each other, with no restrictions for 
the use of classic statistics [54].

Anisotropic semivariograms of SFI were simultaneously calculated 
for four directions with 45◦ (not shown) angular increments and ± 
22.5◦ angular tolerance. No sign of relevant anisotropy was found in 
the observations. A relevant anisotropy sign could be found when the 
sill, range, and nugget are different in different directions. The spheri-
cal model was best adjusted to the experimental semivariogram. Fig. 3
presents the experimental omnidirectional semivariogram (points) and 
the spherical model fitted (curve). Table 5 shows the parameters for the 
theoretical semivariogram model. Here, a DD of almost 48% and 51% 
were achieved in November 2019 and May 2021 respectively, showing 

that the SFI presented moderate spatial dependence.
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Table 1

Descriptive statistics of soil chemical variables in the coffee crop.

November 2019 May 2021

Attributes Min Mean ± SD Max CV Min Mean ± SD Max CV

pH (CaCl2) 3.80 4.55 ± 0.52 5.60 11.34 3.8 4.34 ± 0.41 5.3 9.45
CEC 68.00 101.76 ± 17.39 144.30 17.09 72.1 100.79 ± 12.81 130.8 12.71
P (mmolc dm−3) 2.80 73.83 ± 70.63 388.6 95.66 28 105.78 ± 58.31 332 55.12
K (mmolc dm−3) 1.70 4.72 ± 1.90 10.30 40.26 0.52 1.34 ± 0.84 4.2 62.69
Ca (mmolc dm−3) 5.00 22.35 ± 12.37 56.00 55.35 3 17.23 ± 13.14 50 76.26
Mg (mmolc dm−3) 1.00 6.56 ± 4.17 17.00 63.56 1 5.95 ± 4.3 21 72.27
S (mmolc dm−3) 8.00 22.47 ± 11.57 62.00 51.48 5 31.2 ± 32.51 201 99.23
Na (mmolc dm−3) 0.00 0.16 ± 0.13 0.80 78.67 0.07 0.13 ± 0.08 0.4 61.54
H (mmolc dm−3) 20.00 63.67 ± 24.96 117.00 39.20 30 72.15 ± 21.87 105 30.31
V (%) 6.00 35.36 ± 20.32 76.00 57.46 5 25.6 ± 19.09 70 74.57
m (%) 0.00 15.34 ± 14.51 63.03 94.60 0 21.03 ± 20.91 64.52 99.43
OM (g dm−3) 17.00 23.33 ± 3.57 38.00 15.32 15 26.38 ± 3.22 33 12.21
TOC (g dm−3) 10.00 13.56 ± 2.12 22.00 15.64 9 15.38 ± 1.81 19 11.77
Zn (mg dm−3) 1.90 7.25 ± 4.9 22.50 67.56 2.4 7.06 ± 4.35 21.5 61.61
Mn (mg dm−3) 1.00 9.70 ± 5.91 24.50 60.87 3.5 12.16 ± 7.62 28.5 62.66
Fe (mg dm−3) 11.00 21.52 ± 4.76 34.00 22.11 27 35.25 ± 5.92 52 16.79
B (mg dm−3) 0.67 1.34 ± 0.46 2.12 34.07 0.17 0.54 ± 0.26 1.63 48.15
Yield (kg.2 trees−1) - - - - 0.27 3.05 ± 2.60 10.18 85.26

Min – Minimum value; Max – Maximum value; CEC – cation exchange capacity; SD – Standard deviation; CV 
– Coefficient of variation; OM – organic matter; m – Aluminum saturation; TOC – Total Organic Carbon; V – 
Base saturation.

Table 2

Pearson correlation matrix for coffee soil chemical attributes and yield (Y) in May 2021 at significance of 𝑝 < 0.05. Bold values are higher 
or equal to the absolute value of 0.7.

P OM TOC pH K Ca Mg Na H CEC V m S B Fe Mn Zn Y

P 1.0
OM 0.4 1.0
TOC 0.4 1.0 1.0
pH -0.3 -0.2 -0.2 1.0
K -0.3 -0.3 -0.2 0.5 1.0
Ca -0.2 -0.1 -0.1 1.0 0.5 1.0
Mg -0.1 0.0 0.0 0.9 0.3 0.9 1.0
Na -0.2 0.0 0.0 0.5 0.1 0.5 0.6 1.0
H 0.4 0.4 0.4 -0.9 -0.6 -0.9 -0.7 -0.4 1.0
CEC 0.5 0.6 0.6 -0.5 -0.5 -0.3 -0.2 0.0 0.7 1.0
V -0.3 -0.2 -0.2 1.0 0.6 1.0 0.9 0.5 -0.9 -0.5 1.0
m 0.3 0.2 0.1 -0.8 -0.5 -0.8 -0.7 -0.3 0.8 0.6 -0.8 1.0
S 0.2 0.3 0.4 -0.1 -0.4 0.0 0.0 0.1 0.1 0.2 -0.1 0.0 1.0
B -0.3 -0.2 -0.2 0.5 0.5 0.4 0.3 0.0 -0.3 -0.2 0.4 -0.2 -0.1 1.0
Fe 0.1 -0.1 -0.1 -0.5 -0.3 -0.5 -0.4 -0.1 0.5 0.3 -0.5 0.6 0.1 -0.2 1.0
Mn -0.4 -0.1 -0.1 0.7 0.5 0.7 0.5 0.4 -0.7 -0.4 0.7 -0.6 -0.2 0.3 -0.6 1.0
Zn -0.3 -0.1 -0.1 0.7 0.4 0.7 0.6 0.5 -0.6 -0.2 0.7 -0.4 -0.2 0.2 -0.5 0.7 1.0
Y 0.1 0.2 0.2 -0.3 -0.3 -0.3 -0.3 0.1 0.4 0.3 -0.4 0.4 0.3 -0.2 0.3 -0.4 -0.2 1.0

CEC – cation exchange capacity; OM – organic matter; m – Aluminum saturation; TOC – Total Organic Carbon; V – Base saturation; Y -
Coffee yield.
Table 3

Conditional cutoff thresholds for soil chemical attributes under 
coffee cultivation. If conditional is satisfied the 𝐹 = 1, else-
wise, 0.

Attributes Condition Attributes Condition

V (%) > 50.00a m (%) < 50.00a

pH (CaCl2) > 5.40a OM (g dm−3) > 4.00a

CEC > 80.00b TOC (g dm−3) > 15.00c

H (mmolc dm−3) > 36.00b Zn (mg dm−3) > 3.00c

P (mmolc dm−3) > 50.00b Mn (mg dm−3) > 20.00c

K (mmolc dm−3) > 4.00b Fe (mg dm−3) > 1.50c

Ca (mmolc dm−3) > 30.00b B (mg dm−3) > 1.00c

Mg (mmolc dm−3) > 10.00b S (mmolc dm−3) > 10.00c

Na (mmolc dm−3) > 0.50c

a [4]
b [74]
c [37]

The range of the semivariogram is the maximum distance of the 
5

correlated measurements. It can be a sufficient criterion for the selection 
Table 4

Descriptive statistics for SFI under a coffee crop.

Statistical parameters SFI (2019) SFI (2021)

N 66 40
Minimum 37.50 31.25
Maximum 81.25 75.00
𝜇 56.15 51.09
Median 56.25 50.00
𝜎 12.23 8.94
Variance 149.63 79.90
CV (%) 21.78 17.50
Kurtosis -0.48 -0.40
Skewness 0.34 0.16
K-S 0.25 0.29

N – number of samples; CV - Coefficient of vari-
ation equals standard deviation (𝜎) divided by 
sample mean (𝜇); 𝐾 − 𝑆 – Kolmogorov–Smirnov 
test.
of sampling design in mapping soil properties [73,15]. In both years, the 
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Fig. 3. Experimental semivariogram and theoretical semivariogram model for the SFI under coffee cultivation in November 2019 and May 2021.
Table 5

Parameters for spherical semivariograms models for SFI in 
November 2019 and May 2021.

Statistical parameters 𝐶0 C A DD (%)

2019 0.10 0.11 50.00 47.62
2021 0.15 0.1425 50.00 50.93

𝐶0 – nugget effect; C – sill; A – range; DD - spatial depen-
dency index from [17].

Table 6

Cross-validation results for IK.

Evaluation metric ME MSE KRME KRMSE

2019 0.010 0.212 0.023 0.965
2021 0.017 0.235 0.031 0.984

ME – mean error; MSE – mean square error; KRME – 
kriged reduced mean error; KRMSE – kriged reduced 
mean square error; IK – indicator kriging.

best semivariogram model was found with the same range, confirming 
the spatial dependency with values under a sampling interval lower 
than 50 m (Table 5).

Fig. 4 presents the kriged map created based on a semivariogram 
analysis of SFI. Fig. 4a;c shows the estimation of SFI spatial distribution 
across the coffee crop. In a binary approach, two zones can be produced 
to separate the field into a higher priority for agronomical interven-
tions and a lower priority. The HMZs map (Fig. 4b;d) was developed by 
considering pixels with SFI < 0.5 as an area with higher priority for fer-
tilization, otherwise, the pixels were considered as an area with lower 
priority for fertilization.

The error statistics such as ME, MSE, KRME, and KRMSE were esti-
mated and presented in Table 6. The error terms ME, and KRME were 
close to zero and KRMSE were close to one. It indicates the IK modeling 
presents good results.

The remarkable continuity and smoothness with increasing distance 
between samples is of importance. Together with the persistence of the 
range (A) of the semivariogram in both years, this shows that HMZs de-
lineation was effective and the main future improvement will be sample 
densification with distances between samples smaller than A.

Summing up, the maps of IK graphically realize the fusion of the 
17 soil chemical variables into a single indicator, providing a partition 
of the field into binary zones with a higher fertilization need (SFI <
50%) and a lower need (SFI > 50%). However, in order to interpret the 
6

variations shown in the previous maps (Fig. 4) in terms of actual soil 
characteristics, which could have an impact on agronomic management, 
a direct comparison between HMZs based on the soil sampling of the 
shallow 0–0.20-m depth was necessary.

3.4. Validation of the HMZs

Figs. 5 and 6 show the boxplot of each soil chemical variable in each 
HMZ in November 2019 and May 2021 respectively. The soils from both 
HMZs had coherent soil chemical behaviors. Soils on low priority for 
fertilization zones presented higher values of macronutrients and mi-
cronutrients, and lower values of H and m. Soils on higher priority for 
fertilization zones effectively presented lower nutrient concentrations 
and higher values of H and m. These coherent results demonstrate that 
summarizing information by using the SFI preserved the spatial infor-
mation from the soil samples and avoided arbitrary choices about the 
number of HMZs. Incorporating information improves automatization 
and promotes a more focused participation of the farmers in the final 
decisions instead of modeling decisions, making the process less subjec-
tive [49].

Fig. 7 shows the spatial distribution of coffee yield samples across 
the HMZs and the boxplot in each HMZ. The outlier P20 (20th soil sam-
ple in the plot b) is closer to the boundary between the binary HMZs, 
indicating a lack of information in this area.

15 coffee yield samples are included in the low priority for fertiliza-
tion area, presenting an average yield of 3.2 ± 2.87 kg.2 trees−1, while 
23 coffee yield samples are included in the high priority for fertilization 
area, presenting an average yield of 2.21 ± 1.93 kg.2 trees−1. Accord-
ing to the ANOVA analysis (Table 7), no significant difference can be 
inferred from the coffee yield when comparing the different HMZs. The 
reason is soil fertility cannot explain all the coffee yield variation since 
weather extreme events in Southeast Brazil negatively impacted and 
devastated crops in mid-2021.

4. Discussion

4.1. Incorporating soil chemical summarized information into precision 
agriculture

In the present article, the methodology is focused on converting the 
relevant variables on soil fertility based on agronomical knowledge. The 
results of the present methodology (Fig. 2) showed a good summarizing 
ability, which produced HMZs that separated several soil chemical vari-
ables into two zones and the information was well preserved as shown 
by the boxplots (Fig. 5 and 6). This separability between HMZs can 

be seen in the boxplots, as the boxplot in the high-priority fertilization 
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Fig. 4. Maps of IK (a;c) of the SFI index and binary HMZs (b, d) for a coffee crop from Southern Minas Gerais in November 2019 and May 2021. Legend is in the 
middle.

Table 7

ANOVA (single factor) analysis grouping the coffee yield in the two HMZs (high 
and low priority for fertilization) in May 2021. Significant different is identified 
for F > Critical value of F. SS – sum of squares; df – degrees of freedom; MS – 
mean squares.

Source of Variation SS df MS F P-value Critical F-value

Between HMZs 4.42 1 4.42 0.76 0.40 4.11
Within HMZs 210.38 36 5.84
Total 214.80 37
zone shows lower values for the soil chemical variables, i.e. these are 
the zones that concentrate the lowest fertility.

Different soil variables can indicate different aspects of soil fertil-
ity. According to [60], pH is an indicator of the biological-physical-
chemical condition of the soil. An excessively acidic soil (pH very low) 
or excessively alkaline soil (pH very high) is less favorable for agricul-
ture because there will be less oxygen, less organic matter, less water 
retention and infiltration, and more toxic ions. High soil acidity can gen-
erate high levels of Al3+ and Ca while Mg deficiency in the plant, affects 
the full development of plants and the achievement of high yields since 
the low pH reduces the availability of some nutrients and increases the 
toxic effect of aluminum on plants [74]. The macronutrients Ca and 
Al are constituents of the minerals and organic matter of the substrate 
where the plant develops and are also found dissolved in the soil so-
lution [60]. On the other hand, the values of 𝑚 are the percentage of 
soluble aluminum in relation to the exchangeable base (Ca2+, Mg2+, 
K+) and aluminum content in the soil CEC. Therefore, it determines the 
alitic or aluminaic characteristics of the soil.

V represents the percentage of CEC occupied by bases (Ca2+, Mg2+, 
K+, and Na+) about the exchange capacity determined at pH 7. At pH 
7 soils were considered 100% base-saturated and had zero base satura-
tion at pH 4. Soils with V equal to or greater than 50% are denominated 
eutrophic soils (tending to present higher fertility). Soil with base satu-
7

ration values less than 50% are denominated dystrophic soils (tending 
to present lower fertility). Base saturation (V) can indicate the amount 
of cations, such as Ca, Mg, and K, and identify if the soil is acidic at a 
level that is harmful to the crop. The calculation of Al saturation (m) 
is considered the most correct form to evaluate Al toxicity in the soil. 
The soil OM contributes to an increase in soil CEC which can serve to 
retain and increase the reserve of soil cations and improve soil struc-
ture physics and soil water relations. Soils with higher OM content are 
associated with increased population and diversity of microorganisms 
[50].

It is important to underline that the coffee yield showed a numerical 
difference (although not statistically significant) on the different HMZs. 
The coffee yield is an independent variable in the present methodology, 
different from the methods based on PCA and clustering. Here, the in-
dicators are based on individual cutoffs and agronomic knowledge, and 
the variables used in the modeling are not necessarily chosen based on 
their correlation with coffee yield. This methodology can be particu-
larly useful in situations where resources are scarce for large samples, 
and agronomic knowledge can be used to compensate for the smaller 
number of samples.

4.2. Applicability of HMZs from SFI and IK

By identifying fields where the relationship between soil and yields 

is fundamentally different from others, unique management areas could 
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Fig. 5. Boxplots of 17 soil chemical variables sampled in November 2019 grouped by the binary HMZs for a coffee crop from Southern Minas Gerais.
be delineated. Usually, HMZs are delineated from a single variable, such 
as altitude [40] or soil apparent electrical conductivity [56,64]. How-
ever, multivariate approaches for delineating HMZs are needed for a 
more general and comprehensive application of PA [52,49,22]. Also, 
making the HMZ a brief spatial summary of several characteristics from 
the field is a challenge because both spatial and intrinsic heterogeneity 
make the HMZs too general for real applications [22]. Reduce the scope 
of the HMZs into a group of variables like the soil fertility, or weather 
drivers, yield factor, etc, could make multivariate approaches easier to 
understand in the field and more appropriate for the practical use by 
the farmers in the field.

In the multivariate approach, the most commonly used methodolo-
gies are the joint use of dimensionality reduction techniques such as 
PCA and clustering techniques such as c-means or k-means. When ap-
plying a PCA, the research objective usually is to find the key loading 
factors to explain a main independent factor. For example, in [56] soil 
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properties and nutrient concentrations were compared with apparent 
electrical conductivity (ECa) using principal components (PC)-stepwise 
regression and ANOVA. The dimensionality reduction in this case means 
using fewer variables to explain another one with regression modeling. 
In a second moment, clustering is applied to group the principal com-
ponents into groups (the HMZs).

Our results suggest that the binary HMZs are well suited for use 
in precision agriculture where the assessment of within-field variation 
is assumed as a basis for variable-rate application (VRT) of agronomic 
inputs. For farming by HMZs to be effective, there should be a strong 
and persistent relationship between the HMZs, delineated with soil and 
crop properties, and the spatial patterns in yield over time.

The area of most intensive effort within PA has been the site-specific 
management of nutrients (SSNM) guided for HMZs, generally via vari-
able rate technology (VRT). This concept of site-specific management is 
intuitively appealing [57], however, its adoption has been slower than 
expected because it involves social, agronomic, economic, and techno-

logical changes [59].
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Fig. 6. Boxplots of 17 soil chemical variables sampled in May 2021 grouped by the binary HMZs for a coffee crop from Southern Minas Gerais.
A smoothed zoning as presented here, without fragmented spatial 
distribution, is highly desirable, because usually high accuracy clas-
sifications and clustering methods produce unrealistic maps for site-
specific management, with isolated pixels and corners which are ig-
nored in real applications. Also, a smoothed zoning doesn’t need to be 
redesigned by hand at the end of modeling, just needs a threshold to 
separate different zones. A binary approach was adopted, but to pro-
duce more zones, the maps of IK (Fig. 4a;c) of the SFI index can be split 
into more than one cutoff value, producing more than two zones.

In this work, two years of data were used separately from coffee 
plots under uniform management. For this reason, in practice, HMZs 
obtained from May 2021 would be actually used in a PA strategy.

4.3. Temporal instability of HMZs and nutrient mobility on soil

The temporal stability of the HMZs is another important issue in 
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site-specific agriculture, which might require the extension of the cur-
rent methodology for new experiments with the same sampling design 
over different periods. The instability of spatial variability is due to 
the mobility of soil nutrients, which are transferred from year to year, 
and nutrient transport rates depend on local conditions [43,72]. The 
most mobile nutrients are usually phosphorus (P), potassium (K), and 
nitrogen (N) [72]. For example, [43] found that P transport rates were 
heterogeneous due to local topographic and chemical variations in the 
soil.

Checking the plot characterization shown in Table 1, it is clear the 
relevant difference of the chemical soil variables along the time. The 
mobility of P can be detected by the decreasing of CV from 95.66% 
to 55.12%, while for S the CV increased from 51.48% to 99.23%, and 
Ca, Na, K, and V had a CV difference between 2019 and 2021 around 
15-20%. On the other hand, OM, 𝑚, and TOC are highly sensible to 
tillage and fertilization (using single rate application for this case). 
In Table 1 it is shown that the CV for 𝑚 increased from 63.03% to 

99.43%, for OM the CV decreased from 38% to 12.21%, and for TOC 
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Fig. 7. Validation of HMZs in May 2021. This variable is independent of the HMZ delineation procedure. a) is the boxplot of yield in each HMZ in May 2021 and b) 
is the HMZ together with the spatial position of yield samples following its original enumeration. The outlier P20 in the plot a) is the 20th soil sample in the plot b).
from 22% to 11.77%. Consequently, the HMZs can change from year to 
year.

Knowing the mobility of nutrients in the soil is intrinsic to the dy-
namics of the soil-water-plant interface [72] makes the PA paradigm 
even more important, as it demonstrates the need for periodic mapping, 
and consequently the possibility of rethinking the recommendations 
made and changing strategies, as well as detecting more complex prob-
lems that will require further studies.

4.4. Current limitations and future research

Several questions remain to be answered before farmers adopt a 
site-specific approach for orchard management, such as: Are patterns of 
yield variation stable enough from year to year, to be predictable? Do 
yield patterns of variation match homogeneous zones? Are there eco-
nomic and environmental benefits for targeted management? Several 
authors have shown the inconsistency over time of spatial variability 
patterns of important crop and soil properties such as yield, protein 
content, and plant available N [56,49,22,2]. A common finding is that 
temporal variability is generally much higher than spatial variability 
and the definition of stable low- and high-yielding potential zones is 
very uncertain [14,54,67,59,72]. In this context, a stable configuration 
of HMZs is highly desirable but not always achievable.

The combined analysis of MN, SSC, and VR results confirms the rec-
ommendation of the field partition into two classes. However, other 
scenarios and combinations can be tested. Gavioli et al. [31] assessed 
the field partition into 2, 3, and 4 HMZs using a PCA-based method 
and found the split into 2 zones obtained smoother boundaries with the 
best multidimensional variance reduction. Córdoba et al. [22] and Per-
alta and Costa [56] also considered two classes HMZs as the best choice 
because is a easier field operations choice.

Future research might focus on new experiments with the same sam-
pling design along different periods, looking for more evidence about 
the robustness of the methodology to ensure the assurance of the farm-
ers in its application. Farmers can focus on managing the variation 
within coffee complete cycle (around 1 year), and a better strategy 
might be to combine the use of HMZs with crop-based in-season re-
mote sensing. The latter information could be incorporated efficiently 
into a decision support system software aimed at supporting farmers in 
their agricultural management. Also, in future research this methodol-
ogy will be compared with others, for example with those based on PCA 
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and clustering.
5. Conclusions

In this work, a simple percentage index was proposed for sum-
marizing several soil chemical variables into a single index and then 
interpolating it by using IK to produce binary HMZ for PA purposes. On 
more practical grounds, we found that the joint use of SFI and IK was 
especially useful when the available data were limited and smoothed 
HMZs were easier to communicate to the farmers.

In light of the experimental results, it is important to underline that 
the main objective of the paper was to propose a methodology to sum-
marize different soil chemical variables in order to produce a partition 
of the field into HMZs characterized by similarities in soil chemical 
properties. The challenge that was faced was to prove that using a 
simple indicator approach can produce HMZs preserving the main soil 
chemical characteristics. Also, indirectly it was possible to separate the 
coffee yield in the different HMZs. From this perspective, the results 
were quite positive and promising.

The concluding remarks from this study are:

1. SFI was able to summarize several soil chemical variables into a 
single index;

2. The IK technique was efficient in delineating binary management 
zones in Oxisols under coffee cultivation by interpolating the soil 
fertility index;

3. Boxplots of each soil chemical variable showed coherent behaviors 
into each HMZ, demonstrating that no agronomical information 
were lost after summarizing data using SFI;

4. Boxplot of coffee yield in each HMZ showed the soil fertility deficit 
drove a decrease on coffee yield.

5. This methodology can be particularly useful in situations where 
resources are scarce for large samples, and agronomic knowledge 
can be used to compensate for the smaller number of samples.
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