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Abstract: Tree height is a crucial variable in forestry science. In the current study, an accurate height
prediction model for Juniperus procera Hochst. ex Endl. trees were developed, using a nonlinear
mixed-effects modeling approach on 1215 observations from 101 randomly established plots in
the Chilimo Dry Afromontane Forest in Ethiopia. After comparing 14 nonlinear models, the most
appropriate base model was selected and expanded as a mixed-effects model, using the sample
plot as a grouping factor, and adding stand-level variables to increase the model’s prediction ability.
Using a completely independent dataset of observations, the best sampling alternative for calibration
was determined using goodness-of-fit criteria. Our findings revealed that the Michaelis–Menten
model outperformed the other models, while the expansion to the mixed-effects model significantly
improved the height prediction. On the other hand, incorporating the quadratic mean diameter and
the stem density slightly improved the model’s prediction ability. The fixed-effects of the selected
model can also be used to predict the mean height of Juniperus procera trees as a marginal solution.
The calibration response revealed that a systematic selection of the three largest-diameter trees at the
plot level is the most effective for random effect estimation across new plots or stands.

Keywords: forest inventory; native tree; allometry; calibration; stand volume; Juniperus procera

1. Introduction

Tree height is a crucial variable for determining the aboveground biomass, volume, site
productivity, and the vertical structure of forest stands [1–5]. However, direct tree height
measurement can be challenging, especially for tall tropical tree species with irregular
crowns [6–8]. The observed difficulty can be effectively addressed by developing height–
diameter models [9].

Earlier studies suggested that height–diameter relationships vary among tree species,
stands, and geographic regions [10–13]. However, recent evidence indicates that much of
the variability arises from measurement errors, sampling biases, and failure to capture the
diameter size distribution [14]. They found out that plants exhibit a striking similarity in
allometry across taxonomic lineages, climate zones, biomes, and disturbance regimes [14].
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Therefore, it becomes very crucial to employ larger sample sizes and ensure that samples are
representatives of the size-frequency distribution of the target population when developing
height–diameter models. Various studies also reported that using additional predictors
like basal area, density, dominant height, and quadratic mean diameter can improve
prediction accuracy without requiring separate models for each stand [15–18]. Hence,
explicitly accounting for the methodological artifacts and the ecological drivers will be very
important to developing a precise height prediction model.

The basic data used for developing height prediction models typically come from ran-
domly established sample plots within a forest stand. Such data have a clustered structure,
with trees grouped within plots, leading to correlated observations [19]. Fitting a model to
correlated data through the ordinary least squares (OLS) method may lead to biased esti-
mation of the confidence intervals for the model parameters [20]. Mixed-effects modeling
approaches are better suited for clustered data, accounting for the lack of independence and
incorporating height–diameter variability across forest types, locations, plots, and species
that fixed-effects models do not consider. Mixed-effects models estimate both fixed and
random effects related to individual subjects (e.g., sample plots), simultaneously modeling
both fixed-effects and subject-specific parameters [21]. Recent studies have demonstrated
that mixed-effects models outperformed fixed-effects models for height predictions using
data collected through a plot sampling approach by accounting for data structure and lack
of independence between observations [9,15,16,22]. However, the prediction performance
of these models in our specific study area remains uncertain.

Until now, few attempts have been made to develop robust height prediction models
for Afromontane tree species, while numerous models exist for different tree species in
temperate (e.g., [15,23–26]) as well as tropical forests [10,27–31]. In Ethiopia, the existing
models are limited in scope and geographic applicability [32–34]. Hence, developing
an accurate height prediction model for Juniperus procera, an ecologically and econom-
ically valuable tree species, would improve biomass and carbon stock estimation from
Afromontane forests.

In this study, we developed a robust height prediction model for Juniperus procera
Hochst. ex Endl. trees from the Chilimo Dry Afromontane Forest in Ethiopia. The objectives
of the study were to (1) assess the prediction performance of various local models and
select the best model; (2) develop a mixed-effects model to analyze plot-level predictions;
(3) evaluate the contribution of additional stand variables on predictions; and (4) determine
the optimal sampling alternative for calibrating the best model. The developed model
provides an efficient means of estimating Juniperus procera tree height in situations where
direct measurements are lacking.

2. Materials and methods
2.1. Study Area

The data used in this study were collected from the Chilimo and Menagesha Suba Dry
Afromontane Forests (Figure 1). The Chilimo Forest is geographically located from 38◦05′

to 38◦15′ E and 9◦00′ to 10◦10′ N, at an altitudinal range of 1700–3200 m [35]. The area
experiences a unimodal pattern of rainfall distribution that occurs from May to November,
with July having the highest peak. The mean annual temperature ranges between 15 and
20 ◦C, and its average annual precipitation ranges between 1000 and 1264 mm [35]. The
major soil types around the study areas are Vertisols, Luvisols, and Cambisols [36]. The
soils are reddish-brown, gravelly, and shallow at higher altitudes, while at lower sites, they
tend to become dark gray and deep [36,37]. According to Mammo and Kebin [38], the
surface soil (0–20 cm) in the Chilimo Forest has higher levels of total nitrogen, available
phosphorus, potassium, and a higher percentage of organic matter. The calibration dataset
was collected from the Menagesha Suba Dry Afromontane Forest. The Menagesha Suba
Forest is located between 38◦31′30′′ E and 38◦34′30′′ E to 8◦57′0′′ N and 9◦0′ N, with an
altitude ranging between 2200 and 3385 m [39]. The area receives on average 1056 mm
of rainfall per year, and the average monthly temperature ranges from 6 to 22 ◦C. The
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rainfall pattern is bimodal, with a long rainy season from June to September and a short
rainy season between April and May [40]. The data collected from the Menagesha suba
Dry Afromontane Forest was used for calibration.
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Figure 1. Map of the study area overlaid with the distribution map of dry Afromontane forests,
following Friis et al. [41].

2.2. Data Collection

For the needs of the current research, forest inventory studies were conducted in the
Chilimo and Menagesha Suba forests, in 2018. A total of 131 sample plots (20 m × 20 m)
were established along transect lines. The first transect was aligned parallel to the edge
of the forest, and others were laid out at 500 m intervals along the transect lines [42,43].
The first sample plot was located randomly, and the subsequent plots were established at
300 m intervals. In each sample plot, the diameter at breast height (dbh) and total height
(ht) of all trees with dbh ≥ 2.0 cm were measured using a diameter tape and a Vertex IV
ultrasonic hypsometer (Haglöf Sweden AB, Långsele, Sweden). The local names of all
trees were recorded and identified to the species level in the field, following the Flora of
Ethiopia and Eritrea [44–48]. For those species that were difficult to identify in the field, their
specimens were collected, pressed, and identified at the National Herbarium, Addis Ababa
University. The data were used to compute the quadratic mean diameter (Dq), basal area
(G), dominant height (hd) (the average height of the 100 tallest trees per hectare), dominant
diameter (Dd) (the diameter for the average height of the 100 tallest trees per hectare), and
the number of trees per hectare (N).
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2.3. Juniperus procera Hochst. ex. Endl.

We chose Juniperus procera Hochst. ex. Endl., commonly known as the “African
Pencil Cedar,” as the main species for this study because of its value as a native timber
tree. It is an evergreen coniferous tree that occurs predominantly in the dry Afromontane
forests, mainly between 1500 and 3000 m. It grows to a height of 40 m and a diameter of
3 m [49,50]. This species was once regarded as threatened in the IUCN red list (in 2011) but
has since been assessed as a species of least concern [51]. Its native range covers Congo, the
Democratic Republic of Congo, Djibouti, Eritrea, Ethiopia, Kenya, Malawi, Saudi Arabia,
Somalia, Sudan, Tanzania, Uganda, Yemen, and Zimbabwe [52]. It is grown in plantations
in its native range and elsewhere, including South Africa, France, the United Kingdom, the
United States, India, and Australia for timber production and environmental protection [52].
Wood is resistant to decay and termite attacks and is used for various purposes. It is also a
valuable timber tree species in the East African highlands and is the most preferred tree in
Ethiopia [53]. It is adapted to high-elevation climates with low precipitation characteristics
of Afromontane forests, which constitute a unique forest type occurring on high African
mountains [50,54]. The diameter and height data of Juniperus procera trees were extracted
from the data collected in the 2018 forest inventory in the Chilimo and Menagesha Suba
forests and used to develop a height prediction model. Descriptions of the dataset are
presented in Table 1.

Table 1. Summary statistics of the fitting and calibration datasets.

Variables
Fitting Dataset—Chilimo Forest Calibration Dataset—Menagesha Suba Forest

Mean Min. Max. Std Mean Min. Max. Std

dbh 21.10 2.00 121.20 18.45 14.3 2.0 71.0 12.7
ht 13.55 2.00 43.22 7.76 9.9 1.6 28.0 6.2
G 11.27 0.01 87.60 15.89 2.0 0.01 16.9 4.4
N 484.48 25.00 2750 773.37 606.8 21.0 1149 365.8
hd 10.71 2.00 38.67 6.77 4.6 1.4 14 2.5
Dd 18.47 2.53 71.70 13.12 9.1 2.0 25.9 6.5
Dq 16.23 2.00 79.80 13.81 5.4 2.0 23.9 6.1

Total sample n = 1215 trees from 101 rectangular plots n = 300 trees from 30 rectangular plots

Note: dbh = diameter at breast height (cm), ht = total height (m), N = stand density (trees ha−1), G = basal
area (m2 ha−1), Dq = quadratic mean diameter (cm), hd = dominant height (m), Dd = dominant diameter (cm),
Min = minimum, Max = maximum, and Std = standard deviation.

2.4. Statistical Analysis
2.4.1. Base Model Selection

The relationship between tree height and stem diameter has been described using a
variety of mathematical functions, and several nonlinear model forms have been statistically
tested to describe the allometry behind this complex relationship (e.g., [9,55,56]). Some
models are grounded in sound theory, while others are purely empirical. The power law
function is the most common model, based on many theoretical arguments [14]. Mehtatalo
and Lappi [57] suggested that flexibility and parsimony (i.e., combining simplicity with
high predictive or explanatory power) should be considered in addition to the parameter’s
obvious biological interpretability when choosing the best function. For the needs of the
current study, we evaluated 14 local nonlinear functions (Table 2) that have been widely
used to describe the height–diameter relationships of trees from both plantation and natural
forests growing in different regions [15,28,58–60], and the best model was referred to as the
base model.

The fitting procedure of the local models in the Chilimo dataset (Table 1) was based
on the generalized least squares technique (GLS), through the gnls function in R software
version 3.6.0 [61]. The model’s prediction bias, the root mean square error (RMSE), the
Akaike information criterion (AIC) (Equations (1)–(3)), and graphical analysis were used to
compare the predictive performance of the models and select the best-fitted model [16].
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Table 2. Lists of candidate equations for height modeling.

No Name Mathematical Expression References

M1 Power ht = 1.3 + β0 × dbhβ1 [62]

M2 Näslund ht = 1.3 + dbh2

(β0+β1×dbh)2
[63]

M3 Curtis ht = 1.3 + β0×dbh
(1+dbh)β1

[18]

M4 Meyer ht = 1.3 + β0(1 − exp(−β1 × dbh)) [64]

M5 Schumacher ht = 1.3 + β0exp(−(β1/dbh)) [65]

M6 Michaelis–Menten ht = 1.3 + β0 × dbh/(β1 + dbh) [66]

M7 Gomperz ht = 1.3 + β0exp(−β1exp(−β2 × dbh)) [67]

M8 Logistic ht = 1.3 + β0
1+β1exp(−β2×dbh)

[56]

M9 Chapman–Richards ht = 1.3 + β0(1 − exp(−β1 × dbh))β2 [68,69]

M10 Weibull ht = 1.3 + β0

(
1 − exp

(
−β1 × dbhβ2

))
[70]

M11 Lundqvist Korf ht = 1.3 + β0exp
(
−β1 × dbhβ2

)
[62]

M12 Ratkowsky ht = 1.3 + β0exp(β1/dbh + β2) [71]

M13 Hossfeld IV ht = 1.3 + β0/
[
1 +

(
1

β1×dbhβ2

)]
[62]

M14 Johnson–Schumacher ht = 1.3 + β0exp(−β1/dbh + β2) [62]
Note: dbh = over bark diameter at breast height in cm, ht = total tree height in m; β0, β1, and β2 are parameters of
the height–diameter models.

The following power-type variance function (var(e) = σ2 |dbh|2δ) was also applied to
correct the observed heteroscedasticity in the residuals of all models:

Bias =
∑n

i=1(yi − ŷi)

n
(1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n − p
(2)

AIC = n log
(

SSR
n

)
+ 2p (3)

where yi = measured height, yi = predicted height, ŷi = average, n = total number of height
measurements, p = number of parameters of the equation, and SSR = sum of the squares of
the residuals; RMSE = root mean square of error; and AIC = Akaike information criterion.

A rank was assigned to the fit statistical values of each model [72]. Then, these
ranks were aggregated by adding them to calculate each model’s final fit rank. This
ranking system indicates the model’s performance concerning all the considered fit statistics
criteria. Furthermore, the models’ compliance with the constant variance assumption
was also examined by plotting the residuals against the standardized diameter. The
mywhiskers function in the R package lmfor was utilized to plot the means of residuals
in 10 relative diameters classes, together with the confidence intervals for individual
observation (mean ± 1.96 SD) and the 95% confidence intervals for the class mean, to
detect the potential heteroscedasticity in the residuals [9,15]. The difference between each
tree’s diameter and the plot’s mean diameter, divided by the diameter’s standard deviation,
was used to calculate standardized diameters [9]. Finally, the parameters of the best-fitted
model were obtained by fitting the model with the entire dataset.

2.4.2. Nonlinear Mixed-Effects Modeling

Once the best generalized nonlinear least squares model was selected, we proceeded
to expand the parameters with random effects. At this stage, we used a subject-specific
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nonlinear mixed effects model (NLMEM) due to the hierarchical structure of the data,
i.e., trees within plots. Several relevant studies have shown that observations from the
same sampling unit are highly correlated (e.g., [12,20,73]). This indicates a clear violation
of the fundamental least squares assumption, wherein observations are expected to be
independent, and biased confidence intervals of the mean value of the parameters are
expected. To deal with this problem, earlier studies proposed a nonlinear mixed-effects
modeling approach [9,12,15,16]. The random-effects parameters describe a particular
cluster (sample plot), while the fixed-effects parameters reflect the population average
of the data [74]. More recently, NLMEMs have been widely applied in modeling height–
diameter relationships [26,30,59,75–77]. The parameters were estimated using the “nlme”
library [78] in R software version 3.6.0 [61]. This allows for comparing the different nested
mixed-effects model forms (Table 3) and the selected base model by the ANOVA function to
test the significance, including random effects, as both models have the same fixed effects.
Model evaluation was performed using the goodness of fit criteria, such as RMSE, bias,
and AIC values.

Table 3. The evaluated nonlinear mixed-effects models with different random-effects structures.

No. Model Forms Random Effects

M1 ht = 1.3 + (β0 + u0i)× dbh/((β1 + u1i) + dbh) The random effect at β0 and β1

M2 ht = 1.3 + (β0 + u0i)× dbh/(β1 + dbh) The random effect at β0

M3 ht = 1.3 + β0 × dbh/((β1 + u1i) + dbh) The random effect at β1

Note: ht is the height, dbh is the diameter at breast height of the tree, β0 and β1 are the fixed effects parameters,
and the ui indicates the estimated random effects.

2.4.3. Generalized Mixed-Effects Models

The contribution of estimated stand variables (Table 1) was also evaluated to improve
the predictive performance of the best simple mixed-effect model. First, we conducted
correlation analysis to assess the relationship of the stand variables with the parameters of
the best mixed-effects model. During the analysis, different combinations of the selected
stand variables were entered as predictors in the model and the fitting performances were
evaluated using the RMSE, the prediction bias, and the corresponding AIC values. Then, a
generalized mixed-effects model was developed using the most highly correlated stand
predictor variables.

2.4.4. Calibration and Random Effect Estimation

Two different types of predictions can be accomplished using the mixed-effects mod-
eling approach [9,79]. The first is a fixed effect or marginal prediction, which offers pre-
dictions using only the fixed part of the model. The second is conditional prediction,
which provides a more accurate prediction for a given sample plot because it uses both
the model’s random and fixed elements to make tree height predictions. However, when
height measurements are available from subsampled trees, it is possible to localize the
random effects to a new plot; this process is also known as localization. In this study, we
used localization to determine the plot-specific random effects, and to evaluate the model’s
performance [9,15,79]. Based on the subsample data, random effects b̂i was predicted using
the following equation [80]:

b̂ = D̂ẐT
i

(
R̂i + ẐiD̂ẐT

i

)−1
êi

where D̂ is the estimated variance–covariance matrix associated with the random effects
at the plot level, R̂i is the estimated variance–covariance matrix for the error term, Ẑi is
the partial derivatives matrix concerning the random effects, and êi is the error matrix
estimated using the fixed parameters only.



Forests 2024, 15, 443 7 of 19

The detailed procedure for the random effects parameter estimation using a nonlinear
mixed-effects modeling approach was presented by Calama and Montero [12]. The cali-
bration response of the best local mixed-effect and generalized mixed-effects models was
assessed using a completely independent dataset from the Menagesha Suba Dry Afromon-
tane Forest (Table 1). Overall, nine different sampling alternatives (Table 4) were evaluated,
and the best sample size (the number of trees) and method were identified, following the
procedure in Camacho et al. [81]. We evaluated the effectiveness of the sampling alterna-
tives for estimating the random effects by examining the root mean square error (RMSE)
values and contrasting them with the RMSE estimates obtained from using the best local
mixed-effects and generalized mixed-effects models, which consider all the trees within the
sample plot.

Table 4. The evaluated sampling alternatives for calibration response.

Code Sampling Alternatives

A1. Utilizing measurements from selected trees with diameters near the quartiles (the
25th, 50th, and 75th percentiles) of the diameter distribution.

A2. Utilizing measurements from selected trees with diameters close to the first and the
second quartiles (25th and 50th percentiles) of the diameter distribution

A3. Utilizing measurements from selected trees with diameters close to the first and the
third quartiles (25th and 75th percentiles) of the diameter distribution

A4. Utilizing measurements from selected trees with diameters close to the second and
the third quartiles (50th and 75th percentiles) of the diameter distribution

A5. Utilizing measurements from selected trees with diameters close to the second
quartile (50th percentile) of the diameter distribution

A6.
Utilizing measurements from selected trees with diameters close to the quadratic
mean diameter (Dq), the smallest diameter (dmin), and the largest diameter trees
(dmax) in each sample plot

A7. Utilizing measurements from the smallest diameter trees (dmin) in each sample plot
A8. Utilizing measurements from 1–10 randomly selected trees in each sample plot

A9. Utilizing measurements from 1–10 systematically selected largest diameter trees in
each sample plot

3. Results
3.1. Base Model Selection

The evaluated models exhibited variations in their capacity to predict the height of
Juniperus procera trees (Table 5) in the Chilimo dataset. Among the three-parameter mod-
els, the Hossfeld IV (M13) and Chapman–Richards (M9) models, which displayed the
lowest goodness-of-fit statistics values, were the most effective. Similarly, the Michaelis–
Menten model (M6), with the lowest goodness-of-fit statistics values, demonstrated supe-
rior prediction performance among the two-parameter models. Furthermore, the estimated
parameters of the evaluated local models were significantly different from zero at a 5%
significance level.

Figure 2a–c illustrates diagnostic graphs for the Michaelis–Menten model. In Figure 2a,
the average model fitting to the height–diameter data from the Juniperus procera tree can
be observed, representing the population average curve. The observed and predicted
graph (Figure 2b) demonstrates that the model makes a close prediction of the observed
height. Furthermore, according to Figure 2c, no visual signs of unequal error variance
can be observed, and the homoscedasticity assumption holds. The residuals are randomly
distributed around the zero line, and there is no discernable systematic trend in their distri-
bution. The thorough analysis of the diagnostics graph and the goodness-of-fit statistical
values showed that the two-parameter Michaelis–Menten model (M6) outperformed the
best three-parameter models. Consequently, the Michaelis–Menten model was selected as
a base model for further analysis. Additional diagnostic graphs for the evaluated models
can be found in the appendices (Supplementary Materials Figures S2–S4).
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Table 5. Parameter estimates and fit statistical values for the local models.

Models
Parameters Fit Statistics Rank

β0 β1 β2 Bias Rank RMSE Rank AIC Rank ∑ Final

M1 1.802 * 0.659 * 0.00 1 4.39 12 6398.13 11 24 8
M2 1.346 * 0.195 * 0.35 12 4.32 11 6389.49 9 32 11
M3 20.891 * 8.041 * 0.85 13 4.77 13 6531.36 13 39 13
M4 24.905 * 0.043 * 0.10 7 4.17 5 6322.19 6 18 6
M5 19.99 * 7.102 * 0.97 14 4.91 14 6586.78 14 42 14
M6 36.437 * 32.113 * 0.09 6 4.16 1 6314.99 2 9 1

M7 22.083 * 2.415 * 0.089 * 0.16 10 4.24 9 6396.07 10 29 10
M8 21.152 * 6.891 * 0.141 * 0.23 11 4.31 10 6462.61 12 33 12
M9 26.816 * 0.034 * 0.914 * 0.08 3 4.16 2 6318.97 5 10 3
M10 27.406 * 0.044 * 0.929 * 0.08 3 4.16 3 6318.42 4 10 4
M11 98.175 * 4.849 * −0.302 * 0.08 5 4.18 8 6310.83 1 14 5
M12 31.394 * 20.392 * 5.819 * 0.12 9 4.18 7 6335.11 8 24 9
M13 36.768 * 0.031 * −0.995 * 0.08 2 4.17 4 6316.97 3 9 2
M14 33.337 * 20.893 * 7.296 * 0.11 8 4.17 6 6329.15 7 21 7

Note: * indicate significant parameter estimates at α = 0.05.
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(a) represent the observed height–diameter data, and the line represents the average population curve.
The grey dots in (c) show the standardized residuals; the empty circles show the means of residuals
of the diameter classes. The thin vertical lines show the confidence interval of each observation, and
the thick vertical lines show the 95% confidence interval for the class mean. The thick lines that do
not cross the horizontal line at y = 0 are highlighted in red.

3.2. Nonlinear Mixed-Effects Model

The addition of a plot-level random effect significantly enhanced the height prediction
performance compared to the base model (Table 6). Through model comparison using the
likelihood ratio (LTR) test, it was revealed that the mixed-effects model form with random
effects on β0 and β1 (M1) displayed superior height prediction performance (L = −3114.98,
df = 6, p < 0.0001) in comparison to the other mixed-effects model forms. Overall, the root
mean square error (RMSE) values decreased from 4.16 m in the base model (Table 5) to
2.69 m in M1 (Table 6). The bias similarly decreased from 0.09 to 0.04 m. Furthermore,
the model’s Akaike information criteria (AIC) also decreased from 6314.99 to 5858.75
(Tables 5 and 6).

Table 6. Parameter estimates, standard errors (in parenthesis), variance components, and fit statistics
values for the mixed-effects height–diameter model forms.

Components
Mixed-Effects Models

M1 M2 M3

Fixed parameters
β0 31.6506 (1.4959) 32.3400 (1.0469) 34.6591 (0.9960)
β1 23.8515 (1.6557) 25.0679 (1.2465) 28.8907 (1.6301)

Random variance
components

std (u0i) 12.1889 5.4512
std (u1i) 11.9283 7.7571

cor (u0i, u1i) 0.9380
σ2 0.8463 0.9313 0.8122
δ 0.4145 0.4018 0.4704

Model performance
RMSE (m) 2.6924 2.9144 3.2499
Bias (m) 0.0432 0.0112 −0.0566

AIC 5858.75 6051.30 6316.07
Note: β0 and β1 are fixed parameters; std (u0i) and std (u1i) are the standard deviations of the random effects;
cor is the correlation between the random effects; σ2 is the residual variance; δ is the parameter of power-type
variance; RMSE, bias, and AIC values are the fit statistics values from the models.

The plot-level predictions follow the observed values closely, providing strong ev-
idence that the best-performing mixed-effects model form (M1) effectively captures the
variations in the height–diameter relationship of Juniperus procera trees in the Chilimo forest
(Figure 3a). This is further evident in the observed versus predicted graph, which illustrates
that the model enables precise height predictions (Figure 3b). Moreover, upon examining
the standardized residuals graph, we found that there are no indications of a violation of
the assumption of homoscedasticity in the residual distribution (Figure 3c). The residuals
exhibit a uniform distribution around the zero line, and there is no systematic trend in their
distribution.
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Figure 3. Plot-specific height diameter curves (a), observed against predicted height (b), and residuals
distribution graphs (c) of Juniperus procera trees, using the mixed-effect model. The lines depicted in
(a) represent the local curves, where each colored line illustrates a plot-level fit, while the grey dots
represent the observed height–diameter data. The grey dots in (c) show the standardized residuals;
the empty circles show the means of residuals of each relative diameter class. The thin vertical
lines show the confidence interval of each observation, while the thick vertical lines show the 95%
confidence interval for the class mean. The thick lines that do not cross the horizontal line at y = 0 are
highlighted in red.

3.3. Generalized Mixed Effects Model

Among the stand variables, stem density (r = −0.38, p < 0.01) and quadratic mean
diameter (r = 0.26, p < 0.04) were correlated with the β0 and β1 parameters of the best
mixed-effects model (Supplementary Figure S1), respectively. With the incorporation of
the specific variables into the best mixed-effects model, a slight improvement (0.11%) was
observed in the RMSE values. However, there was no discernable improvement in the
AIC, or the model bias values (Tables 6 and 7). The final generalized mixed-effects model
resulting from expanding the fixed effects of the best mixed-effects model is as follows:

htij = 1.3 +
(
(β 0+u0i)× dbhij + β2 × Dq

)
/
(
(β 1 + u1i) + dbhij + β3 × tpa

)
M4
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Table 7. Parameter estimates, standard error (in parenthesis), and fit statistical values of the best-
generalized mixed-effects model.

Components M4

Fixed parameters
β0 28.4695 (1.3859)
β1 13.4697 (2.1315)
β2 −1.3338 (0.1496)
β3 0.1139 (0.0383)

Random variance components
std (u0i) 11.3006
std (u1i) 11.1352

cor (u0i, u1i) 0.9510
σ2 0.8019
δ 0.4327

Model performance
RMSE (m) 2.6921
Bias (m) 0.0724

AIC 5860.53
Note: β0, β1, β2, and β3 are fixed parameters; std (u0i) and std (u1i) are the standard deviations of the random
effects; cor is the correlation between the random effects; σ2 is the residual variance; δ is the parameter of
power-type variance; RMSE, bias, and AIC are the fit statistics values.

The standardized residuals graph of the generalized mixed-effect model (M4) provides
no evidence of violating the assumption of homoscedasticity in the residual distribution
(Figure 4). The residuals exhibit a uniform distribution around the zero line, and there is
no distinct systematic trend in their distribution.
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Figure 4. Residuals distribution graph using the generalized mixed-effects model (M4). The grey
dots indicate the standardized residuals; the open circles indicate the means of residuals for each
diameter class. The thin vertical lines show the confidence interval of each observation, and the thick
vertical lines show the 95% confidence interval for the class mean. The thick lines that do not cross
the horizontal line at y = 0 are highlighted in red.

3.4. Calibration Response

Among the systematic sample selection alternatives (A1–A9), the lowest RMSE value
was obtained when utilizing measurements from selected trees with diameters close to
the quadratic mean diameter, the smallest diameter, and the largest diameter trees (A6) in
each sample plot, utilizing the best mixed-effects model (Table 8). Conversely, utilizing
measurements from the smallest diameter trees in each sample plot (A7) consistently
produced the highest RMSE values for both models. Overall, the systematic selection
alternative (A9) consistently outperformed the random selection alternative (A8) when
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utilizing the best mixed-effects model (Figure 5). However, the opposite trend was observed
when we utilized the generalized mixed-effects model. Generally, the most effective
approach for estimating random effects involved systematically measuring the three largest
diameter trees within each plot.

Table 8. The RMSE values from the different tree sample sizes and height predicting strategies.

No Subsample N
Model RMSE

Local Generalized

A0 The best local model 1215 2.6924 2.6921
A1 Quartiles (1,2,3) 3 2.2320 2.4311
A2 Quartiles (1,2) 2 2.5344 2.9109
A3 Quartiles (1,3) 2 2.2873 2.5345
A4 Quartiles (2,3) 2 2.3376 2.6929
A5 Quartiles (2) 1 2.6680 3.1421
A6 Dq, dmin, dmax 3 2.1354 2.4517
A7 dmin 1 2.9954 3.2069
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Figure 5. Graphical representation of the RMSE values for the calibration response associated with
sampling alternatives A8 and A9. The solid red line represents the results obtained when applying
the random tree selection alternative with the generalized mixed-effects model, whereas the green
dotted line illustrates the results of the systematic tree selection alternative using the same model. In
contrast, the dashed blue line represents the results of using the random tree selection alternative
with the local mixed-effects model, whereas the purple dashed line represents the results of using a
systematic tree selection alternative for the same model.

4. Discussion

In this study, we developed a height prediction model for Juniperus procera trees from
dry Afromontane forests of Ethiopia. Among the evaluated local models, the Michaelis–
Menten model (M6) showed the best height prediction performance. The addition of
random effects on the base model enables capture of the variability in height–diameter
relationships amongst the sample plots that were not captured by the base model and
provides precise height prediction. We have also shown that the addition of stand-level
predictor variables slightly improved the prediction performance of the best local model.
Generally, the systematic selection of the three largest-diameter trees from each plot was
found to be the best alternative to estimate random effects and predict the height of
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trees from a new plot or stand. The results of this study will help researchers and forest
managers better understand the height growth pattern and enable them to predict the
height of Juniperus procera trees from new plots or stands in Afromontane forests.

4.1. Base Model Selection

The Michaelis–Menten model (M6) was first developed to model enzyme kinetics
in chemistry [82]; however, it has been widely employed for modeling height–diameter
relationships of various tree species (e.g., [31,83–85]). This model has two biologically
meaningful parameters that represent the maximum asymptotic height (β0) a tree can
attain, and the steepness (shape) of the curve (β1) that describes the rate of increase in
height [84]. It is an asymptotic model that has been used to estimate heights of trees that
lack height measurements during the national forest inventory in Ethiopia [32]. Various
studies reported that two-parameter models are generally easier to fit and are quicker to
achieve convergence in most situations than the three-parameter models [9,60], which is
also supported by this study. Generally, the best base model could be used to determine
the average height–diameter relationship of Juniperus procera trees in the Chilimo Forest.

4.2. Nonlinear Mixed Effect Model

Utilizing nonlinear mixed-effects models (NLMEM) in height–diameter modeling
offers the advantage of incorporating random effects to account for both within-plot and
between-plot variability (e.g., [15,86]). The best nonlinear mixed-effects model provided
better-fit statistics values than the base model (Tables 5 and 6). This was expected because
the random parameters on the mixed-effects models enabled capture of the variations in
height–diameter relationships among the sample plots that were not captured by the base
model [9]. Huang et al. [87] also stated that the random part of the mixed-effect model
allows it to account for plot-level variations due to known and unknown factors, without
the need to identify or measure them. This is one of the recognized advantages of using the
NLMEM approach.

More specifically, the best mixed-effects model (M1) findings reveal that adding ran-
dom effects on β0 and β1 result in deviations from the population mean, with standard
deviations of 12.2 and 11.9 m, respectively (Table 6). These results underscore the variability
in the maximum height and curvature of the height–diameter relationship of J. procera trees
among the sample plots (Table 6). This observed variability may be attributed to differences
in soil properties, stand structure, altitude, genetic variability, and competition for resources.
Numerous studies have demonstrated that variations in site quality, stem density, elevation,
the spatial arrangement of trees within a stand, and microclimatic differences (humidity,
temperature, and wind exposure) are primary contributors to variations in height–diameter
relationships among different tree species [11,13,88–92]. For example, Feldpausch et al. [11]
noted that trees that grew in soils with fewer physical limitations grew taller than those
subjected to greater physical limitations. Additionally, van Breugel et al. [93] emphasized
the impact of soil fertility and rainfall on the early growth and survival of 49 tropical tree
species in Panama. Their study revealed that trees in areas with higher soil fertility and
abundant rainfall exhibited greater height and diameter size than trees in regions with
lower fertility, highlighting the role of soil fertility in determining tree size. Furthermore,
differences in topography can contribute to variations in height–diameter relationships,
resulting in taller trees in the valleys compared to ridges in drier areas, and vice versa
in wetter regions [94]. In densely populated stands, trees may have to compete more
for resources like water, nutrients, and light, which can hinder their growth and lead to
significant height variability [25]. Overall, the complex interplay of ecological factors, com-
petition, species diversity, and environmental conditions within a natural forest collectively
contribute to the observed differences in height growth patterns among trees.
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4.3. The Use of Additional Stand Variables in Height Prediction

The use of additional predictor variables in height–diameter models is a common
practice, often used to enhance the accuracy of height prediction (e.g., [15,30,81,86]. This
underscores the notion that the variability in height–diameter relationships among trees
can be elucidated to some extent by considering additional stand variables. In this study,
we observed that the inclusion of Dq (quadratic mean diameter) and stem density slightly
improved height prediction performance (Table 6). These additional stand variables re-
duced the root mean square error (RMSE) by a mere 0.11%. These findings suggest that
Dq and stem density may not be significant in determining tree heights. Similar find-
ings were reported by Ciceu et al. [26], who reported a limited impact of stem density on
height prediction performance in their research. Tree height is predominantly influenced
by individual tree genetics and environmental factors such as light availability and soil
fertility, which the evaluated stand variables may not adequately capture. For example,
Neophytou et al. [95] examined how genetic variation relates to height growth in Douglas
fir trees in various geographic regions. Their findings emphasized a substantial correlation
between genetic variation and height growth in these trees, underlying the pivotal role of
genetic factors in determining tree height. Likewise, Sertse et al. (2007) also documented
the presence of higher genetic variability within the Juniperus procera tree population in the
Chilimo forest [96].

4.4. Random Effect Estimation and Model Calibration

The main purpose of calibration is to estimate the random effects and perform height
prediction for the same tree species from a new plot or stand [15,26]. This requires a
prior measurement of diameter, height, predictor variables, and the estimation of random
effects. In the calibration process, the local mixed-effect model appeared to be more flexible
and appropriate for height prediction than the generalized version, like the previous
findings [15,97]. This is evidenced by the fact that the RMSE values were consistently
higher for the generalized mixed-effects model than the local mixed-effects model (Figure 5).
Furthermore, the calibrated mixed-effect model’s simple structure (i.e., without stand
variables) makes it a preferable alternative for height prediction to the generalized mixed-
effect model [98].

In this study, different sampling alternatives have been identified for estimating the
random effects from a new plot or stand and improving height prediction. Generally, the
systematic selection of the three largest-diameter trees from each plot (A9) was found to be
the best option to estimate random effects and predict the height of trees from a new plot
or stand. This is mainly related to the fact that the largest trees’ height represents the plot’s
dominant height and can be used as an additional stand variable for the model-representing
site index (a proxy for site productivity), thereby offering additional information for esti-
mating random effects. This is consistent with the findings of Calama and Montero [12],
who stated that measuring the height of four trees with larger diameters in each plot was
the best sampling alternative for calibration. Results from other studies also showed that
using randomly selected trees closest to the second quartiles of the diameter distribution
provided the best calibration results [58]. Similarly, Ogana et al. [24] identified that using
measurements from four trees, including the largest and smallest diameters per plot, was
the most effective calibration alternative for numerous dominant tree species, considering
diverse growth conditions, silvicultural practices, and environmental factors in Sweden.

The choice of the sampling alternative depends on the available data for calibration,
and the practical application of the model. If the required calibration data are available, the
calibrated local mixed-effects model could be used, using the three largest-diameter trees
alternative (A9) or the second-best sampling alternative (A6). However, if the calibration
data are unavailable, the generalized mixed-effect model (M11) may be the best option
because additional stand variables are included in the model. The additional stand variables
will enable the model to capture the natural variability among the sample plots. Moreover,
if the calibration data and/or the stand variables are not available, the fixed-effects model
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(with no random parameters) or the mixed-effects model (random parameters = 0) could be
used for tree height prediction [79]. Overall, the three largest-diameter tree measurement
alternative (A9) is advantageous, since it requires less sampling effort in terms of cost and
time for data collection [19]. The use of the model, along with the proposed sampling
alternatives, will ensure high accuracy in height prediction while minimizing the time and
cost associated with fieldwork.

In a wider framework of forest management, the localization of the mixed-effects
model provides an alternative solution for accurate height predictions that are currently
required for total standing volume estimations. In this sense, Van Laar and Akça [99]
recommended a minimum sample of 20 to 25 observations per stand to derive accurate
growth equations based on statistical approaches. Based on the results of the current study,
a small sample comprising three large trees is adequate to estimate the random part of the
mixed-effects model and provide reasonable height predictions, minimizing the sampling
effort for data collection at the forest stand level.

5. Conclusions

We conclude that the Michaelis–Menten model provided the best height prediction
of the height–diameter relationship of the Juniperus procera tree among the evaluated local
models. Adding quadratic mean diameter and stem density contributed little toward
improving the height prediction performance. However, the best mixed-effects model
captured the between-plot variation in the height–diameter relationship and provided
plot-level height prediction. The fixed effects in the mixed-effects model can be used for
the prediction of the mean height of Juniperus procera trees for a given diameter in the
Chilimo Forest. We also conclude that measuring the three largest-diameter trees is the
best sampling alternative for estimating the random effects and predicting the heights
of trees from new plots or stands. We believe that the calibrated height–diameter model
developed in this study will help researchers and forestry practitioners to reduce costs and
time associated with height data collection and improve the accuracy of stand volume and
biomass estimation in other Afromontane forests in Ethiopia and elsewhere in Africa.
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