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Abstract  Gullies are significant contributors to soil 
degradation in several regions of Brazil, including 
Minas Gerais, where erosion processes have caused 
soil loss. The characterization of erosion processes 
is crucial for the application of measures for recov-
ering degraded areas and reducing erosion impacts. 
This study models soil loss with the use of InVEST 
software and assesses the impact of three different 
scenarios, namely (1) implementation of soil con-
servation practices and replacement of pasture areas 
for temporary agriculture, (2) reforestation of pasture 
areas, and (3) preservation of ciliary forests. Soil loss, 
sediment exportation, retention, and deposition for 

the present scenario (2019), as well as the three afore-
mentioned hypothetical scenarios, were estimated. In 
the present scenario, the estimated mean annual soil 
loss was 2.75 t/ha year, with 1,449.54 t/year sediment 
exportation, 9,042.13 t/year retention, and 1,449.54 
t/year deposition. The model predicted scenario 1 
would result in 2.23 t/ha year mean annual soil loss, 
1,300.59 t/year sediment exportation, 9,191.08 t/year 
retention, and 11,755.76 t/year deposition. Scenario 2 
showed 1.92 t/ha year mean annual soil loss, 1,046.69 
t/year sediment exportation, 9,444.98 t/year retention, 
and 10,229.77 t/year deposition, whereas the results 
for scenario 3 were 2.36 t/ha year, 616.65 t/year, 
9,862.06 t/year, and 13,206.47 t/year, respectively. 
Reforestation and preservation of ciliary forests, 
along with soil conservation practices, were effective 
measures for reducing soil loss. Such findings are val-
uable for the management of areas degraded by ero-
sion processes.

Keywords  Erosion · Degraded areas · InVEST · 
Sediment exportation · Gully

Introduction

Soil results from interactions among atmosphere, 
hydrosphere, and biosphere with lithosphere (White, 
2006). Therefore, it is multifunctional and essential 
to maintain environmental quality of water, climate, 
and biodiversity, provide food and energy security, 
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and support urbanization and infrastructure (Blanco 
& Lal, 2008; McBratney et al., 2014). Soil degrada-
tion occurs when quality losses are higher than resil-
iency capacity and the soil loses its environmental 
functionalities, due to anthropogenic processes (e.g., 
industrial, urban, and agricultural uses) or natural 
ones induced by human activities (e.g., erosion, mass 
movements, and subsidence) (Zuquette et  al., 2013; 
Zuquette, 2015). Erosion processes indicate detach-
ment of soil particles, transport by erosive agents, and 
deposition of sediment when the energy is not suf-
ficient to sustain the sediments movement (Morgan, 
2005). The removal of particles from eroded geologi-
cal material corresponds to soil loss, whereas trans-
ported particles consist of exported sediments. The 
sediment retention occurs when the energy provided 
by the erosive agent is lower than normal forces and 
the particle does not move. If particles are already 
being transported and erosive agents’ energy lowers, 
their movement stops, and they are deposited — cor-
responding to sediment deposition.

Accelerated soil erosion has on-site and off-site 
impacts to the environment, agronomy, ecology, 
economy, and society (Lal, 2001; Morgan, 2005; 
Blanco & Lal, 2008). Erosion directly contributes to 
removing fine sediments and thinning topsoil. Indi-
rectly, erosive processes cause productivity reduction, 
lower soil fertility, alterations in soil, water, and bio-
logical dynamics, topographic changes, greenhouse 
gases emission, and desertification (Blanco & Lal, 
2008; Rodrigues et  al., 2015; Lal, 2020; Lal, 2022). 
The combination of eroded areas and land misman-
agement results in losses of productive areas in rural 
areas (Bertoni & Lombardi Neto, 2010), strongly 
affecting small producers. Additionally, soil erosion 
impacts are in consonance with several UN Sustain-
able Development Goals, namely (2) zero hunger; (6) 
clean water and sanitation; (8) decent work and eco-
nomic growth; (12) responsible consumption and pro-
duction; (13) climate action; and (15) life in land.

In Brazil, along with equatorial, tropical, and 
subtropical climate regions, the dominant erosion 
type is water erosion or hydric erosion. It is con-
trolled by the interaction of water intensity, volume, 
and velocity with the geological materials, subject 
to their properties, topography, and vegetation cover 
(Blanco & Lal, 2008). The concentration of superfi-
cial waterflow along with subterranean flow defines 
the formation of gullies (Poesen et al., 2003; Blanco 

& Lal, 2008; Rotta & Zuquette, 2015), in which the 
complexity requires an integrated study for assess-
ments of the main conditioning properties and trig-
gering erosion agents.

Areas intensely affected by erosion processes 
(e.g., the Palmital stream watershed in Nazareno and 
Conceição da Barra de Minas, Minas Gerais, Brazil) 
must be characterized for a proper comprehension 
of the attributes related to erodibility and erosivity 
interplay. The Palmital stream watershed region has 
faced erosion problems, motivating its study since 
1996 (Bono et al., 1996), with gullies mapping and 
characterization of the area (Araújo, 2006; Araújo 
et  al., 2018; Bono et  al., 1996; Cassaro, 2015, 
2018; Coelho et  al., 2012; Ferreira, 2005; Ferreira 
& Ferreira, 2015; Ferreira et al., 2009, 2011, 2012; 
Gomide, 2009; Mello et  al., 2012; Oliveira, 2015; 
Pereira et  al., 2012, 2014; Real, 2019; Real et  al., 
2020a, 2020b; Sampaio, 2014; Sampaio et al., 2013, 
2016, 2017; Silva, 2006; Silva et al., 2008a, 2008b; 
Soares, 2022). Both environmental properties and 
patterns of land use and land cover (LULC) are the 
main contributors to the development of numer-
ous gullies in the area, which are interconnected by 
subsurface flow and watercourses (Real, 2019; Real 
et al., 2020a). Such an interconnectivity generates a 
cascade of self-feeding events, entailing conducive 
circumstances for the perpetuation of erosion pro-
cesses, challenges for a successful gully restoration, 
and manifold repercussions of erosion, notably soil 
loss.

Since erosive feature development depends on 
both environmental conditions and triggering agents, 
changes of their dynamics will also change erosion 
evolution, for instance, if rainfall patterns are altered 
and concentrate in fewer days — leading to higher 
volume and velocity of water, as well as greater soil 
water content — erosion rate rises. INMET (2017) 
stated that there have been irregularities on rain dis-
tribution since 2013/2014 in Minas Gerais (Brazil), 
resulting in lower volumes of precipitation between 
January and February and worse hydric conditions 
of soil. Additionally, the South Atlantic Convergence 
Zone (SACZ) contributed to persistent and heavy rain 
episodes, which ranged between two to three times 
the monthly average (INMET, 2020; INMET, 2021). 
Soares (2022) compared gullies mapped in 2016 and 
2019 satellite images and identified erosion progres-
sion in the Palmital stream watershed, due to erodible 
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soil exposing in conjunction with change in rainfall 
patterns.

Models simplify reality to support predictions on 
a system’s behavior considering specific conditions 
to its functioning (Morgan, 2005). The application of 
models is possible in various ways and purposes. For 
instance, modeling erosion can simulate resilience 
of soil, runoff, and soil loss rates. Then, it is easier 
to comprehend erosive processes; evaluate large-
scale impacts to soil productivity and water quality; 
identify strategies to erosion control; and evaluate 
soil conservation practices performance to reducing 
erosive processes (Blanco & Lal, 2008; Morgan and 
Nearing, 2011; Soares, 2022). Modeling techniques 
that encompass various alternative scenarios must 
be adopted for a comprehensive assessment of the 
impacts of LULC changes on soil loss through gully 
erosion. The incorporation of those scenarios enables 
the derivation of quantitative and qualitative insights 
into the dynamics of sediment transport; hence, 
it facilitates decision-making among stakeholders 
regarding areas prone to erosion or those already 
degraded.

The soil system is connected to the four ecosys-
tem services classes, namely: provisioning, regula-
tory, cultural, and supporting (MEA, 2005). Soil 
ecosystem services can be affected by compaction, 
contamination, erosive processes, fragmentation of 
vegetation, and reduction of soil fertility, biodiver-
sity, and carbon stock (Prado et  al., 2016). In this 
context, Integrated Valuation of Ecosystem Services 
and Tradeoffs (InVEST) software was developed 
to assess ecosystem services. The software has low 
to medium complexity regarding hardware require-
ments and data processing and is integrated to the 
Geographic Information System (GIS) environment 
(Cong et al., 2020). The software is open-source and 
free, which encompasses several models for ecosys-
tem services, allowing the evaluation of relationships 
between supplies, services, and benefits (Azevedo, 
2017; Natural Capital Project, 2021). The applica-
tion of InVEST software is advantageous to compute 
biophysical and socioeconomic metrics both in high 
and low data volume (Hamel et al., 2015). Sediment 
delivery ratio (SDR), one of InVEST built-in models, 
enables analyses of soil loss and sediments dynamics 
in watersheds or subwatersheds under investigation, 
thus assisting public policies planning and recov-
ery of degraded areas (Soares, 2022). SDR-InVEST 

model maps sediment generation and its transporta-
tion to watercourses considering sources (areas where 
erosion surpasses deposition) and sinks (areas of trap-
ping and/or deposition of sediments) (Natural Capi-
tal Project, 2021). It has mapped areas more vulner-
able to erosion processes (Bouguerra & Jebari, 2018; 
Bouguerra et  al., 2021; Karunaratne et  al., 2022; 
Meraj et  al., 2022; Oleson et  al., 2017; Ougougdal 
et al., 2020; Perera et al., 2020), compared temporal 
sequences or scenarios of LULC changes (Aneseyee 
et al., 2020; Bendito et al., 2023; Cunha et al., 2022; 
Gong et al., 2021; Guo et al., 2023; Kulsoontornrat & 
Ongsomwang, 2021; Liu et al., 2020; Marques et al., 
2021; Matomela et  al., 2022; Perovic et  al., 2018; 
Rodrigues & Ferreira, 2021; Tamire et al., 2022; Zhou 
et al., 2019), and integrated the model with Geodetec-
tor (Guo et al., 2023; Matomela et al., 2022). In Bra-
zil, institutions such as EMBRAPA (Brazilian Agri-
cultural Research Corporation) and INPE (National 
Institute for Space Research) have collaborated with 
university researchers to testing InVEST (Bendito 
et al., 2023; Christo & Garrastazu, 2011; Guo et al., 
2023; Horokoski et  al., 2013; Hyslop et  al., 2019, 
2020; Weiser et  al., 2012), especially SDR (Lemos 
et al., 2023; Rodrigues & Ferreira, 2021) and carbon 
(Cardoso et al., 2023; Castanhari et al., 2011) models. 
Therefore, the use of InVEST models enables geospa-
tial interpretations of interactions among topography, 
erodibility, erosivity, and land use and land cover pat-
terns, which is essential for the understanding of ero-
sion consequences in a watershed. The simulation of 
alternatives scenarios through changes in parameters 
— such as LULC, erodibility, and erosivity — sup-
ports policymaking and area management, strength-
ening ecosystem services provided to population and 
amplifying sustainability (Soares, 2022). Synergistic 
and trade-off relationships between ecosystem ser-
vices are associated with both natural environment 
and human activity (Zhao et  al., 2022); therefore, 
alterations in land management will repercuss in the 
area.

This study evaluates soil loss in the Palmital 
stream watershed (Minas Gerais), where over 60 have 
been mapped, through InVEST application and con-
sidering the present scenario and three hypothetical 
ones. Regardless of being a case study of a Brazilian 
area, assessing more information about soil erosion 
and ecosystem services can support studies in similar 
areas — for instance, tropical regions — and compose 
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a global context of erosion processes behavior, conse-
quences, and recovering or minimizing impact tech-
niques. Furthermore, exploring hypothetical scenar-
ios provides an analysis especially useful considering 
climatic changes, an urgent issue that requires atten-
tion when planning LULC, studying conservation 
measures efficiency, and addressing degradation.

Materials and methods

Study area

The Palmital stream watershed (Fig. 1) is located in 
Nazareno and Conceição da Barra de Minas munici-
palities, in the south of Minas Gerais state, Brazil. It 

Fig. 1   Map of the Palmital stream watershed
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comprises Beta de Baixo, Beta de Cima, Charuteiro, 
Forro, Fundo, Pitanga, Sapecado, Sítio, and Teix-
eira stream watersheds, with a 5866  ha total area. 
Soares (2022) identified 65 gullies in the watershed, 
corresponding to 404.48 ha of degraded area.

The climate is characterized by rainy summers 
and dry winters, with a 1,350  mm average annual 
rainfall and temperatures ranging from 8  °C to 
28 °C (INMET, 2022). The rainy season goes from 
October to March, especially November to January. 
An irregular rainfall distribution has been reported 
since 2014, when lower volumes of precipitation 
were detected in January and February, result-
ing in heat waves that decrease soil hydric condi-
tions, since the water absorbed by the soil evapo-
rates before the typical period, impacting the crops 
growth (INMET, 2017). Moreover, climate changes 
associated with the South Atlantic Convergence 
Zone (SACZ) have caused intense and persistent 
rainstorms, twice to three times higher than the 
average rainfall (INMET, 2020; INMET, 2021).

The natural vegetation of Nazareno and Con-
ceição da Barra de Minas is composed of Atlan-
tic Rainforest and Brazilian Savannah (Cerrado) 
(IBGE, 2004) and has been switched for pastures 
and crops of soybeans, corn, and coffee, as well as 
urban areas.

Elevations in Nazareno range from 1140 to 839 m, 
with strong relief in the gully region (Horta et  al., 
2009), and from approximately 1091 to 897 m in the 
watershed. The geology is represented by Cassiterita 
Orthogneiss, Nazareno Formation, and Represa dos 
Camargos Metadiorite (Soares, 2022), paleoprotero-
zoic units with an elongated shape in the ENE-WSW 
direction (Ávila et  al., 2019). The Lenheiro shear 
zone and greenstone belts are at its southern limits 
(Ávila et al., 2003).

Red-yellow Oxisol, red Oxisol, and Cambisols 
are the typical soil types in the area (Ferreira, 2005; 
Horta, 2006; Horta et  al., 2005, 2009). Oxisols are 
dystrophic and clayey, with high levels of sesquiox-
ides and aluminum oxides and lower levels of silica 
and organic matter. Cambisols are dystrophic and alic 
shallow soils with superficial encrusting and low per-
meability (Horta, 2006; Horta et al., 2009). In com-
parison with Oxisols, they are more erodible, due to 
slower drainage, stoniness, fewer vegetal cover, and 
relief and slope characteristics (Ferreira, 2005). In the 
watershed, Oxisols are on top of Cambisols and their 

removal leads to soil exposition to weathering and 
erosion (Sampaio, 2014).

SDR‑InVEST framework

SDR-InVEST model, a built-in package that map 
sediment sources and delivery to the sinks (where 
sediment deposits), provides information to bet-
ter understand the service of sediment retention in a 
catchment. The model maps and quantifies soil loss 
and sediment exportation, retention, and deposition 
of a given watershed. Additionally, it is possible to 
simulate alternative or hypothetical scenarios through 
the alteration of attributes — particularly those more 
susceptible to changes with time, namely LULC, 
conservation practices, and climate (Soares, 2022). 
The capacity of mapping, quantifying, and predict-
ing soil erosion and sediment exportation, retention, 
and deposition contributes to better decision on land 
management. When comparing InVEST to other 
similar modeling software, there are several differ-
ences regarding methodology and algorithms, as well 
as data requirements and processing time. Due to the 
simpler nature of input and processing, InVEST is a 
better alternative to promptly assessing current state 
and scenarios of areas with limited amount of data. 
As limitations, InVEST may not accurately represent 
tropical climate, which should be validated with more 
research in tropical regions. The model’s validation 
will be possible with time and comparisons between 
modeled results and reality results.

The module computes the amount of annual soil 
loss from each pixel of the digital elevation model 
(DEM) and then computes the proportion of soil 
loss that reaches the stream (Natural Capital Project, 
2021). The model is based on Revised Universal Soil 
Loss Equation (RUSLE), which can be applied to 
greater areas, as watersheds (Silva, 2008; Wischmeier 
& Smith, 1965). The RUSLE formula is show in 
Eq.  1, where usle = annual soil loss (tons/ha/year); 
R = rainfall erosivity (MJ mm/(ha h)); K = soil erod-
ibility (ton ha h/(MJ ha mm)); LS = slope length-gra-
dient factor (unitless); C = crop-management factor 
(unitless); P = support practice factor (unitless).

The LS factor is calculated by InVEST, accord-
ing to the method for a two-dimensional surface, 
proposed by Desmet and Govers (1996), as shown 

(1)usle = R × K × LS × C × P
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in Eq.  2, where S = slope factor for grid cell cal-
culated as a function of slope radians θ (Eqs. 3 and 
4); Ai-in = contributing area at the inlet of a grid cell 
which is computed from the multiple-flow direction 
method (m2); D = grid cell linear dimension (m); 
xi = mean of aspect weighted by proportional outflow 
from grid cell i determined by a multiple-flow direc-
tion algorithm (Eq. 5); and m = RUSLE length expo-
nent factor (Eqs. 6 to 11), which is capped to 333 m 
to avoid overestimation in heterogeneous landscapes 
(Natural Capital Project, 2021).

The connectivity index (IC) is computed for 
each pixel, as a function of the area upslope of each 
pixel (Dup) and the flow path between the pixel and 
the nearest stream (Ddn), as represented in Eq.  11. 
Therefore, upslope is related to the transport, and 
downslope is corresponding to retention (Natural 
Capital Project, 2021).

The upslope and downslope components are 
defined by mathematical relations shown in 

(2)LS = S ×

(

Ai−in + D2
)m+1

− Am+1
i−in

Dm+2 × xm
i
× (22.13)m

(3)S = 10.8 × sin(𝜃) + 0.03 where 𝜃 < 9%

(4)S = 16.8 × sin(�) − 0.50 where � ≥ 9%

(5)
∑

d∈{0,7}

P
i
(d)

x
d

where � ≥ 9%

(6)m = 0.2 for slope ≤ 1%

(7)m = 0.3 for 1% < slope ≤ 3.5%

(8)m = 0.4 for 3.5 < slope ≤ 5%

(9)m = 0.5 for 5% < slope ≤ 9%

(10)m =
�

1 + �
where � =

sin�

0.0986

3sin�0.8 + 0.56
for slope ≥ 9%

(11)IC = log10

(

Dup

Ddn

)

Eqs.  12  and 13, respectively, where C = aver-
age C factor of the upslope contributing area; S 
= average slope gradient of the upslope contrib-
uting area (m/m); A = upslope contributing area 
(m2); di = length of the flow path along the ith cell 
according to the steepest downslope direction (m); 
Ci = C factor of the ith cell; and Si = slope factor of 
the ith cell. Ci and Si minimum and maximum lim-
its are 0.005 m/m and 1 m/m, respectively, to avoid 
infinite values (Natural Capital Project, 2021).

The proportion of sediment that reach the stream 
corresponds to the sediment delivery ratio and is cal-
culated as shown in Eq. 14, where SDRi = SDR ratio 
for a pixel i; SDRmax = maximum theoretical SDR, 
set to an average value of 0.8; IC0 and k = calibra-
tion parameters that define the shape of the SDR-IC 
relationship.

The amount of sediment eroded from a given 
pixel that reaches the stream, sediment export, is 
given by Eq. 15. The sediment deposition consists of 
the amount of sediment deposited on the landscape 
downstream from the source, which do not reach the 
stream, given by Eq. 16.

Modeling process

The models for each scenario were generated in 
InVEST 3.9.0 software, following the sequence of 
processes as shown in Fig. 2, that is, data gathering 
and processing, calibration, data input, and modeling. 
Raster (TIF) and shapefile (SHP) data were pro-
cessed in ArcMap 10.4. Matrix data were converted 

(12)Dup = CS
√

A

(13)Ddn =
∑

i

di

CiSi

(14)SDRi =
SDRmax

1 + exp
(

IC0−ICi

k

)

(15)Ei = uslei × SDRi

(16)E�i = uslei
(

1 − SDRi

)
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Fig. 2   Flowchart of applied 
methodology
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from raster files to TIF format and vector data were 
inserted as a shapefile file. The biophysical table was 
a CSV file.

The default values from InVEST SDR model were 
applied to threshold flow accumulation, Borselli k 
parameter, Borselli IC0 parameter, and max SDR 
value (1000, 2, 0.5, and 0.8, respectively).

The watershed limits were based on Naza-
reno (SF-23-X-C-I-2) (IBGE, 1975a) and Itutinga 
(SF-23-X-C-I-4) (IBGE, 1975b) topographic maps, 
on a 1:50,000 scale, from Brazilian Institute of Geog-
raphy and Statistics (IBGE). DEM was generated as a 
raster file in ArcMap with “Raster Interpolation” and 
“Hydrology – Fill” tools.

The rainfall erosivity index (R) was generated 
from the interpolation of rainfall mean data of Lavras 
and São João del Rei (Minas Gerais, Brazil) weather 
stations, from 1991 to 2021. The point format shape-
file classes were weather station name, latitude, longi-
tude, mean rainfall, and years considered in the mean 
rainfall calculation. Coordinates were converted from 
WGS 1984 datum to SIRGAS 2000 23S Zone datum, 
and the geoprocessing environment included the fol-
lowing municipalities: Nazareno, Conceição da Barra 
de Minas, Lavras, São João del Rei, Bom Sucesso, 
Carrancas, Ibituruna, Ijaci, Itumirim, Itutinga, Ritáp-
olis, and São Tiago. The interpolation was performed 
by the inverse distance weighted (IDW) interpolation 
tool from spatial analysis package, which assumes 
a decrease in the variable being mapped consider-
ing its distance from its sampled location, therefore 
determining cell values using a linearly weighted 
combination of a set of sample points through a func-
tion of inverse distance (as informed in ArcGIS 10.4 
software documentation). IDW interpolation of ero-
sivity is given by Eq. 17, where Zi = rainfall erosivity 
or erosivity interpolated at the point i (MJ mm/ha/h); 
dij = distance between the points i and j; Zj = rainfall 
erosivity or erosivity density calculated at the point j 
(MJ mm/ha/h); and n = number of neighboring points 
used in interpolation (Teixeira et al., 2022).

The soil erodibility raster was based on a soil 
survey conducted by Federal University of Viçosa 

(17)Zi =

∑n=30

j=1

�

Zj

d2
ij

�

∑n=30

j=1

�

1

d2
ij

�

(UFV), Technological Center Foundation from 
Minas Gerais (CETEC), Federal University of Lavras 
(UFLA), and State Foundation of the Environment 
from Minas Gerais (FEAM-MG), on a 1:100,000 
scale (UFV, 2010). The units considered were rock 
exposition, red-yellow Oxisol, red Oxisol, and Cam-
bisols. Soil erodibility values were obtained from the 
literature (Table 1).

LULC characteristics of a given area influence ero-
sive processes development due to its role in protect-
ing or exposing the geologic material and in chang-
ing conditions for infiltration and runoff dynamics. 
According to Blanco and Lal (2008), vegetation cover 
may intercept, absorb, and reduce energy from rain-
drops. An exposed soil is more likely to erode, since 
it lacks a physical barrier to water’s erosive energy 
(Soares, 2022). Changes in LULC may accelerate nat-
ural erosion, especially due to soil mismanagement, 
deforestation, unpaved roads without a drainage sys-
tem, overgrazing, over farming, and inadequate prac-
tices (Poesen et al., 2003; Real, 2019; Valentin et al., 
2005).

Land use and land cover data were obtained from 
29 satellite images from July 1, 2019 (Maxar Tech-
nologies), obtained from Google Earth PRO, provid-
ing free data with great quality regarding to resolu-
tion. Real (2019) and Soares (2022) mapped LULC 
from 2016 images, and it was needed to update data 
using more recent images, especially considering 
climate changes in the area as reported in INMET 
(2017, 2020, 2021). Visual representation of the sat-
ellite images of the watershed is given in Supplemen-
tary Material.

The LULC map had bare soil, gully, unpaved 
road, urban area and paved road, grass, coffee, tem-
porary agriculture, pasture, planted forest, forest, and 
water as classes. The LULC features were saved in 
a shapefile (polygon format) after the polygons had 
been clipped. Therefore, only the elements in the 

Table 1   Soil erodibility values in the Palmital stream watershed

Soil classification Erodibility (Mg 
ha/MJ/mm)

Sources

Red Oxisol 0.0100 Silva (1997 apud 
Beskow et al., 2009)

Red-yellow Oxisol 0.0032 Silva et al. (2009)
Cambisol 0.0355 Silva et al. (2009)
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watershed were considered. The LULC map for sce-
nario 3 showed a 30-m buffer from the rivers, corre-
sponding to the permanent preserved area (ciliary for-
est). Consequently, the shapefiles were converted to a 
raster file by “Polygon to Raster” and then to TIF by 
“Export Data”.

The biophysical table (Table 2) provides informa-
tion on LULC classification, respective c (land use 
and management) and p (conservation practices) fac-
tors, and sources.

The model was calibrated through a compari-
son of the resultant “Stream” raster with a shapefile 
of the study area’s hydrography and different val-
ues of “Threshold Flow Accumulation,” namely 75, 
750, 1000, and 1250 were tested. Those values were 
arbitrarily chosen to observe the adjustment of the 
outcome, and the best adjustment indicated greater 
calibration of the model. As observed in Figs. 3 and 
4, the better adjustment was made when a threshold 
flow accumulation of 1000 was applied. Therefore, it 
was used in all scenarios.

Gully development in the watershed is especially 
related to areas of pasture and temporary agricul-
ture, as observed in previous research (Cassaro, 
2015, 2018; Real, 2019; Real et  al., 2020a, 2020b; 
Sampaio, 2014; Sampaio et  al., 2016, 2017); there-
fore, it was necessary to evaluate if changes in those 
LULC classes would have major implications in ero-
sion process, assessed through soil loss and sediment 
transport information. Pastures are predominant in 

the watershed and generally are associated with mis-
management and land degradation due to poor veg-
etation covering, soil compaction by cattle, and lower 
maintenance. Following a tendency of substitution 
of pasture areas for temporary agriculture, observed 
between 2016 and 2019, due to the rise of grains 
prices (Soares, 2022), it was chosen to model a sce-
nario (scenario 1) that followed this trend, along with 
conservation practices, which would also have posi-
tive impacts to minimizing erosion. A more optimis-
tic scenario (scenario 2) simulated the replacement of 
pastures for planted forests, testing reforestation as an 
extreme measure to contain erosion. Finally, scenario 
3 modeled the successful preservation of ciliary for-
ests (areas up to 30 m from the watercourses), accord-
ing to Law nº 12,651/2012 (Brasil, 2012), which is 
already legally required but not effectively adopted. 
Then, those scenarios support a comparative analy-
sis of LULC influence to soil loss in the area, mostly 
related to soil vulnerability to erosive agents and def-
lagrant agents.

All scenarios modeled had the same input data, 
except for LULC raster and biophysical table. LULC 
classes and c and p factors were the categories and 
values defined for 2019 for the present scenario. 
Alterations were made in LULC classes and in c and 
p factors (defined in biophysical tables for the hypo-
thetical scenarios in function of the criteria adopted).

Individual results for each LULC class were 
obtained from biophysical tables specific for the 

Table 2   Biophysical table 
of LULC classes in the 
Palmital stream watershed

*p factor = 1 in the 
present scenario and 2 
and 3 hypothetical ones; p 
factor = 0.5 in hypothetical 
scenario 1

Description Code C factor P factor Sources

Urban area and paved roads 1 0.8500 1 Marques et al. (2003)
Unpaved roads 2 0.1500 1 Azevedo (2017)
Gullies 3 1.0000 1 Mota e Silva et al. (2021)
Bare soil 4 1.0000 1 Mota e Silva et al. (2021)
Grass 5 0.0130 1 Azevedo (2017)
Coffee 6 0.1350 1 or 0.5* Cerri (1999)
Planted forest 7 0.0080 1 Silva et al. (2011)
Temporary agriculture 8 0.2900 1 or 0.5* Beskow et al. (2009)
Pasture 9 0.2000 1 Marques et al. (2003)
Forest 10 0.0004 1 Bertoni and Lombardi 

Neto (1990 apud 
CERRI, 1999)

Water 11 0.0000 1 Bertoni and Lombardi 
Neto (1990 apud 
CERRI, 1999)

Ciliary forest 12 0.0008 1 Tavares (2001)
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scenario class. The process was repeated ten times 
(for all classes, except water, whose c and p factors 
were zero) for the present scenario and for hypotheti-
cal scenarios 1 and 2 and eleven times (with the addi-
tion of ciliary forest) for hypothetical scenario 3.

Results and discussion

Base maps

The attributes required for modeling were processed 
and their maps are shown below: topography (DEM) 
(Fig. 5), erodibility of the soil (Fig. 6), rainfall aver-
ages (Fig. 7), LULC from 2019 (Fig. 8), and LULC 
considering a 30-m buffer from water courses as pres-
ervation areas (Fig. 9). It is highlighted that there are 
two rasters for LULC since hypothetical scenario 3 
includes ideal areas of ciliary forests, which are not 
compatible with reality observations in 2019 images. 
Also, erosivity data is represented as mean annual 

rainfall, which was the raw data input to assess ero-
sivity in the watershed.

Present scenario

The model results for land use and cover mapped in 
2019, denominated as present scenario, are shown in 
Table 3.

Forests, grass fields, and planted forests showed 
the lowest erosion rates, since vegetation protects 
from raindrops impacting the soil. Their c factor and 
soil loss results are the lowest in the area. The highest 
mean erosion is associated with gullies and bare soil, 
since their c factor is 1, suggesting higher exposure to 
rainsplash and overland flow. Sediment mobilization 
surpasses deposition in gullies because the particles 
are removed from the area.

The LULC classes with the most significant soil 
loss rates in the study area were gullies (5,117.03 t/
year), pasture (5,052.51 t/year), temporary agriculture 
(3,116.27 t/year), and exposed soil (2,407.10 t/year). 
Soil loss tolerance values were 5.60 t/ha year for 

Fig. 3   Calibration of InVEST model through a comparison of threshold flow accumulation values of 75 and 750 with stream vector 
data
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Cambisols (Silva et al., 2009) and 10 to 12 t/ha year 
for red-yellow latosols (Sparovek &Jong Van Lier, 
1997; Silva et  al., 2005; Silva et  al., 2008a, 2008b; 
Ferreira et al., 2021). Average rates of 13.34 t/ha year 
for gullies and 10.89 t/ha year for exposed soil, which 
are above tolerance, justify the need for conservation 
of degraded and exposed soil.

Pasture and temporary agriculture were identified 
as the dominant LULC classes, occupying 39.28% 
and 20.44% of the watershed, respectively, and pas-
ture areas were associated with erosive soils known 
as Cambisols. Real (2019) had observed a modest 
variation in pastures areas, which corresponded to 
51% of the watershed in 2022, 38% in 2007, 42% in 
2014, and 46% in 2016. Comparing with 2019 map-
ping, the pastures total area was reduced. However, 
gullies mapping indicated the progression of erosion, 
evidenced by the enlargement of features and new 
gullies arise (Soares, 2022).

Inadequate management practices in pastures 
resulted in increased vulnerability to water erosion, 
intensified by soil compaction from cattle movement, 

thus hindering water infiltration and promoting over-
land flow (Cassaro, 2015, 2018; Ferreira & Ferreira, 
2015; Real, 2019; Sampaio, 2014; Sampaio et  al., 
2016; Soares, 2022). The large extent of pastures 
in the watershed were selected as target areas for a 
potential replacement with temporary agriculture or 
reforestation, as explored in hypothetical scenarios 1 
and 2, respectively. It was also modeled on a hypoth-
esis that considered the preservation of ciliary forests 
(hypothetical scenario 3). Temporary agriculture, 
comprising mainly corn and soybean crops, repre-
sents an alternative form of land use instead of pas-
tures. However, its erosion potential, characterized 
by a higher c factor compared to permanent agricul-
tural activities such as seedling planting, requires the 
implementation of conservation practices to miti-
gating soil loss. Notably, when pasture areas were 
replaced by temporary agriculture and conservation 
practices were implemented in both temporary agri-
culture and coffee crop areas in hypothetical scenario 
1, temporary agriculture constituted 59.72% of the 
total land area, as described below.

Fig. 4   Calibration of InVEST model through a comparison of threshold flow accumulation values of 1000 and 1250 with stream 
vector data
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Hypothetical scenario 1: implementation of soil 
conservation practices and temporary crops

The first hypothesis considered the application of 
soil conservation practices, represented as p factor 
(changed from 1 to 0.5), on temporary agriculture 
(dominantly soybeans and corn) and coffee crops. 
The replacement of all pasture areas for temporary 
agriculture, which shows lower potential for erosion, 
according to results from the present scenario, was 
modeled, leading to a change in the c factor of pas-
tures, responsible for the second greater total mean 
erosion — gullies are the first. Table  4 shows the 
results for hypothetical scenario 1.

Results for mean erosion per area showed higher 
values for gullies, exposed soils, urban areas, and 
paved roads. Despite the lower mean erosion per 
area values for temporary agriculture, the total 
mean erosion sums 5,221.20 t/ha year due to their 
extensive area of 3,493 ha. However, a comparison 
of the sum obtained for the present scenario, i.e., 
8,168.78  ha/year, revealed almost 3,000 t of soil 
would be preserved each year.

The application of conservation practices such 
as terraces reduces slope degree and length, lower-
ing runoff energy, and increases water infiltration 
and organic matter content (Chen et al., 2021; Deng 
et  al., 2021; Wen et  al., 2021; Cerretelli, 2023). 

Fig. 5   Map of topography of the Palmital stream watershed
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Therefore, favorable conditions to erosion progress-
ing are reduced, which is positive to containing loss 
of productive areas. As stated by Lal (2019), one 
of the basic principles of sustainable management 
of agroecosystem soils is to maintain a permanent 
cover and protection to the soil. So, permaculture 
would be better than temporary agriculture to avoid 
erosion, but comparing the latter with pastures, and 
considering the influence of economic advantages 
to producers, temporary agriculture is more viable. 
Then, the replacement of pastures and application 
of conservation practices in temporary agriculture 
and coffee crops (planting on contour lines) mod-
eling showed a reduction on soil loss from 2.61 

to 1.30 t/ha year and from 0.92 to 0.46 t/ha year, 
respectively, i.e., mean erosion per area would be 
cut in half.

Hypothetical scenario 2: reforestation of pasture areas

The second hypothesis modeled the replacement of 
all pasture areas, which are the major source of ero-
sion from the watershed, for planted forests. It would 
represent a more extreme measure for the preserva-
tion of potentially productive land, avoiding soil ero-
sion due to vegetation cover. The results are shown in 
Table 5.

Fig. 6   Map of erodibility of the Palmital stream watershed
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Pastures can induce erosive processes, since they 
are generally associated with inadequate soil man-
agement, overgrazing, and soil degradation due to 
modifications in soil properties and nutrients and 
organic matter loss (Antoneli et al., 2018). The cir-
cumstances in the Palmital stream watershed are 
aggravated by the major presence of Cambisols in 
pasture areas, which combine the high erodibil-
ity of the soil with the poor management of land, 
favoring soil erosion. Studies have suggested posi-
tive impacts of reforestation and implementation of 
agroforestry practices in grazing systems (Gibson 
et  al., 2022; Huang et  al., 2017; Korkanç, 2014; 
Madern, 2012). The replacement of areas prone 

to erosion for conservation and reforestation ones 
is an alternative to decrease surface runoff (Kork-
anç, 2018; Lense et al., 2022a, 2022b; Smith et al., 
2015; Tiwari et al., 2019) and splash erosion, due to 
permanent soil cover (Lense et  al., 2022a, 2022b), 
therefore reducing soil loss.

The reforestation of pasture areas reduced their 
mean erosion from 2.29 t/ha year to 0.09 t/ha year 
and sediment exportation from 223.04 t/year to 3.73 
t/year. Therefore, reforested areas would have lower 
values than temporary agriculture (2.61 t/ha year 
mean erosion and 142.21 t/year sediment exportation) 
and coffee crops (0.92 t/ha year mean erosion and 
7.49 t/year sediment exportation).

Fig. 7   Map of mean rainfall used to calculate erosivity of the Palmital stream watershed
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A comparison of the results from the hypothesis 
with the present scenario revealed soil loss, sediment 
exportation, and deposition would be reduced by 
approximately 30%, and the sediment retention would 
increase by 4%. Consequently, reforestation would 
reduce impacts of pasture on the watershed by modi-
fying the dynamics of erosion processes.

Hypothetical scenario 3: preservation of ciliary 
forests

The third hypothesis simulated the full preservation 
of ciliary forests, represented by a 30-m buffer from 
water courses, as established by Law no. 12,651/2012 

(Brasil, 2012), which is not decently implemented. 
This measure is intended to conserve water courses 
and protect soil from erosion agents, notably water 
(rainfall, runoff, and fluvial).

Although other LULC classes did not have their 
p and c factor modified, parts of their areas were 
replaced with ciliary forests, affecting values of total 
mean erosion, sediment exportation, retention, and 
deposition. The major changes were identified in 
grass, exposed soil, forest, and gullies, which showed 
area losses of 40, 35, 26, and 25%, respectively. Con-
sidering that exposed soils and gullies have higher soil 
loss potential, a reduction in their areas is remarkably. 
However, as a disclaimer, the preservation of ciliary 

Fig. 8   Map of land use and land cover of the Palmital stream watershed from 2019
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forests in the present context would require reforesta-
tion and time to recover the area. Despite the legal 
obligation of 30 m from the water courses, it may not 
be possible to maintain a uniform zone, which can 
also change results for soil loss. Additionally, recov-
ering degraded areas, such as gullies, demand more 
complex measures to avoid recurrences. Hereupon, 
results for the hypothetical scenario 3, considering a 
regular 30-m buffer area from rivers to simplify the 
model, are shown in Table 6.

The reforestation of areas along the water bodies 
protects from splash erosion and captures sediments 

from crop areas (Lense et  al., 2022a, 2022b), acting 
as a sediments retention zone. Tree root networks also 
provide soil stability, due to larger and deeper roots 
(Gibson et al., 2022; Madern, 2012) that form macro-
aggregates embracing part of the soil (Morgan, 2005). 
The lowest mean erosion per area was identified in 
forests (0.0046 t/ha year) and ciliary forests (0.0092 
t/ha year). A comparison of this hypothesis with the 
present scenario revealed 14%, 57%, and 10% reduc-
tions for mean erosion per area, sediment exportation, 
and deposition, respectively. The sediment retention 
was increased by 9%.

Fig. 9   Map of land use and land cover of the Palmital stream watershed from 2019 with preservation areas
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Mean erosion for the four scenarios

Estimated average rates of soil loss depend on vari-
ables related to RUSLE. The state of São Paulo 
showed a 30-t/ha year average (Medeiros et  al., 
2016), and some watersheds in its territory showed 
13 t/ha year (Cantareira System) (Lense et al., 2023) 
and 8.9 t/ha year (Tietê river watershed) (Lense et al., 
2022a, 2022b) averages. The results of the Palmital 
stream watershed, displayed in Figs. 10 and 11, were 
below those values for soil loss; however, a higher 

concentration of erosive features, especially gullies, 
was observed in a smaller area. Additionally, aver-
age rates from the most erosive LULC of the Palmital 
stream watershed can be classified as moderate — 
between 10 and 20 t/ha year (Lense et al., 2023).

All hypothetical scenarios showed reductions in 
mean erosion, sediment exportation, and deposition 
and an increase in sediment retention. The reforesta-
tion of pasture areas hypothesis provided the low-
est values for mean erosion per area and sediment 
deposition, due to lower soil erosion and silting. The 

Table 3   Modeling results for the present scenario (2019) in the Palmital stream watershed

LULC Area (ha) Total mean  
erosion (t/year)

Mean erosion 
(t/ha year)

Sediment  
exportation  
(t/year)

Sediment  
retention (t/year)

Sediment 
deposition  
(t/year)

Urban area and paved roads 4.52 37.84 8.37 0.93 10,490.74 36.91
Unpaved roads 99.20 103.24 1.04 2.04 10,489.63 101.20
Gullies 383.70 5,117.03 13.34 532.98 9,958.69 4,584.06
Exposed soil 221.00 2,407.10 10.89 162.89 10,328.78 2,244.21
Grass 311.97 41.61 0.13 0.96 10,490.71 40.65
Coffee 267.84 245.84 0.92 7.49 10,484.18 238.35
Planted forest 3.46 0.50 0.14 0.0031 10,491.67 0.49
Temporary agriculture 1,195.45 3,116.27 2.61 142.21 10,349.46 2,974.06
Pasture 2,297.54 5,052.51 2.20 223.04 10,268.63 4,829.43
Forest 1,037.32 4.92 0.0047 0.06 10,491.61 4.87
Water 27.33 0 0 0 0 0
Total 5,866.52 16,126.86 2.75 1,449.54 9,042.13 14,677.29

Table 4   Modeling results for hypothetical scenario 1 in the Palmital stream watershed

*Pasture area replaced for temporary agriculture

LULC Area (ha) Total mean  
erosion (t/year)

Mean erosion 
(t/ha year)

Sediment  
exportation  
(t/year)

Sediment  
retention  
(t/year)

Sediment 
deposition  
(t/year)

Urban area and paved roads 4.52 37.84 8.37 0.93 10,490.74 36.91
Unpaved roads 99.20 103.24 1.04 2.04 10,489.63 101.20
Gullies 383.70 5,117.03 13.34 532.98 9,958.69 4,584.06
Exposed soil 221.00 2,407.10 10.89 162.89 10,328.78 2,244.21
Grass 311.97 41.61 0.13 0.96 10,490.71 40.65
Coffee 267.84 122.92 0.46 3.75 10,487.93 119.17
Planted forest 3.46 0.50 0.14 0.0031 10,491.67 0.49
Temporary agriculture 1,195.45 1,558.13 1.30 71.10 10,420.57 1,487.03
Pasture* 2,297.54 3,663.07 1.59 177.94 10,313.73 3,485.10
Forest 1,037.32 4.92 0.0047 0.06 10,491.61 4.87
Water 27.33 0.00 0.00 0.00 0.00 0.00
Total 5,866.52 13,056.37 2.23 1,300.59 9,191.08 11,755.76
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preservation of ciliary forests hypothesis showed the 
lowest sediment exportation and the highest sediment 
retention, implying soil transport was better avoided. 
Those hypotheses considered increasing forested 
areas, therefore protecting more areas from erosive 
agents.

On the other hand, it is difficult to persuade agri-
cultural producers to leave their productive areas 
for reforesting, threatening their profits, although 
portions of the properties have been lost for soil 

degradation. The quality of productive areas would 
be maintained if areas, which would be used for agri-
culture or pasture in a short-term, were protected and 
preserved. The long-term sustainability of agroeco-
systems is of higher importance (Lal, 2019).

Since 2016, producers that raised cattle have 
changed their land use for soybeans and corn crops, 
notably because of the high increase in grains prices. 
Since it is a trend, the replacement of pastures for 
temporary agriculture and application of conservation 

Table 5   Modeling results for hypothetical scenario 2 in the Palmital stream watershed

*Pasture area replaced for planted forest

LULC Area (ha) Total mean  
erosion (t/year)

Mean erosion 
(t/ha year)

Sediment  
exportation  
(t/year)

Sediment  
retention  
(t/year)

Sediment 
deposition  
(t/year)

Urban area and paved roads 4.52 37.84 8.37 0.93 10,490.74 36.91
Unpaved roads 99.20 103.24 1.04 2.04 10,489.63 101.20
Gullies 383.70 5,117.03 13.34 532.98 9,958.69 4,584.06
Exposed soil 221.00 2,407.10 10.89 162.89 10,328.78 2,244.21
Grass 311.97 41.61 0.13 0.96 10,490.71 40.65
Coffee 267.84 245.84 0.92 7.49 10,484.18 238.35
Planted forest 3.46 0.50 0.14 0.0031 10,491.67 0.49
Temporary agriculture 1,195.45 3,116.27 2.61 142.21 10,349.46 2,974.06
Pasture* 2297.54 202.10 0.09 3.73 10,487.94 198.37
Forest 1037.32 4.92 0.0047 0.06 10,491.61 4.87
Water 27.33 0.00 0.00 0.00 0.00 0.00
Total 5,866.52 11,276.45 1.92 1,046.69 9,444.98 10,229.77

Table 6   Modeling results for hypothetical scenario 3 in the Palmital stream watershed

LULC Area (ha) Total mean  
erosion (t/year)

Mean erosion 
(t/ha year)

Sediment  
exportation  
(t/year)

Sediment  
retention  
(t/year)

Sediment 
deposition  
(t/year)

Urban area and paved roads 4.27 44.61 10.45 1.11 10,477.60 43.50
Unpaved roads 95.22 93.40 0.98 1.71 10,477.00 91.68
Gullies 307.12 4,055.51 13.20 190.18 10,288.53 3,865.34
Exposed soil 163.82 1,828.61 11.16 67.32 10,411.39 1,761.29
Grass 222.09 25.33 0.11 0.39 10,478.32 24.94
Coffee 263.57 230.28 0.87 6.70 10,472.01 223.58
Planted forest 3.46 0.45 0.13 0.0027 10,478.71 0.45
Temporary agriculture 1,135.46 2,896.38 2.55 97.53 10,381.18 2,798.85
Pasture 2,146.52 4,637.88 2.16 150.92 10,327.79 4,486.96
Forest 823.74 3.80 0.0046 0.04 10,478.67 3.76
Water 27.33 0.00 0.00 0.00 0.00 0.00
Ciliary forest 745.66 6.85 0.0092 0.11 10,478.60 6.73
Total 5,866.52 13,823.11 2.36 616.65 9,862.06 13,206.47
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practices instead of total reforestation of pasture areas 
would be a smoother transition. Ideally, the hypothe-
ses should be mixed towards better results on soil loss 
prevention.

Soil is associated with many ecosystem services 
such as provisioning (food, water, and fiber), regu-
lation (climate, water, and waste), supporting (soil 
formation and nutrients cycles), and cultural. There-
fore, soil degradation must be avoided, and its equi-
librium must be maintained considering resiliency. 
Studies of geologic-geotechnical conditions, erosion 

agents, land use and land cover, and erosive features 
surveys are essential for a better understanding of the 
area and supply of tools and knowledge to decision 
makers.

Conclusions

Values of mean erosion, sediment exportation, 
retention, and deposition from the Palmital stream 
watershed were obtained by SDR-InVEST model, 

Fig. 10   Mean erosion per 
area for the present scenario 
and hypothetical scenarios 
1, 2, and 3 from the Palmi-
tal stream watershed
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Fig. 11   Total mean ero-
sion, sediment exportation, 
retention, and deposition 
for the present scenario and 
hypothetical scenarios 1, 
2, and 3 from the Palmital 
stream watershed
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to observe effects of LULC to soil loss and analyze 
consequences of alterations in LULC through three 
hypothetical scenarios. The present scenario, based 
on 2019 satellite images, showed 2.75 t/ha year total 
mean erosion. A replacement of pasture areas for 
temporary agriculture along with the implementation 
of conservation practices in temporary agriculture 
and coffee crops in hypothetical scenario 1 reduced 
19% of mean erosion, 10% of sediment exportation, 
and 20% of sediment deposition. The sediment reten-
tion showed a 2% increase. Hypothetical scenario 2 
consisted in reforesting pasture areas and a compari-
son of its results with those of the present scenario 
revealed reductions of 30% in mean erosion, 28% in 
sediment exportation, and 30% sediment deposition. 
The increase in sediment retention was 4%. The pres-
ervation of ciliary forests, hypothetical scenario 3, 
also showed reductions in mean erosion, sediment 
exportation, and sediment deposition of 14%, 57%, 
and 10%, respectively, with the highest increment 
of sediment retention, i.e., 9%, mostly because veg-
etation included areas previously classified as gullies 
and bare soil.

Then, all three simulated scenarios effectively 
reduced mean erosion, sediment exportation, and 
deposition in the watershed, indicating changes in 
land use and land cover to less soil degrading classes, 
application of conservation techniques, and preserva-
tion of ciliary forests are appropriate measures to pro-
tect erodible materials and lower the erosive potential 
of water, thus reducing soil erosion.

InVEST model application was effective to quan-
tify soil loss, determine LULC contribution to erosion 
processes, and perform simulations for hypothetical 
scenarios. Therefore, it is a suitable alternative to 
assess erosion consequences, plan changes on LULC 
in vulnerable or degraded areas, assist recovering pro-
jects, and provide solutions for erosion driven prob-
lems, especially reduction of soil and water quality, as 
well as loss of land productivity and fertility, which 
impacts food security, economy, and social aspects 
related to rural activities.
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