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Abstract
The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production 
worldwide. Machine learning approaches are able to investigate the complex relationships among the factors 
involved in resistance. Classification trees were built to predict multidrug resistance from 36 management 
practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test 
(FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were 
randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were 
generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in 
predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, 
and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. 
The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other 
trees. These management practices can be used to predict the anthelmintic resistance status and guide measures 
for gastrointestinal nematode control in sheep flocks.
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Resumo
A criação de ovinos é afetada pela alta prevalência de Haemonchus contortus e pela resistência anti-helmíntica, 
cujas complexas inter-relações podem ser elucidadas por técnicas de aprendizado de máquina. Árvores de 
classificação identificaram a importância de práticas de manejo em 27 rebanhos ovinos, para a predição da 
resistência anti-helmíntica múltipla. A resistência a cinco anti-helmínticos foi determinada pelo teste de redução 
de contagem de ovos nas fezes (TRCOF), e as 20 propriedades com eficácia inferior a 80% no TRCOF para quatro 
ou cinco anti-helmínticos foram consideradas resistentes. Os dados foram aleatoriamente separados em 1.000 
amostragens de treinamento (75%) e teste (25%), e as árvores de classificação foram geradas para os dados de 
treinamento. Dessas, 24 árvores (2,4%) apresentaram acurácia, sensibilidade e especificidade de 100% para a 
predição do estado de resistência nos dados de teste. O tipo de forragem foi detectado em todas as árvores, 
enquanto a área de pastagem e a realização de exame de fezes foram observadas nas árvores mais frequentes 
(12/24). O sistema de produção, a raça ovina Suffolk e o critério de escolha do anti-helmíntico geraram quebras 
nas demais árvores. Essas práticas de manejo podem predizer o estado de resistência anti-helmíntica em rebanhos 
e orientar medidas, visando ao controle da verminose em ovinos.

Palavras-chave: CARTs, aprendizado de máquina, resistência múltipla, nematoides gastrintestinais, random forest.
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Introduction
The economic importance of sheep in the supply of animal-origin proteins mainly relies on the use of small areas 

unsuitable for cattle production and agriculture (Sargison, 2012). According to recent estimates, Brazilian sheep 
flocks, composed of 20.5 million heads (IBGE, 2022), cannot meet the national consumer demand, which depends 
on lamb importation (FAO, 2022). Therefore, it is necessary to support, develop, and invest in sheep production 
systems in Brazil to increase productivity and profitability.

In tropical countries, the main challenges in sheep farming are adverse climatic conditions, competition for 
resources, including water and food, and the high prevalence of gastrointestinal nematodes (McManus et al., 2011). 
Among them, Haemonchus contortus is the most prevalent and pathogenic parasite in sheep (Waller, 2004), leading 
to losses estimated at US$ 107.5 million per year (Chagas et al., 2022). These losses are secondary to reduced 
growth and weight gain, inferior meat and wool quality, high costs of therapeutics, and animal death, especially in 
the case of resistance to anthelmintics used for nematode control (Costa et al., 2007; Miller et al., 2012).

Despite of the large number of commercial products, only four classes of broad-spectrum anthelmintics, i.e., 
benzimidazoles, imidazothiazoles, salicylanilides, and macrocyclic lactones, are available for treating sheep in Brazil 
(Chagas et al., 2013). Free access, ease of use, and lack of technical guidance have led to massive and incorrect 
use of anthelmintics, reducing their efficacy and promoting multidrug resistance (Doyle & Cotton, 2019). Because 
anthelmintic resistance leads to treatment failure, it can be detected in vivo through a fecal egg count reduction 
test (FECRT) after anthelmintic treatment of sheep hosts (Coles, 2005).

The establishment of resistance is affected by management practices used in flocks (Barger, 1997). Thus, 
resistance can be delayed by reducing pasture contamination and sheep infection not only through the use of 
anthelmintics but also by controlling environmental conditions (Bath, 2011; Leathwick, 2012; McBean et al., 2016; 
McFarland et al., 2022).

Similarly to other health traits, resistance data are complex, unbalanced, and contain missing values, resulting in 
a nonlinear complex interrelationship between the response and explanatory variables (Speybroeck, 2012). Thus, 
statistical and machine learning tools are suitable for detecting the factors that lead to anthelmintic resistance. 
Among them, classification and regression trees (CARTs) are non-parametric techniques that explore the interactions 
among variables, remove irrelevant covariates, produce visual results that are easy to interpret, and can predict 
the response to new observations (Speybroeck, 2012; Izbicki & Santos, 2020). A classification tree is built with 
recursive partitioning of the explanatory variables (resulting in nodes), minimizing the errors (the lower the error, 
the larger the branches and the importance of the variable to predict the outcome), and explaining, as much as 
possible, the categorical response variable in the leaves (Speybroeck, 2012; Izbicki & Santos, 2020). The random 
forest approach aggregates a collection of random decision trees, aiming to optimize a predictor and explore all 
possible tree predictors simultaneously, usually resulting in better performance (Genuer & Poggi, 2019).

Recently, machine-learning techniques have been used in veterinary parasitology. They were used to predict 
the resistance of sheep against gastrointestinal nematodes (Freitas et al., 2023b), to classify Famacha score anemia 
based on automatic analysis of ocular conjunctiva images (Freitas et al., 2023a), to perform fecal Strongyle egg 
counts from video footage (Bucki et al., 2023), to detect environmental risk factors affecting haemonchosis incidence 
based on egg per gram counts (Suresh et al., 2022), and as a potential approach for anthelmintic drug discovery 
(reviewed by Zamanian & Chan, 2021). To the best of our knowledge, this is the first study to use machine learning 
to predict anthelmintic resistance in flocks based on management practices.

In a previous study using the same data (Niciura et al., 2012), risk factors in management practices were identified 
using the frequency of genetic resistance to benzimidazoles in H. contortus as the response variable. However, as 
most flocks were resistant to other anthelmintic classes besides benzimidazoles, using FECRT data as the response 
variable and applying machine learning approaches have the potential to identify the factors involved and their 
interrelationships with the establishment of multiple anthelmintic resistance.

Thus, knowledge of parasite epidemiology, resistance status, and management practices in flocks can be used 
to develop new strategies for parasite control. In this study, classification trees were built based on 36 management 
practices and FECRT efficacy data for five anthelmintics (albendazole, closantel, ivermectin, levamisole, and 
moxidectin) in 27 sheep flocks in São Paulo State, Brazil. The objective of this study was to generate classification 
trees and identify relevant management practices that lead to resistance to multiple anthelmintics.
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Material and Methods
A survey was conducted among 34 sheep farmers in São Paulo State, Brazil, from 2008 to 2010 to obtain 

information on 36 management practices related to infrastructure, health, and feed management (Veríssimo et al., 
2012). In addition, an FECRT for a control group and five anthelmintics (albendazole, closantel, ivermectin, levamisole, 
and moxidectin) assessed the reduction in fecal egg counts (FEC) (Ueno & Gonçalves, 1998) 10–14 days after 
treatment, obtaining anthelmintic efficacy in 27 flocks (Veríssimo et al., 2012). The following formula was used for 
calculation of anthelmintic efficacy in FECRT:

%   1 00Control AH
AH

Control

meanFEC meanFEC
Efficacy x

meanFEC
+

=  (1)

where EfficacyAH is the efficacy of each anthelmintic; meanFECControl is the mean fecal egg count for the non-treated 
control group 10–14 days after FECRT; and meanFECAH is the mean fecal egg count for each anthelmintic-treated group 
10–14 days after FECRT. An anthelmintic efficacy lower than 80% in FECRT indicate high resistance (Voigt et al., 2022).

In total, 1,000 classification trees were built from the 27 sheep flock dataset to predict the development of 
in vivo multidrug resistance (as the categorical response variable) based on management practices (explanatory 
variables) used in each flock. Considering the quartile distribution of anthelmintics with high resistance, flocks were 
classified as resistant (1) when presenting 4 and 5 anthelmintics with FECRT < 80% (20 flocks), and as susceptible 
(0) when presenting 0 to 3 anthelmintics with FECRT < 80% (7 flocks).

All quantitative (total area, grazing pasture area, time in farming, number of dams, number of sires, and number 
of heads) and categorical (wetland, flooring, main income source, secondary exploration, grazing of cattle, farm 
accounting, technical assistance, frequent animal incorporation, quarantine, Dorper, Ile de France, Santa Inês, Texel 
and other breeds, crossbred, region of animal origin, forage species, rotational grazing, farming system, shared 
grazing, anthelmintic choice, anthelmintic rotation, combination of drugs, deworming schedule, dose-and-move 
practice, estimation of weight, FEC examination, Famacha, FECRT, and resistance status) variables used in the 
analysis and their descriptive statistics in the 27 flocks are presented in Tables 1 and 2.

The data were split into 1,000 random training (75%) and test (25%) sets, and trees were built using raw data 
(Steinberg, 2009) with the recursive partitioning (rpart) package (Therneau & Atkinson, 2022) in R version 4.2.1 (R 
Core Team, 2022). The parameters included method = “class”, split = “gini”, cp = 0, minsplit = 1, maxdepth = 30, 
and xval = 10, and the trees were plot with treemisc (Greenwell, 2022). The accuracy of prediction was calculated 
from the confusion matrix, and the package caret (Kuhn, 2022) was used to calculate the area under the receiver 
operating characteristic (ROC) curve (AUC), sensitivity, and specificity.

In addition, a random forest approach was used to confirm the results obtained from the classification trees. To this 
aim, missing data were replaced with the mean (for quantitative variables) or mode (for categorical variables). Then, 
a random forest (Liaw & Wiener, 2002) model, including the parameters importance = T, proximity = T, ntrees = 1000, 
and sample size was fitted to the training data (75%) and validated using the test data (25%).

Table 1. Descriptive statistics for quantitative variables of management practices and anthelmintic resistance in 27 sheep flocks 
from São Paulo State, Brazil.

Variable Min 1st Quart Median Mean 3rd Quart Max NA

Total area (ha) 7.5 33.0 100.0 273.4 217.0 2000.0 2

Grazing pasture area (ha) 2.0 9.5 27.2 49.0 63.2 194.0 3

Time in farming (years) 2.0 4.3 5.0 8.6 8.0 51.0 1

Number of dams 50.0 133.2 241.0 397.8 450.0 1500.0 3

Number of sires 1.0 4.0 12.5 46.1 22.5 773.0 3

Number of heads 95.0 183.0 316.0 594.1 742.0 2028.0 2

Anthelmintics with FECRT < 80% 1.0 3.5 4.0 3.9 5.0 5.0 0

FECRT = fecal egg count reduction test; Quart = quartile; Min = minimum; Max = maximum; NA = missing values.
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Table 2. Descriptive statistics for categorical variables of management practices and anthelmintic resistance in 27 sheep flocks 
from São Paulo State, Brazil.

Variable Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7

Wetlands 17 (no) 10 (yes)

Flooring 24 
(concrete)

2 (slat) 1 (NA)

Main income source 19 (no) 8 (yes)

Secondary exploration 16 (no) 9 
(reproduction)

1 (wool) 1 (milk)

Grazing of cattle 17 (yes) 10 (no)

Farm accounting 16 (yes) 11 (no)

Technical assistance 13 
(frequent)

6 (sporadic) 8 (no)

Frequent animal 
incorporation

21 (no) 6 (yes)

Quarantine 21 (yes) 5 (no) 1 (NA)

Dorper breed 19 (no) 7 (yes) 1 (NA)

Ile de France breed 21 (no) 6 (yes)

Santa Inês breed 22 (yes) 5 (no)

Suffolk breed 17 (no) 10 (yes)

Texel breed 20 (no) 7 (yes)

Other breeds 22 (no) 5 (yes)

Crossbred 14 (yes) 12 (no) 1 (NA)

Region of animal origin 13 (SE) 6 (NE) 4 (SE + NE) 1 (SE + CW) 1 (SE + S) 1 (NE + S) 1 (NA)

Forage species 7 (Brachiaria) 6 (Cynodon) 5 (Panicum) 3 (Brachiaria 
+ Panicum)

3 (Brachiaria 
+ Panicum + 

Cynodon)

3 (Brachiaria 
+ Panicum + 
Cynodon + 

Pulse)

2 (other)

Rotational grazing 22 (yes) 5 (no)

Farming system 22 (semi-
intensive)

3 (intensive) 2 (extensive)

Shared grazing 14 (no) 7 (cattle) 5 (horses + 
cattle)

1 (horses)

Anthelmintic choice 15 
(technician)

4 (seller) 3 (efficacy) 2 (other) 1 
(technician 
+ efficacy)

1 
(experience)

1 (NA)

Anthelmintic rotation 11 (based on 
efficacy)

8 (after each 
treatment)

5 (based on 
FECRT)

3 (NA)

Combination of drugs 17 (no) 10 (yes)

Deworming schedule 8 (target + 
strategic)

7 (target) 6 (fixed) 3 (fixed + 
target + 

strategic)

1 (strategic) 1 (fixed + 
strategic)

1 (fixed + 
target)

Dose-and-move practice 16 (no) 11 (yes)

Estimation of weight 16 (visual) 8 (scale) 3 (scale + 
visual)

FEC examination 11 (sporadic) 11 (no) 3 (monthly) 1 (annual) 1 (quarterly)

Famacha 18 (yes) 9 (no)

FECRT 22 (no) 5 (yes)

Resistance status 20 
(resistant)

7 (susceptible)

FEC = fecal egg counts; FECRT = fecal egg count reduction test; NA = missing information; SE = Southeast; NE = Northeast; CW = Center-West; S = South.
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Results
From the 1,000 classification trees fitted to the training data, 24 trees predicted the anthelmintic resistance status 

in the test group with 100% accuracy, sensitivity, and specificity and an AUC of 1, and the ROC curves for training 
and test data are shown in Figure 1. Forage species, grazing pasture area, and FEC were the explanatory variables 
predicting multidrug resistance in the most frequent (12/24) trees (Figure 2A). According to these trees, farms that 
have an exclusive pasture of Cynodon or Panicum forage species (right branch) and a grazing pasture area ≥ 9.6 ha are 
susceptible, whereas, when other forage species (left branch) are present, they are susceptible only if they perform 
FEC examination every month (Figure 2A). In the second most frequent trees (8/12) (Figure 2B), the farming system 
was included in addition to forage species, FEC exams, and pasture grazing areas. Farms with pasture areas < 10 ha 
are susceptible only if they adopt intensive farming systems. Other management practices were detected in the less 
frequent trees, such as anthelmintic choice criteria based on both technical recommendations and efficacy, resulting in 
susceptibility (Figures 2C and 2D), and raising the Suffolk sheep breed, resulting in anthelmintic resistance (Figure 2E).

Figure 1. Area under the receiver operating characteristic (ROC) curve for prediction of multiple anthelmintic resistance in 27 
sheep flocks with classification trees using training (75%) and test (25%) data.

Figure 2. Classification trees of multiple anthelmintic resistance based on forage species, fecal egg count exam (FEC), grazing 
pasture area in ha, anthelmintic choice criteria, and Suffolk sheep breed in flocks of São Paulo State, Brazil. Cyn: Cynodon, Pan: 
Panicum, 1m = monthly, Tec+Effic = decision for anthelmintic treatment based on technical recommendation and efficacy.
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Among the 24 classification trees, 24 out of the 36 investigated management practices were identified as 
important for the prediction of anthelmintic resistance. The importance scores were then retrieved, and the variables 
were ordered based on the sum of their scores (Table 3), revealing the grazing pasture area, forage species, number 
of heads, number of dams, and FEC examination as the top five variables for the prediction of multidrug resistance.

Figure 3. Importance of management practice variables based on the random forest model to predict anthelmintic resistance 
in sheep flocks.

The random forest model resulted in a prediction with 86% accuracy, 100% sensitivity, and 50% specificity. 
Despite the inferior results compared to the classification trees, the ten most important variables (Figure 3), based 
on node impurities, are among those highlighted in the trees.

Table 3. Sum of scores for important management practices for classification trees built to predict anthelmintic resistance in 
sheep flocks.

Variable Importance score sum
Pasture area 80.56

Forage species 69.23
Number of heads 50.66
Number of dams 40.45

FEC exam 39.09
Total area 35.93

Region of animal origin 29.08
Deworming schedule 28.75

Time in farming 21.00
Farming system 16.87

Combination of anthelmintics 12.83
Shared grazing with other species 12.69

Famacha exam 10.51
Dose-and-move practice 9.82

Grazing of cattle 8.86
Anthelmintic choice 8.61

Number of sires 8.19
Santa Ines breed 6.57

Texel breed 5.26
Frequent animal incorporation 3.45

Main income source 3.00
Suffolk breed 2.40

FECRT 1.06
Technical assistance 0.60
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Discussion
In well-managed flocks, fewer unnecessary treatments are applied to animals; consequently, selective pressure 

on the development of anthelmintic resistance is reduced. In this study, several management practices applied 
to sheep flocks were able to predict anthelmintic resistance status. The most important practices highlighted in 
the classification trees were forage species, grazing pasture area, FEC examination, farming system, criteria for 
anthelmintic choice, and Suffolk sheep breed.

Higher anthelmintic susceptibility was detected in farms with exclusive pastures of Cynodon and Panicium, 
whereas the combination of these species with other forage and pulse species resulted in resistance. Thus, handling 
only one type of forage may be easier than handling multiple different exigencies. Additionally, the forage itself 
may influence anthelmintic resistance in several ways. First, short-cropped grass accumulates more concentrated 
larvae than taller grass (Bath, 2011). Second, forage nutritional quality influences animal nutrition and physical 
condition, which, in turn, affects the effectiveness of the immune response and mechanisms to support the 
parasite load (reviewed by Walkden-Brown & Kahn, 2002; reviewed by McRae et al., 2015). Brachiaria humidicola 
and Panicum maximum cv. Massai had low alimentary values, whereas B. brizantha cv. Marandu had a high forage 
quality and Cynodon cv. Coastcross and P. maximum cv. Colonião, Tanzânia, and Tobiatã presented high nutritional 
and alimentary values (Corrêa & Santos, 2009). Nutritional variations among forage species may have influenced 
the response of sheep to nematodes and infection levels. Additionally, the morphology and structure of plants 
interfere with nematode larval migration from the feces in the soil to the forage tip ingested by animals and 
larval survival as a consequence of solar radiation exposure and desiccation. Seasonal temperature and humidity 
conditions affect H. contortus larval migration in B. decumbens (Santos et al., 2012), and a large number of infective 
larvae were recovered from U. humidicola and M. maximus cv. Massai compared with U. brizantha cv. Marandu and 
M. maximus cv. Mombaça (Pires et al., 2021). However, no differences in larval migration were observed among 
the Stylosanthes spp., B. brizantha cv. Marandu, B. brizantha cv. Xaraes, and P. maximum cv. Tanzânia (Oliveira et al., 
2009; Urzedo et al., 2022). Thus, the availability of larvae in pastures being ingested by the animals and affecting 
infection rates may be influenced not only by the species (which was the information retrieved in the surveys) but 
also by forage cultivars.

In sheep grazing pasture areas, anthelmintic susceptibility associated with larger areas can be related to the 
increase in food supply and consequent improved animal nutrition, dilution of nematodes in the pasture reducing 
sheep infection, and maintenance of refugia. Refugia is a unanimous management practice used for the control 
of anthelmintic resistance. It consists of retaining part of the parasite population in animals and environment not 
exposed to anthelmintics, assuring the stock of genes of susceptibility (Kenyon et al., 2009).

Monthly fecal examination was associated with anthelmintic susceptibility, probably because monitoring 
animal infection can be used as an effective decision criterion for target-selective treatment (Kenyon et al., 2009). 
Additionally, the criteria used for anthelmintic choice influenced resistance, with beneficial effects observed when 
the decision was based on technical and efficiency criteria (through FECRT) in contrast to the seller, price, or 
farmer’s experience.

Farming systems affected resistance, with intensive farming resulting in lower resistance in smaller pasture 
areas. In intensive systems, higher stock rate and animal concentration may increase contamination. However, 
better pastures, feeding supplementation, and confinement practices may improve the nutritional conditions of 
animals, leading to greater resistance to worms (Van Wyk, 1990).

Raising Suffolk sheep was a practice associated with resistance in the classification trees. There are differences 
in parasite resistance among sheep breeds, and Suffolk shows higher susceptibility to gastrointestinal nematodes 
than Santa Inês (Amarante et al., 2004). Thus, the selection of more resistant breeds or individuals within breeds is an 
effective strategy to reduce anthelmintic use in flocks and delay the establishment of resistance (Zvinorova et al., 2016).

Other variables were also identified as important for the prediction of anthelmintic resistance. However, because 
they were not highlighted in the classification tree nodes, their effects may be distinct based on their interactions 
with other variables. For example, sheep grazing pastures shared with other animal species have been used for 
gastrointestinal nematode control. Since most parasites are species-specific, shared grazing with cattle, horses, 
or pigs can reduce environmental contamination with nematodes (Barger, 1997; Forbes, 2021); however, as an 
adverse effect, co-grazing sheep with cattle may accelerate the development of anthelmintic resistance, as it may 
reduce the number of parasites in refugia on pasture (see Falzon et al., 2014 for a review).



Braz J Vet Parasitol 2024; 33(1): e019023 8/11

Anthelmintic resistance prediction in sheep flocks

Other practices were related to farm structure and technical level, including the number of dams, heads, and 
sires; total area; cattle grazing; and sheep production as the main income source. These practices reflect farm 
production levels, care given to sheep, the availability of animals for selection based on parasite susceptibility, 
and pasture area. Time spent in sheep farming may also have a dual effect; while farming for very short periods 
could be associated with the use of pastures that are less contaminated with larvae, farming for longer periods 
may result in learning gains to control the parasites.

Other important practices were associated with anthelmintic treatment protocols. Target-selective and strategic 
treatments are usually preferred over fixed deworming schedules, but refugia, parasitic load, and animal physical 
condition should be considered when choosing a deworming protocol (Bath, 2011). Anthelmintic combinations 
promote nematode control in the presence of single or multiple resistance and slow the development of 
resistance under certain prerequisites. However, resistance to all drugs used in combination can occur if refugia 
are insufficient or if resistance is high (reviewed by Bartram et al., 2012). Famacha examinations detect anemia, 
identify animals for target-selective treatment, and reduce anthelmintic usage, but only when H. contortus, 
which is hematophagous, is the most prevalent species in the flock (Bath, 2011). Dose-and-move, also known as 
drench-and-shift, involves moving animals after treatment to a new clean pasture and is considered a high-risk 
practice for anthelmintic resistance, as it reduces refugia due to contamination of the new pasture only with 
resistant parasites (Waghorn et al., 2009).

Replacement of the parasite population can occur through the import of animals from other farms; however, 
the consequences depend on the resistance status of these parasites. Thus, frequent animal incorporation and the 
region of animal origin can increase anthelmintic resistance when imported helminths are resistant to anthelmintics 
(Bath, 2011), but the opposite may occur if susceptible worms are imported.

Interestingly, trees provided management alternatives; if a farmer could not modify one practice, it was possible 
to implement a different strategy to reduce anthelmintic resistance. For example, if changing the forage species 
of the pasture is impossible, monitoring the fecal egg counts of animals every month can reduce anthelmintic 
resistance, and the use of intensive farming can compensate the reduced availability of pasture areas in farms. 
However, as intensification increases not only stocking rate, but also parasitism levels (Waller, 2006), strategies for 
environmental decontamination and reduction of larvae in pasture, such as using integrated crop-livestock systems 
(Almeida et al., 2018) or biological control with nematophagous fungi (reviewed by Waller, 2006), may increment 
the integrated control of gastrointestinal nematodes in sheep flocks.

Classification trees provide a visual interpretation of data and require less computational memory, but are more 
prone to overfitting and instability, and small perturbations in the dataset can lead to large variations in predictions 
(Fratello & Tagliaferri, 2019). Due to this disadvantage, a random forest model was also evaluated. Random forest 
approaches, despite requiring higher computational memory and missing the easy interpretation of the trees, 
aggregate independent classifiers (or independent trees) and usually result in better performance (Fratello & 
Tagliaferri, 2019). In the present study, despite selecting almost the same variables of importance, better prediction 
results were obtained with the classification trees than with the random forest model. Considering the small sample 
size (27 observations) and unbalanced data (20 resistant and 7 susceptible flocks), building 1,000 classification trees 
with cross-validation after altering the training set (resampling) resulted in trees with higher prediction accuracy 
compared to the random forest results, which was based on the aggregation of 1,000 independent trees, but only 
after one subset of the database.

Conclusions
Machine learning tools are suitable for the fast, easy, noninvasive, and less costly identification and classification 

of response patterns and their complex relationship to determinant factors. The development of classification trees 
to predict anthelmintic resistance in sheep flocks based on management practices could provide alternatives for 
controlling the global multidrug resistance problem. Practices such as the exclusive use of forage species in pastures, 
monthly FEC examination of animals, intensive farming systems, pasture area available for grazing, and the use 
of parasite-resistant sheep breeds can be implemented to delay the establishment of anthelmintic resistance in 
flocks. Furthermore, prioritizing management changes based on variable importance is a smart decision made 
by farmers and technicians to promote sheep health and nematode control, reduce the use of anthelmintics, and 
manage the establishment of anthelmintic resistance.
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