07 a 10 de Agosto de 2023 | Brasília - DF

ANAIS 2023

53° CONGRESSO BRASILEIRO DE

FITOPATOLOGIA

www.cbfito2023.com.br

ISBN E DADOS DE PUBLICAÇÃO

53° CONGRESSO BRASILEIRO DE FITOPATOLOGIA

07 a 10 de Agosto de 2023 | Brasília - DF

Edição Técnica

Danilo Batista Pinho; Thaís Ribeiro Santiago; Alice Kazuko Inoue Nagata; Juvenil Enrique Cares; Tatsuya Nagata; Maurício Rossato

Todos os resumos neste livro foram reproduzidos de cópias fornecidas pelos autores e o conteúdo dos textos é de exclusiva responsabilidade dos mesmos. A organização do referente evento não se responsabiliza por consequências decorrentes do uso de quaisquer dados, afirmações e/ou opiniões inexatas ou que conduzam a erros publicados neste livro de trabalhos. É de inteira responsabilidade dos autores o registro dos trabalhos nos conselhos de ética, de pesquisa ou SisGen.

Copyright © 2023 – Todos os diretos reservados Nenhuma parte desta obra pode ser reproduzida, arquivada ou transmitida, em qualquer forma ou por qualquer meio, sem permissão escrita da Sociedade Brasileira de Fitopatologia.

SUBSTITUIÇÃO DA FONTE DE CARBONO EM MEIO DE CULTURA PARA PRODUÇÃO DE ENDÓSPOROS POR Bacillus velezensis REPLACEMENT OF CARBON SOURCE IN CULTURE MEDIUM FOR ENDOSPORE PRODUCTION BY BACILLUS VELEZENSIS

Luana Aparecida Gilio 1; Wagner Bettiol 2

¹Discente. Trevo Rotatório Professor Edmir Sá Santos Universidade Federal de Lavras, 37203-202 Lavras, MG, Brasil. Universidade Federal de Lavras; ²Pesquisador. Rod. SP-340 Km 127, 5, 13.918-110 Jaguariúna, SP, Brasil. EMBRAPA-Meio Ambiente

Resumo:

A otimização de meios de cultura utilizando reagentes baratos e de fácil acesso é importante para o controle biológico de doenças de plantas. Assim, o objetivo do presente trabalho foi substituir a fonte de carbono de um meio quimicamente definido para bactérias (MORAES, I. de O.; CAPALBO, D. M. F.; MORAES, R. de O. Multiplicação de agentes de controle biológico. In: BETTIOL, W. Controle Biológico de doenças de plantas. Jaguariúna: Embrapa, 1991. p. 383) por fonte mais barata e de fácil acesso, a sacarose, para produzir Bacillus velezensis AP-3. O experimento foi instalado em delineamento inteiramente casualizado, sendo avaliado o meio de cultura quimicamente definido para bactérias e o mesmo com alteração da glicose para sacarose. Para tanto, cada tratamento contou com três repetições e o ensaio foi repetido duas vezes no tempo. Para este estudo, a pré-cultura foi cultivada por 24 h em Shaker Orbital a 250 rpm, 28 °C, no escuro, em meio GPL (10 g de glicose, 10 g de peptona, 5 g de extrato de levedura, 3 g de NaCl, 1 g de KH₂PO₄, 0,5 g de MgSO₄7H₂O, 1000 mL de água e pH ajustado para 6). Em Erlenmeyers de 250 mL com defletores basais foram acrescentados 45,55 mL ou 44,75 mL do meio de cultura; 4,2 mL de glicose (240 g de glicose em 1000 mL de água destilada e autoclavada) ou 5 mL de sacarose (190 g de açúcar cristal em 1000 mL de água destilada e autoclavada) e 0.5% de pré-cultura, logo após incubados em Shaker Orbital a 250 rpm, a 34 °C, no escuro. Após 72 h foi retirada uma alíquota de 1 mL para a determinação do número de endósporos produzidos determinados pelo número de UFC mL⁻¹. Os dados foram submetidos ao teste de Shapiro Wilk para avaliar a normalidade dos resíduos e ao teste de Bartlett para avaliar a homogeneidade de variâncias. Os dados foram submetidos a análise de variância de médias e as médias comparadas pelo teste de Tukey (P < 0.05). As análises foram realizadas no ambiente estatístico RStudio. O meio de cultura quimicamente definido para bactérias utilizando sacarose como fonte de carbono produziu 9,70x108 UFC mL⁻¹, enquanto que com a glicose produziu 7,56x108 UFC mL⁻¹, diferindo estatisticamente entre si. Conclui-se que a sacarose é uma alternativa viável para substituição da fonte de carbono no meio quimicamente definido para bactérias para produção do isolado de B. velezensis AP-3.

Palavras-chave: Meio de cultura; Bacillus velezensis; Glicose; Sacarose; Controle Biológico

Apoio

Capes, UFLA e EMBRAPA-Meio Ambiente.