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Bastos Pereira Milori1

1Brazilian Agricultural Research Corporation (Embrapa), Embrapa Instrumentation, São Carlos, São
Paulo, Brazil, 2Institute of Chemistry of São Carlos, University of São Paulo, São Carlos, SP, Brazil,
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The demand for efficient, accurate, and cost-effective methods of measuring soil

carbon (C) in agriculture is growing. Traditional approaches are time consuming

and expensive, highlighting the need for alternatives. This study tackles the

challenge of utilizing laser-induced breakdown spectroscopy (LIBS) as a more

economical method while managing its potential accuracy issues due to

physical–chemical matrix effects. A set of 1,019 soil samples from 11 Brazilian

farms was analyzed using various univariate and multivariate calibration

strategies. The artificial neural network (ANN) demonstrated the best

performance with the lowest root mean square error of prediction (RMSEP) of

0.48 wt% C, a 28% reduction compared to the following best calibration method

(matrix-matching calibration – MMC inverse regression and multiple linear

regression – MLR at 0.67 wt% C). Furthermore, the study revealed a strong

correlation between total C determined by LIBS and the elemental CHNS

analyzer for soils samples in nine farms (R² ≥ 0.73). The proposed method

offers a reliable, rapid, and cost-efficient means of measuring total soil C

content, showing that LIBS and ANN modeling can significantly reduce errors

compared to other calibration methods. This research fills the knowledge gap in

utilizing LIBS for soil C measurement in agriculture, potentially benefiting

producers and the soil C credit market. Specific recommendations include

further exploration of ANN modeling for broader applications, ensuring that

agricultural soil management becomes more accessible and efficient.
KEYWORDS

artificial neural network, tropical soil, soil organic matter, soil analysis, matrix-matching
calibration, soil texture
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GRAPHICAL ABSTRACT
1 Introduction

Soil is essential in the biogeochemical cycle of carbon,

highlighting its role in the stabilization stage of carbon (C) as

organic matter. In recent years in tropical and subtropical Brazilian

regions, it has been possible to demonstrate that conservative tillage

practices, such as no-tillage with grain production, well-managed

pastureland, and integrated crop-livestock-forest systems, can

promote excellent results in C mitigation from greenhouse gas

emissions (GGE) by soil C sequestration (1–5). Most of the results

available on soil C sequestration in Brazil were obtained in long-

term field experiments conducted by research institutions. One of

the few results with data from private farms was obtained by

Ferreira et al. (2021) (6) from the southern region of Brazil,

which has a subtropical climate, demonstrating that similar

results can be generated in real farm conditions. Therefore,

worldwide on-farm research must be stimulated considering the

growing interest in the soil C credit market (7).

Specifically in tropical regions, Brazil leads in recent and

competitive agriculture by incorporating agricultural land mainly

in the savannah biome (called Cerrado), with 200 million hectares.

A combination of conservative tillage practices, including no-tillage,

lime, and fertilizer use, was used to correct acidity and

simultaneously reduce the negative impact for plants in soils with

high soil aluminum content, as well as to improve soil fertility and

reduce the erosion process. These methods have also demonstrated

good conditions to identify soil carbon sequestration situations,

mitigating GGE (2), aligned with the “4 per 1000” global

initiative (8).

Additionally, C stabilization as soil organic matter (SOM),

preferably with a high degree of humification, contributes to C

storage in soils and can provide excellent benefits in food

production, improving the physicochemical properties of the soil.

This is beneficial as soil fertility, due to an increase in cation
Frontiers in Soil Science 02
exchange capacity (CEC), is also very much needed in tropical

soils due to dominant kaolinite clay, with a 1:1 type, with low CEC

(1). All these conditions, including the increase in the soil C content

and the SOM stabilization, are relevant to consolidating the soil

carbon credit market that can provide additional remuneration for

farmers, stimulating the adoption of conservative tillage practices

(9, 10).

The monitoring of total C in the soil can be done using

analytical techniques that allow ex situ methods (wet combustion,

for example), in situ methods (inelastic neutral scattering -INS, for

example), and methods that would allow it to be developed in both

places (for example, using near-infrared spectroscopy–NIRS) (10,

11). Among these methods, the dry combustion automated

elemental analyzer is probably the most used analytical technique

for C determination in soils due to its high precision. However, this

technique has a high analytical cost due to its consumable materials,

which can increase the analysis cost and limit its use in continuously

monitoring large amounts of soil samples (10).

Thus, low-cost analytical techniques and high analytical

frequency, which provide satisfactory accuracy and precision,

must still be evaluated and implemented for C determination in

samples of different types of soils. In this context, laser-induced

breakdown spectroscopy (LIBS) presents many prerequisites that

can contribute to the speed of soil analysis to determine total C (12–

14). With these values obtained, LIBS can be used to assess the soil

C stock that farmers can later trade as carbon credits, for example.

LIBS is a photonic technique that uses a pulsed laser [usually solid-

state ns or fs lasers (e.g., Nd : YAG lasers)] to analyze soil samples.

The focused laser pulse ablates micrograms of the sample and

enables the formation of a plasma, whose temperature is

approximately 10,000 K at the time of collection of the analytical

signal. Thermal energy promotes electronic transitions (excitation)

of atoms, ions, and molecular constituents of the sample and is

present in the formed plasma. It is possible to obtain a LIBS
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emission spectrum when returning to the fundamental state (13,

15). These species emit characteristic radiations of each species

present (as a fingerprint), which are collected by an optical fiber and

sent to the spectrometer and detector. Considering the

stoichiometric ablation, the local thermodynamic equilibrium,

and the optically thin emission, it is possible to correlate the area

or intensity of the emission lines (wavelength) with the

concentration of elements present in the soil sample (13–15).

Recently, Verra, a world reference certifier in the carbon market

for creating voluntary carbon standards (VCS), approved the LIBS

technique for soil C measurement, along with other emerging

proximal sensing technologies (NIRS, mid-infrared spectroscopy -

MIR, visible-NIRS and INS), which have shown to hold promise for

streamlining soil organic C measurement. This technique

guarantees the origin of verifiable carbon credit units with a high-

quality standard in the voluntary market through a global registry

platform that takes care of credits (16).

The LIBS technique allows the direct analysis of soil samples, or

with minimal sample preparation (such as preparation of soil

pellets), fast spectrum acquisition (< 1 s), and ex situ analysis of

the soil, in addition to C determination, which allows simultaneous

multielemental determination (14, 17). This technique works

without needing consumable materials (such as tin capsules, high-

purity gas, or columns with appropriate resins used in the reference

technique for C determination in soils, CHNS elemental analyzer)

(10). It also involves minimal waste generation with relatively easy

disposal (10), unlike colorimetric or volumetric methods, which use

Cr2O7
2- and H2SO4 solutions to oxidize SOM. Furthermore, as

demonstrated in the study by Knadel et al., 2017 (18), lower

prediction errors for most properties (texture and soil organic

carbon) were obtained using LIBS for Danish soils that are

predominantly sandy and using the spiking method (19),

rendering it an equally good or even a more accurate technique

for soil properties’ determination than the well-established vis-

NIRS method.

However, the physicochemical complexity of tropical soils is a

challenge in LIBS analysis (and in other photonic techniques, such

as NIRS, which employs the analyses of the solid samples) (20, 21)

due to the heterogeneity of the matrix of soil samples (e.g., texture

and type of soil), and the high content of aluminum and iron oxides

and hydroxides that can contribute as spectral interference in the

main carbon emission lines at 193.03 nm and 247.86 nm (17, 22).

As the soil sample is analyzed entirely (analyte and matrix in the

same ablated portion) by LIBS, the variability of the soil matrix can

promote linearity deviations in calibration models used in the

quantification of total C (13, 14, 22). In some cases, specific

calibration models must be obtained for sets of soils depending

on the texture of the analyzed samples, granulometry, or localized

sets as proposed by Segnini et al. (2014) (23) using LIBS, and by

Brunet et al. (2007) (20) using NIRS, respectively, making the

method laborious.

Thus, it is essential to evaluate calibration strategies and the

proposition of “universal calibration models” that allow for

overcoming the matrix effects, considering the high variability of

the matrix of different types of soils, textures, and granulometry,

allowing the reliable determination of the C content in samples of
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soils. Several calibration strategies of the LIBS method are reported

in the scientific literature for the determination of total C in soils,

such as (i) internal standardization (23, 24), (ii) partial least squares

regression (12, 25), and (iii) multiple linear regression (12). All

calibration strategies have advantages and limitations in their use

and should be chosen based on their intrinsic modeling

characteristics, analytes, and sample complexity to obtain the

lowest error of the prediction.

In this context, we evaluated the accuracy of four calibration

strategies, namely matrix-matching calibration (MMC), MMC with

inverse regression (IR), multiple linear regression (MLR), and

artificial neural network (ANN), for the proposition of calibration

models aiming for total C determination by LIBS. An extensive set

of different Brazilian tropical and subtropical soil types (1,019 soil

samples) was analyzed using LIBS so that the matrix heterogeneity

of these soil samples could be representative in the calibration

models. Additionally, a critical discussion was made between the

advantages and limitations of LIBS compared to the CHNS

elemental analyzer in soil C quantification. These results are part

of a pioneering project in Brazil called PRO Carbon, with a large set

of farms evaluated with the aim to stimulate and give scientific and

technological support to low-carbon agriculture in grain production

areas in a joint project conducted by the Brazilian Agricultural

Research Corporation (Embrapa), a public research institution, and

Bayer company (led by a Brazilian branch). Considering the

importance of Brazil in the soil C credit market scenario, this

study makes it possible to demonstrate at full scale the challenges

and advantages of using this spectroscopic technique to measure

total C in tropical and subtropical soils of private farms.
2 Materials and methods

2.1 Instrumentation

The LIBS measurements were performed using single-pulse

LIBS at 1064 nm (Q-switched Ultra, Quantel), Supplementary

Figure S1, in the laboratory. The 1064 nm ND : YAG laser pulse

had a maximum energy of 75 mJ, a width of 6 ns, and a repetition

rate of 20 Hz. A spectrometer (Ocean Optics) was used to detect and

select wavelengths from 189 to 966 nm. The pulse energy was 75 mJ,

the delay time between the pulse and acquisition was 1.5 ms, and the
acquisition gate width was 1 ms. For each sample, 30 spectra were

acquired from different regions of the pellet to minimize sample

microheterogeneity and to obtain a representative analysis. This is

an automated LIBS system, equipped with a carrousel with 30

sample holder places and the capacity to measure 100 samples per

hour, developed in partnership between Embrapa Instrumentação

and startup Agrorobótica, both located in São Carlos city, São Paulo

state, Brazil.

The reference values of the total C content of soil samples were

obtained from a Perkin-Elmer 2400 CHNS analyzer series II using a

standard of acetanilide with content known as C. Soil samples were

weighed directly in consumable tin capsules using an analytical

balance for direct mass acquisition. The tin capsules were closed

and inserted into the analyzer furnace.
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2.2 Collection and preparation of
soil samples

A total of 1,019 agricultural and native vegetation soil samples

from three Brazilian biome areas, Cerrado (typical savannah native

vegetation), Atlantic Forest, and Pampa, were collected from 11

different farms (Figure 1), with a soil carbon content ranging from

0.23 to 8.78 wt% C, as determined using the CHNS analyzer. In

Supplementary Table S1 of the Supplementary Material, the

information is shown regarding the location, biome, management

system, number of samples, number of soil samples each farm used

in the calibration and validation sets, and the maximum, minimum,

and average values for the parameters clay content (%), soil density

(g cm-3), and total C (wt% C) of soil samples from each farm in the

study. In each farm, soil samples from agricultural conservative

tillage (no tillage) and native vegetation areas were collected to

compose the sample bank. The agricultural areas for soil sampling

were selected because they were close to native forest areas within

the farm (to minimize the textural variability of sampling points

between the two areas).

One soil sample was collected per depth layer (approximately

500 cm3) at the following depths: 0–5, 5–10, 10–20, 20–30, 30–40,

40–60, 60–80, and 80–100 cm. In an agricultural area (under no-

tillage) of approximately 35 hectares, and in the native forest area,
Frontiers in Soil Science 04
eight and four trenches, respectively, were opened to collect soil in

the different layers. All soil samples were collected before the

establishment of a new crop, in the beginning of second half of

2020 (July/August). Currently in Brazil it is usual to have two crops’

cultivation sessions in one year, and the previous harvest session

was concluded in June. The generally used combination is soybean

(September-January) and corn (February-June). These samples

were dried and homogenized (2 mm) for further analysis. The

collection of samples in the soil profile is a strategy used to ensure

the variability and representativeness of the matrix of soil samples

because it is a significant analytical challenge for direct analysis and

the development of a quantitative method of C by LIBS. The soil

density was determined using volumetric cylinder methodology

(26) (cylinders of 100 cm3, n = 2). Soil texture was determined, and

soil samples were classified based on the United States of

Agriculture (USDA) textural triangle (27).

Among the areas evaluated, there were none with poorly

developed soil or an excessive or significant presence of rock

fragments. A few rock fragments could be present in the samples

and, in these cases, such fragments are excluded in the first stage of

preparation, since they generally do not pass through the 2 mm

mesh used in sieving and breaking up aggregates. For LIBS analysis,

approximately 5.5 g of each sample (2 mm granulometry) was

converted into soil pellets using a hydraulic press. The pellet is the
FIGURE 1

Geographic location of the 11 farms where 1,019 soil samples were collected for LIBS analysis.
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pressed soil sample, as presented in Figure 2, in a specific aluminum

metallic support, as the sample holder. Metallic supports were used

to make pellets and to keep all samples cohesive. The soil samples

were homogenized, and 10 mg of sample (n = 2) was encapsulated

in tin capsules to determine total C by dry combustion (CHNS

Perkin-Elmer analyzer).

Some soil samples (at depths of 0–5 cm and 80–100 cm) from

different systems (agricultural areas or native forests) of each of the 11

farms were randomly selected to demonstrate the different colors of

the analyzed soils. Digital images were obtained using a smartphone

camera and classification by Munsell color system, Figure 2.
2.3 Spectral pretreatment

The performance of the models is closely related to the spectral

pretreatment used. Figure 3A shows a characteristic LIBS spectrum

obtained from a soil sample. The models were built from the

selection of 296 variables (wavelengths) referring to the intensities

of the emission lines covering 192.04 to 194.97 nm (54 variables) for

the C I 193.03 nm emission line, 197.60 to 199.95 nm (44 variables)
Frontiers in Soil Science 05
for Al II 198.99 nm emission line, 277.45 to 286.68 nm (198

variables) for Mg II 279.55 nm, and Mg II 280.27 nm and Mg I

285.21 nm emission lines, respectively. The spectral pretreatments

were performed using software developed in Python programming

language. The baseline correction and, posteriorly, the Lorentzian

fit (28) were initially made for all spectral ranges of the emission

lines selected in the study. For the C I 193.03 line, it was necessary to

perform spectral deconvolution due to Al II 193.58 nm line

interference to minimize this spectral interference (22). The area

of the emission lines of the monitored elements was calculated (C I

193.03 nm, Al II 198.99 nm, Mg II 279.55 nm, Mg II 280.27 nm, and

Mg I 285.21 nm). For univariate calibration models, the average of

the values obtained from the spectral pretreatments was used to

minimize spectral fluctuations from the analysis of samples by LIBS

and to improve the predictability of the models calculated.
2.4 Calibration models

Four calibration models (two univariate and two multivariate

models) were obtained to determine the total C in the soil. All
FIGURE 2

Digital image and classification by Munsell color system of some soil pellets that were analyzed by LIBS.
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models evaluated were built using 713 soil samples randomly

chosen to compose a calibration set and 306 soil samples

randomly chosen to compose an external validation set (to verify

the predictive capacity of the models) [see boxplot and violin box of

total C contents of the two sets, Supplementary Figures S1 and S3,

summary statistics of total C contents at each sampling depth (0 to

100 cm)], in the Supplementary Material. The selection of soil

samples used in the calibration set were chosen randomly, in order

not to present trends that could reflect on the magnitude of errors

and other figures of merit calculated. Furthermore, as the set is large

and representative, it is possible to test the model (prediction set)

with only a percentage of the samples, also randomly chosen. Soil

samples collected from 0 to 100 cm depths with different textures

were used in both sets.

In calibration using (I) MMC (29), a set of soil samples was used as

solid calibration standards (713 soil samples), with known reference

values for total C content. A calibration model using least squares

regression was proposed to monitor the emission line C I 193.03 nm

and perform spectral deconvolution. The dependent variable was the

intensity of the C emission line obtained. As the independent variable,

the reference values of the C content were previously determined [C

emission signal = function (concentration)]. In (II) MMC–inverse

regression (30), the least squares regression was obtained using the

reference values of the C content as the dependent variable and the

intensity of the C emission line obtained as the independent variable

[concentration = function (C emission signal)].

In addition to the two univariate calibration models described,

two multivariate models were evaluated. In (III) MLR, three

independent variables were used: i) the analyte line intensity (C I

193.03 nm), ii) the self-absorption index, and iii) the plasma

temperature index. The self-absorption and plasma temperature

index are calculated using the ratio of the intensities of Mg emission
Frontiers in Soil Science 06
lines [Figure 3D (self-absorption index: Intensity Mg II 279.55 /

Intensity Mg II 280.27, and plasma temperature index: Intensity Mg

II 280.27 / Intensity Mg I 285.21)] and were used for each analyzed

soil sample (31). These indices were used to evaluate their

contributions to minimizing matrix effects. As preprocessing, the

discrete variables were autoscaled by standard deviation. The C

content in the soils used as standards was the response (regression

vector) of the model. The models were trained using routines in

MATLAB software version 2017b (MathWorks, Natick, MA).

The (IV) ANN model was built using all 296 variables

(wavelengths) mentioned above from intensities around the

emission lines for C I 193.03 nm, Al II 198.99 nm, Mg II 279.55

nm, Mg II 280.27 nm, and Mg I 285.21 nm. The artificial neural

network (ANN) used was a multilayer perceptron (MLP) with an

architecture of 296 variables in the input layer, 50 neurons in the

hidden layer, and one in the output layer related to the carbon

content. The rectified linear unit (ReLU) activation function was

used for all neurons. The MLP was trained using the

backpropagation algorithm (32). The backpropagation parameters

and the MLP topology were as follows: learning rate = 0.1,

momentum = 0.2, and epochs = 4000. The ANN was processed

in Python using machine learning from the Keras framework.

Microsoft Excel (Microsoft Corporation, USA) was used for

data processing (for univariate and multivariate models) and

statistical analysis. The performance evaluation of the models was

performed by calculating Pearson’s correlation coefficient (r),

coefficient of determination (R2), root mean square error of

calibration (RMSEC), root mean square error of prediction

(RMSEP), the ratio of performance to deviation (RPD), and the

ratio of performance to interquartile (RPIQ). Figure 4 shows a

flowchart of the main steps involved in the methodology developed

to determine the total C content in soil samples by LIBS.
A

B C D

FIGURE 3

LIBS typical spectrum obtained from a soil sample (A), highlighting the spectral interferences in the emission lines of C I 193.03 nm (B), C I 247.87 nm
(C), and the (D) profile of Mg lines used in the calculation of plasma temperature and self-absorption indices.
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3 Results

3.1 Soils texture and color, and statistical
parameters of the calibration and
validation sets

Using the textural triangle obtained (Figure 5), most of the

samples analyzed by LIBS had clay texture (72.5%), followed by

sandy clay loam (7.75%), clay loam (6.12%), sandy loam (5.35%),

and sandy clay (4.30%). The rest of the samples (3.98% of the

samples) were classified into other categories. Soil samples also had

different colors, including red (the most predominant), yellow,

brown, and gray (Figure 2).

The calibration and validation sets are made up of soil samples

with great variability in total C content and collected at different

depths, for both sets (see Supplementary Figure S3. Summary

statistics of total C contents at each sampling depth (0 to 100

cm): minimum, maximum, average, standard deviation, and

coefficient of variation for calibration sets and validation, in the

Supplementary Material).
Frontiers in Soil Science 07
3.2 Analytical performance parameters of
the models

The parameters calculated for eachmodel are shown in Table 1. Using

matrix-matching calibration – MMC and MMC - inverse regression, the

calculated values of r and R2 equal 0.71 and 0.50, respectively. In the

MMC–inverse regressionmodel, the RMSEP value (0.67 wt%C)was 1.47-

fold lower than that of the traditional MMC (0.99 wt% C).

For the evaluated multivariate strategies (MLR and ANN), the

ANN model showed better predictive ability (RMSEP 0.48 wt% C),

with a 1.4-fold lower prediction error when compared to the MLR

(RMSEP 0.67 wt% C; Table 1). The best result was obtained using the

ANN model with 50 neurons in the hidden layer using the reLU

activation function and one neuron in the output layer using a linear

function. The training of the ANN model took approximately 4 min,

stopping at 4000 epochs with amean square error (MSE) value of 22.78

wt%. The ANNmodel resulted in the best correlation coefficient values

of the calibration set (0.97) and validation set (0.87) between the C

values determined by LIBS versus the reference values obtained by the

elemental analyzer, as shown in Figure 6.
FIGURE 5

Classification of all soils set by USDA textural triangle.
FIGURE 4

Flowchart of the main steps involved in the methodology developed to determine the total C content in soil samples by LIBS.
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Thus, Table 1 shows the performance gain (in the percentage of

RMSEP reduction) of the best-performingmodel (ANN) compared to the

others. Comparedwith theMMC,MMC-inverse regression, andMLR, the

RMSEP (ANN) values were 51%, 28%, and 28% lower, respectively.

The performance of the models was also evaluated based on the

magnitude of the calculated RPD and RPIQ values (Table 1). The

RPD and RPIQ values were 0.98 and 1.16 for the MMC model, 1.45

and 1.72 for the MMC-inverse regression, 1.45 and 1.72 for the

MLR model, and 2.04 and 2.41 for the ANN model, respectively.
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3.3 Comparison of total C values obtained
by LIBS and CHNS methods

The coefficient of determination (R2) was calculated for the total

C contents values, using the LIBS and CHNS reference methods, for

the soil samples of the 11 farms (Figure 7). The R2 values for each

farm (F) were R2 = 0.92 (F1), R2 = 0.68 (F2), R2 = 0.92 (F3), R2 =

0.93 (F4), R2 = 0.73 (F5), R2 = 0.93 (F6), R2 = 0.85 (F7), R2 = 0.93

(F8), R2 = 0.29 (F9), R2 = 0.87 (F10), and R2 = 0.92 (F11).
FIGURE 6

Correlation between predicted values (determined by proposed LIBS method using ANN) versus reference values (determined by CHNS elemental
analyzer method) for total C contents.
TABLE 1 Analytical performance parameters of proposed LIBS methods for the determination of total C in soil samples.

Parameters
Calibration strategy

MMC MMC – inverse regression MLR ANN

Emission line (nm) C I 193.03 C I 193.03
C I 193.03

Self-absorption indexe

Plasma temperature indexf

C I 193.03, Al II 198.99,
Mg II 279.55, Mg II 280.27,

Mg I 285.21

RMSEC (wt% C)a 1.01 0.72 0.72 0.25

r calibration set 0.71 0.71 0.71 0.97

R2 calibration set 0.50 0.50 0.51 0.94

RMSEP (wt% C)b 0.99 0.67 0.67 0.48

r validation set 0.72 0.72 0.72 0.87

R2 validation set 0.52 0.52 0.52 0.76

RMSEP improvement
of the ANN strategy

-51% -28% -28% —

RPDc 0.98 1.45 1.45 2.04

RPIQd 1.16 1.72 1.72 2.41
a RMSEC, root mean square error of calibration. b RMSEP, root mean square error of prediction. c RPD, ratio of performance to deviation for validation set, d RPIQ, ratio of performance to inter-
quartile for validation set.e self-absorption index = Intensity Mg II 279.55 / Intensity Mg II 280.27. f plasma temperature index = Intensity Mg II 280.27 / Intensity Mg I 285.21.
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4 Discussion

4.1 Variability of texture and color of soil
samples: matrix effects in LIBS

Soil samples are geochemically complex samples from an

analytical point of view (13, 14, 17). Even considering the same

area (farm), the chemical composition (e.g., Fe oxides content, Ca

carbonate content, and coarse fragment content), and texture of the

soils can show high variability due to the intrinsic characteristics of

the geological origin, the agricultural management used, and the

collection depth (23).

Due to matrix effects, these characteristics may influence the

laser pulse–sample interaction during LIBS analysis. The matrix
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effects can be exemplified by the fact that two soil samples (red

squares) (Figure 8) with the same total C content, 3.19 wt% C, have

different emission intensities of the C I 193.03 nm line (11.1 (a.u.)

for soil #1 and 7.4 (a.u.) for soil #2) and physical properties

(texture). The values of sand, silt, and clay for soil #1 are 33.9%,

27.2%, and 38.9%, and for soil #2 are 59%, 6.7%, and 34.3%,

respectively. These effects influence, with different magnitudes,

the plasma temperature and acquisition of the analytical signal

(intensities of the emission lines) referring to carbon and other

elements monitored by the technique (23).

Standardizing the preparation of soil samples, such as drying,

sieving, and the pressure used to prepare pellets, can reduce some

physical matrix effects in solid sample analyses. Some studies

highlight the importance of collecting and preparing soil samples
FIGURE 7

Correlation between predicted values (determined by proposed LIBS method) versus reference values (determined by CHNS elemental analyzer
method) for total C contents per farm.
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for examination using spectroscopic techniques, such as NIRS, and

how these steps and procedures can influence the accuracy of C

determinations in samples (11, 20, 21, 33).

Furthermore, optimizing the instrumental conditions for LIBS,

such as spectrometer delay time and laser pulse energy, is necessary

to obtain a high signal-to-background ratio of the monitored

carbon line. In this way, some physical and chemical matrix

effects (or even both) can be reduced.

The soil samples analyzed show different colors (Figure 2). This

color difference is due to the intrinsic characteristics of each type of soil,

such as chemical composition and granulometry. These factors can also

influence LIBS analysis, as variations in the light absorption coefficient

of soil samples, thermal conductivity, and fluctuations in the

interaction of laser-soil radiation can also reflect the amount of

ablated mass, as well as the parameters of the formed plasma

(temperature and electron density) (34). Thus, these spectral

fluctuations of different magnitudes can still occur even when using

30 laser pulses to analyze each soil sample (as in this study) tominimize

sample microheterogeneity and obtain a representative analysis.
4.2 Spectral interferences: reducing
chemical matrix effects and the
importance of spectral preprocessing

Red-colored soils from these Brazilian tropical and subtropical

areas indicate the presence of iron oxides and hydroxides. As is

known, Brazilian tropical soils can have a high content of Fe and Al

due to their geological origin (22). These two elements are a

challenge in monitoring the main observable lines of C by LIBS

due to spectral interferences (14, 17, 22), as shown in Figures 3B, C.

In Figure 3C, the spectral profile of the C I 247.87 nm line is shown.
Frontiers in Soil Science 10
Observe the strong spectral interference of the Fe I 247.98 nm line

in this analyte line, as well as the presence of adjacent lines that

overlap in this region. Despite the spectral interference of Al atomic

and ionic lines in the C 193.03 nm line and being attenuated by the

O2(g) absorption (when LIBS analyses are done under air

atmosphere) (14), this line is more suitable in the proposition of

the calibration models (Figure 3B). A strategy used to reduce this

spectral interference is the deconvolution of the Al 193.58 nm line.

This strategy minimizes the contribution of spectral interference to

the intensity of the C I 193.03 nm line. This allows for the accuracy

of the determination of C by LIBS.

In this context, it is necessary to evaluate i) spectral

pretreatments (from baseline correction, spectral deconvolution to

overcome spectral interferences (e.g., Al interference in C I 193.03

nm emission line), ii) better strategies to accurately calculate the

area and height of the monitored C emission line, and iii) univariate

and multivariate method calibration strategies to reduce these

matrix effects.
4.3 Overcoming the physical and chemical
matrix effects of soils in LIBS

The quantification models using MMC and MMC-inverse

regression allow for compensation for matrix effects since, when

using a specific set of soil samples as calibration standards, it is

assumed that there is a similarity in the physical-chemical

properties of the samples used as a standard and validation set

samples (28, 29). However, significant matrix effects were observed

(due to the low quality of the modeling obtained, using the MMC

strategy, RPD = 0.98, RPIQ = 1.19 and R2 = 0.50, Figure 8) and the

choice of variables as dependent and independent uses in the least
FIGURE 8

Correlation between the total C content and the emission intensity of the C I 193.03 nm line, for the calibration set (n=713 soils samples), using the
MMC strategy.
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squares regression could significantly influence the predictive

capacity of quantification models, as evidenced by the RMSEP

values. When using the C emission line as the independent

variable (MMC-inverse regression), supposedly without error, the

model improved the predictive capacity of the total C concentration

in the samples. This may indicate that the error associated with

acquiring the analytical signal is smaller than the error associated

with determining the total C by the reference technique.

The difference in the texture of the analyzed soils is another

factor that may have influenced the laser pulse–sample interaction

and, consequently, the RMSEP values calculated by the models.

Although the soil samples originated from predominantly clay

texture soils, sandy texture samples (such as F10, Figure 5) were

also analyzed and used in the calibration and validation sets. Segnini

et al. (23) demonstrated that the magnitude of physical (texture)

and chemical matrix effects influence the modeling and limits of

detection for C in soils using the LIBS method. Thus, in the MMC-

and MMC-inverse regression models, matrix effects and the choice

of variables (dependent or independent) used in the least squares

regression models were the main components influencing the

calculated analytical results.

In multivariate strategies (MLR and ANN), using multiple

variables correlated to the analyte concentration, sample matrix

information, and plasma parameters generated by LIBS can

improve the predictive capacity of the models. The MLR model,

using indices related to plasma temperature and the possible self-

absorption effect, presented an RMSEP value similar to the value

obtained by MMC-inverse regression. However, the RMSEP for

MLR was 32% lower than that for MMC, contributing to the

increased accuracy of C determinations in soil samples.

One of the significant advantages of ANN is the possibility of

modeling the interferences and nonlinear signals using several

variables that can contribute to reducing matrix effects (28, 35).

Thus, the use of variables around the emission lines of the elements

(C I 193.03 nm, Al II 198.99, Mg II 279.55 nm, Mg II 280.27 nm,

and Mg I 285.21 nm) in ANN modeling makes it possible to predict

with reasonable accuracy the C concentration in soil samples

analyzed directly by LIBS. As mentioned earlier, the spectral

interference of Al atomic and ionic lines on the C I 193.03 nm

line can be observed mainly in tropical soils (22). Therefore, the

intensity of the Al line correlated to the spectral interference of the

analyte and the chemical composition of the sample matrix

(tropical soils are rich in aluminosilicates) was used. Magnesium

emission lines (associated with minerals) allowed us to obtain

chemical information from the soil samples that would help to

improve the modeling and, consequently, the accuracy of the

predictions of total C.

Nawar and Mouazen (2017) (36) proposed the following groups

for RPIQ interpretation: excellent models (RPIQ ≥ 2.5), very good

models (2.5 > RPIQ ≥ 2.0), good models (2.0 > RPIQ ≥ 1.7),

reasonable models (1.7 > RPIQ ≥ 1.4), and very poor models (RPIQ

< 1.4). Thus, a very good model (RPIQ = 2.41) was calculated using

the ANN strategy to determine the C content in soils. Using this

model for predictions of total C by LIBS, and correlating with the

values obtained by the reference method (Figure 7), very good R2

values (0.68 ≤ R2 ≤ 0.93) were obtained for determinations in the
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soil samples of 10 of the 11 farms analyzed (with the exception of

F9, R2 = 0.29; due to possible matrix effects). The possible effects

arising from the variability of the sample matrix, specifically related

to Fe oxides content, calcium carbonate content, coarse fragment

content, and color, can also influence determinations. In future

studies, also addressing on-farm research, we intend to determine

and evaluate how these contents could directly influence the

determinations of total C in soil samples by LIBS.

Considering the calculated RMSEP values (Table 1) for the four

models obtained, the predictive capacity of the direct determination

of total C in soil samples by LIBS was of the following order: ANN >

MLR = MMC-inverse regression > MMC. It can be seen from these

values in Table 1 how the accuracy of C determination varies

depending on the calibration strategy used (even using the same

calibration and validation set for all). Each intrinsic characteristic of

the calibration strategy manages to compensate for specific physical

and chemical matrix effects and allows determination at different

levels of reliability.

The RMSEP values obtained in the determination using the

ANN (RMSEP = 0.48 wt% C) and LIBS were slightly higher than the

error associated with the C determination by the reference method

by the CHNS elemental analyzer, which is approximately 0.30 wt%

C (37). This result indicates that LIBS has accuracy comparable to

the reference method used but with more analytical advantages, as

mentioned earlier.

Some spectroscopic methods of determination of total C in soil

samples have been reported in the scientific literature using NIRS

and LIBS techniques. Satisfactory prediction error values were

obtained using the methods used here. For example, using NIRS,

Morgan et al. (2009) (38) reported a RMSEP value of 0.54% C and

0.41% C (n = 164 soils samples) for the field-moist soils and air-

dried intact soils scans, respectively. Roudier et al. (2015) (11), using

vis-NIRS, obtained an RMSE of 0.38% C (n = 30 cores, 89 spectra).

Guedes et al. (2023) (32) recently reported an RMSEP of 0.10% C (n

= 48 soil samples) for the analysis of tropical soil samples obtained

in long-term field experiments conducted by a research institution

using LIBS. Knadel et al. (2017) (18), using the LIBS (RMSEP = 0.50

and 0.85% C, n = 54 soils samples) and vis-NIRS (RMSEP = 0.48

and 1.17% C, n = 54) techniques, obtained good performance

parameters, using PLS regression for modeling and two sets of

samples for calibration (1-calibration data set based on country-

scale data set only, and 2- calibration data set based on country-

scale data set spiked with field samples). However, as highlighted by

the authors, the LIBS method made it possible to obtain lower

prediction errors for soil organic carbon when compared to the vis-

NIRS method.

The model proposed in this study (RMSEP of 0.48%) was

similar to the previously mentioned studies. However, it is

essential to highlight that in the present study, the modeling (n =

713 soil samples) and the verification of the predictive capacity of

the LIBS method occurred on a much larger scale (n = 306 soil

samples) and used samples with significant variability in total C

content, different depths, sampling sites, and biomes. Therefore, the

developed model was robust and demonstrated the real ability of the

LIBS technique to assist C determination in tropical and subtropical

soil samples.
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4.4 Evaluation of the advantages and
limitations of LIBS and CHNS elemental
analyzers in C determination in soils

Figure 9 illustrates the main differences and similarities between

the evaluated methods, considering some parameters. The method

of using the elemental analyzer by CHNS is consolidated in the

scientific literature and routine soil analysis laboratories (10). This

method has advantages, highlighting the accuracy of the

determinations. However, the limitations include using several

consumable materials and more significant cost and analysis time

(compared to the LIBS method) (9, 10).

Some limitations of the LIBS method still need to be overcome,

such as a) increasing the sensitivity of the methods for the

determination of analytes at low concentrations and b) the

proposition of robust calibration methods that make it possible to

efficiently reduce the influence of chemical and physical matrix

effects of soil samples, and consequently further improve the

accuracy of determinations (14).

However, LIBS as a new analytical tool for soil C determination has

several advantages, such as (a) a smaller amount of analyzed sample

needed, (b) high analytical frequency, (c) accuracy comparable to the

reference method (as demonstrated in this work), and (d) lower

analysis cost. Different from the CHNS elemental analyzer, LIBS

multielemental analysis allows co-benefits in the analysis because,

from the emission spectrum of the sample obtained, it is possible,
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through preestablished quantitative models, to determine i) macro-

and micronutrients (used in the evaluation of the fertility of the soil)

(12), ii) prediction of soil texture (39), and iii) pH (40) and other

attributes of the analyzed soil sample.
5 Conclusion

The study reveals that the proposed LIBS method offers to

agricultural producers a viable means of measuring total carbon in

soil samples with reasonable accuracy. The magnitude of the matrix

effects, influenced by the diverse physicochemical properties of soil

samples (despite no data available on Fe oxides content, Ca carbonate

content, and Coarse fragment content), was successfully reduced

through the intrinsic characteristics of the evaluated calibration

strategies, leading to improved predictions of total C in tropical

soils. Notably, the ANNmodel yielded the lowest RMSEP value (0.48

wt% C), an acceptable figure compared to the elemental analyzer

(0.30 wt% C) – the reference method. LIBS is a practical, rapid, and

cost-efficient analytical technique for directly quantifying C in

tropical and subtropical soil samples extensive on-farm research.

While the proposed LIBS method and the reference CHNS elemental

analyzer method have their respective strengths and weaknesses, LIBS

demonstrates superior performance in analytical frequency (100

samples h-1), cost-effectiveness, and the potential for simultaneous

determination of other soil attributes.
FIGURE 9

Comparison of soil C determination methods using dry combustion (CHNS elemental analyzer) and LIBS techniques.
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