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A B S T R A C T   

Different analytical techniques, mixing single and multi-block chemometric analyses in supervised and unsu
pervised approaches, and the selection of variables in the coffee discrimination domain have been reported. 
Molecular and atomic spectroscopic techniques (1H NMR, portable NIR, benchtop NIR, ATR-FTIR-MIR, and 
FAAS) were used to characterize and discriminate Brazilian Canephora coffees of specific producers, including 
two with geographical indication, and also to differentiate them from the Arabica. The sample set comprised 100 
Canephora samples of different geographical origins in Brazil (Conilon from Espírito Santo, Amazonian Robusta 
from indigenous and non-indigenous producers of Rondônia, and Conilon from Bahia) and Arabica coffee (25 
samples). ComDim exploratory multi-block analysis was first used to evaluate the contributions of all the 
different data blocks that characterized the samples and determine the calibration and validation sets. Multi- 
block discrimination by the SO-PLS-LDA was then used to validate the feasibility of discrimination, and to 
identify the relevant analytical techniques. The discrimination based on all the blocks presented 100% correct 
discrimination on training, cross-validation, and test sets, and suggested that only a single block (benchtop NIR) 
is needed to achieve a perfect discrimination. PLS-DA was then applied to the data from portable NIR to evaluate 
whether comparable performances could be achieved; all test samples were correctly discriminated with the 
exception of two Robusta Amazônico from non-indigenous producers and two Conilon from Espírito Santo, 
indicating that very accurate results can be obtained also using a portable instrument. Finally, the use of CovSel- 
DA allowed the discrimination to be optimized on the most cost-effective analytical technique (portable NIR). 
CovSel-LDA models selected the best variables for benchtop and portable NIR, impacting positively portable NIR 
performance and suggesting that portable NIR could bring comparable or at least only slightly worse perfor
mance than benchtop NIR for discrimination.   
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1. Introduction 

Spectroscopic techniques have played an important role in the omics 
era to solve analytical problems in food evaluation. Although the use of 
many of them is well established, one challenge of these techniques is 
data analysis, because they provide large or very large data sets. Another 
current challenge is to try to combine them to obtain valuable chemical 
information in different perspectives. However, only the use of intelli
gent data analysis− more appropriately of chemometrics− can have the 
advantage of analyzing this information and interpreting it individually 
or in combination in an efficient way. 

Roasted coffee is a challenging matrix for analysis because it is 
affected by many factors and has many compounds resulting from the 
roasting process that translate into its sensory and chemical character
istics [1]. After a long time, the industry is changing its perception about 
the Canephora coffee species, which has always been considered infe
rior. Although this is still a challenge, it is gaining interest for its 
adaptability to varying climates [2] and Brazil has helped to change this 
perception. Unique and distinctive Canephora coffees of specific Bra
zilian geographical origins have been emerging. Canephora production 
ranks Brazil as the second-largest producer of this species [3]. Rondônia, 
Espírito Santo and Bahia are the main producing states [4]. There are 
two botanical varieties of Canephora commonly cultivated in Brazil: 
Conilon and Robusta. Rondônia typically produces Robusta coffee [5], 
while Espírito Santo and Bahia produce Conilon [6]. Fig. 1 illustrates 
this information. 

An evolution in the quality standards of Brazilian Canephora coffees 
has been observed and, as a result, the Robusta from Rondônia and 
Conilon from Espírito Santo have been registered with a geographical 
indication (GI) [7]. Conilon from Bahia has not yet a GI register and 
there is no prevalence of superior quality to date. There is a special in
terest in the Robusta from Rondônia, which is produced in the Brazilian 
Amazon region. This Amazonian coffee is named Robusta Amazônico 
and has a peculiar production divided into indigenous and 
non-indigenous coffee producers [8]. There is little information avail
able in the literature about new Brazilian Canephora coffees, their 
different producers, and varieties. There were no reports of GI verifi
cation for them as well. In coffee analytical chemistry, most in
vestigations are related to Arabica, and consequently studies with 
Canephora, particularly those that have achieved a higher level of 
quality, have only rarely been considered. 

The study of the Brazilian Canephora coffees is quite new, therefore, 
to perform a characterization based on different analytical techniques 
trying to get the most complementary information possible from the 
different instruments is of relevance. The possibility to acquire multiple 
data/information from different sources for the same samples and then 
integrate them can lead to better interpretation of the results, because it 

is possible to identify the contribution of each method in distinguishing 
the samples [9]. The combination of molecular and atomic spectroscopic 
techniques in coffee analytical chemistry, as well as in analytical 
chemistry in general is still not comprehensive. 

This study addresses the integration of molecular and atomic spec
troscopy information to obtain an evaluation of Canephora coffees in a 
multi-block analysis perspective. Five analytical techniques, including 
(1) portable near-infrared – portable NIR, (2) benchtop NIR, (3) atten
uated total reflectance Fourier transform mid-infrared – ATR-FTIR-MIR, 
(4) nuclear magnetic resonance – 1H NMR, and (5) flame atomic ab
sorption spectrometry – FAAS were chosen to provide information that 
is distinct but at the same time complementary. NIR spectroscopy has an 
appeal of fast and direct determination requiring small amounts of 
sample and no sample pre-treatment. Its portable version has the 
advantage of being cheaper and, in perspective, to be suitable for on-site 
application, e.g., directly in the coffee plantation. ATR-FTIR-MIR shares 
many of the analytical features of NIR characteristics. 1H NMR provides 
metabolite fingerprints and complements the molecular information 
obtained with NIR and ATR-FTIR-MIR spectroscopies. Not least, 
elemental composition obtained with FAAS can be used to obtain other 
perspective of characterization not achievable through the other 
analytical techniques which mostly analyze the organic fraction of 
coffee. 

The multiple analytical techniques have been used to characterize 
Brazilian Canephora coffees of specific regions/producers (including 
two with geographical indication register) and that have been reaching 
the specialty quality level, and to differentiate them from the specialty 
Arabica. Multi-block data analysis methods such as ComDim (Common 
Dimensions) for exploratory analysis [10], and a multi-block discrimi
nation method, namely SO-PLS-LDA (sequential and orthogonalized 
partial least squares-linear discriminant analysis) [11], considered the 
information obtained by the different analytical blocks for the analysis. 
Once these results were obtained and verified that NIR spectroscopy was 
dominant in multi-block characterization and discrimination, PLS-DA 
(partial least squares discriminant analysis) and CovSel-LDA (covari
ance selection-linear discriminant analysis) [12] were used to compare 
the performance of the portable and benchtop NIR spectrometers for 
discrimination. 

The main contribution of this study is to comparatively evaluate the 
feasibility of discrimination using different analytical techniques to 
highlight the role of each spectroscopic technique in the framework of a 
real application. Furthermore, the literature is limited with respect to 
the discrimination of Canephora coffee, either from an instrumental or 
chemometric perspective, using different analytical techniques or mix
ing single and multi-block chemometric analyses in supervised and 
unsupervised approaches, as well as the selection of variables. Although 
the discrimination of coffee in the domain of chemometrics has been a 

Fig. 1. Graphical representation showing the Brazilian map with the states of Rondônia, Bahia and Espírito Santo highlighted with their national flags (A) and 
Canephora division between botanical varieties Conilon and Robusta (B). 
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topic of interest for many years [13], differently from what happens for 
Arabica, the number of studies exclusively on the discrimination of 
Canephora is still limited, especially for Canephora that are reaching a 
special high-quality level. It was shown that it is not an easy task to 
discriminate the high-quality Conilon from Espírito Santo Brazil based 
on different fermentation times of the beans using NMR spectroscopy, 
with accuracies lower than 50% in some cases [1]. In opposite, benchtop 
NIR spectroscopy has demonstrated be more efficient discriminate 
Brazilian Canephora coffees, their origins, cultivars from Western Bra
zilian Amazon, and specialty Canephora and Arabica [14]. More 
recently, benchtop NIR provided an accuracy of 96% for the discrimi
nation of Amazonian Robusta coffee of different origins, while for the 
portable NIR the correct classification rate was 92% [15]. Specific local 
Robusta producers of Rondônia Brazil have been discriminated recently 
using synchronous fluorescence spectroscopy with sensitivity and 
specificity varying from 90 to 100% depending on the city of origin [16]. 
The geographical origin has been the main discriminating factor for 
Canephora and until now no article has taken into account that there are 
two distinct genetic groups to be discriminated: the group represented 
by the Conilon variety, and the group known as the Robusta variety. 

2. Materials and methods 

2.1. Coffee samples 

A total of 128 coffee samples from different producers were 
collected, where 25 were Robusta Amazônico samples from indigenous 
producers, 25 were Robusta Amazônico samples from non-indigenous 
producers, 25 were Conilon samples from Espírito Santo, and 25 were 
Conilon samples from Bahia. The 25 other samples were specialty 
Arabica of different origins in Brazil and sensory profiles. Three low- 
quality Canephora samples were included to comparison as a regular 
Canephora. Robusta Amazônico and Conilon from Espírito Santo, which 
were registered with geographical indication, were provided by the 
EMBRAPA Rondônia, Porto Velho, Brazil, which guaranteed their 
authenticity. 

Green coffee samples (100 g per sample) were roasted to a medium 
degree in a Probat sample roaster according to the Uganda Coffee 
Development Authority protocol [17] with the initial temperature of 
160 ◦C and 190 ◦C at the end, with a time ranging from 7:30 min–9 min 
to achieve the desired profile. The samples were cooled, milled, and 
sieved through a 20-mesh sieve for particle size standardization. 

2.2. Instrumental analyses 

2.2.1. Benchtop near-infrared spectroscopy (benchtop NIR) 
Powder samples were directly analyzed using a PerkinElmer Fourier 

Transform NIR spectrophotometer Spectrum 100 N equipped with a 
glass cuvette. Reflectance mode was used. Each spectrum was digitized 
with 32 scans from 1000 to 2500 nm with a resolution of 4 nm. Roasted 
and ground coffee samples were analyzed in a random sequence at room 
temperature (22 ◦C) by placing them directly on the instrument. Three 
different aliquots of the sample were used, recording the corresponding 
spectra which were, then, averaged. Before analysis, the blank was 
evaluated using a NIR reflectance standard. 

2.2.2. Portable near-infrared spectroscopy (portable NIR) 
A MicroNIR spectrometer (microNIR™ 1700) from JDSU Uniphase 

Corporation with a glass cuvette was used to obtain spectra with 
portable NIR. This spectrometer covers the 906–1676 nm range. Powder 
samples were directly analyzed in a random sequence at room temper
ature (22 ◦C) by placing them directly on the portable NIR. Three 
different sample aliquots were used, and the spectrum of each aliquot 
was recorded in the automatic reflectance mode, with 50 scans and a 
resolution of 6.25 nm, resulting in a measurement time of 0.50 s; spectra 
of the three aliquots were then averaged. The blank was evaluated using 

a standard NIR reflectance (Spectralon™) with a diffuse reflection co
efficient of 99%, while a dark reference (zero–to simulate non- 
reflection) was obtained with the lamp off. The dimensions of this 
spectrometer were 45 mm in diameter and 42 mm in height, weighting 
about 60 g. 

2.2.3. Mid-infrared spectroscopy (ATR-FTIR-MIR) 
Mid-infrared spectroscopic signals were recorded in an IRAffinity-1S 

spectrometer (Shimadzu, Kyoto, Japan) utilizing a horizontal Attenu
ated total reflectance (ATR) accessory, which contains a zinc selenide 
(ZnSe) crystal at a 45◦ angle (PIKE Technologies, Madison, USA). 
Powder samples were directly analyzed in random order and spectra 
were obtained in the wavenumber range between 4000 and 600 cm− 1, at 
a nominal resolution of 4 cm− 1 and 32 scans, with the aid of IR Solution 
software (Shimadzu, Kyoto, Japan). For each sample, spectra were 
collected in triplicate and then averaged. Background correction was 
performed recording ambient air. 

2.2.4. Nuclear magnetic resonance (1H NMR) 
The metabolite extraction and NMR procedure were applied ac

cording to a previous coffee study [18]. The reagents were purchased 
from Sigma Aldrich, except deuterated solvents as H2O-d2 and 3-(tri
methylsilyl)-propionic-2,2,3,3-d4 acid sodium salt–TMSP were pur
chased from Eurisotop. Extraction was performed with 0.1 g of sample to 
1.5 mL of phosphate buffer (90 mM, pH 6.0) in H2O-d2 containing 0.01% 
of TMSP as standard for 1 h in a bath maintained to 90 ◦C. After 
extraction, samples were centrifuged for 10 min (17,000×g), then the 
supernatant were analyzed. 

NMR spectra were recorded at 298 K using a Varian 14.4 T NMR 
instrument (600.13 MHz operating at 1H frequency) equipped with a 
high-field triple resonance probe, using H2O-d2 for the internal lock. 
Relaxation delay of 2.0 s observed pulse of 5.80 μs, and the sum of 256 
scans were acquired for each sample. The acquisition time was 16 min 
and the spectral width of 16.00 ppm. A presaturation sequence was used 
to suppress the residual water signal at 4.83 ppm (power = 22 Hz, 
presaturation delay = 2 s). The free induction decays (FIDs) were 
Fourier transformed, and the resulting spectra were phased, baseline- 
corrected, and calibrated for TMSP at 0.00 ppm. The spectral in
tensities were reduced to integrated regions of equal width (0.04 ppm) 
corresponding to the interval of 0.00–10.00 ppm after normalization 
with respect to the signal of the standard at 0.00 ppm using the NMR 
MestReNova software (Mestrelab Research, Spain). The regions from 
5.00 to 4.50 ppm were excluded from the analysis due to residual water 
signals. The identification of metabolites was based on the chemical 
shifts, coupling constants, and comparison with data [19] from the 
available literature on coffee. 

2.2.5. Flame atomic absorption spectrometry (FAAS) 
Standard solutions of calcium – Ca, magnesium – Mg, zinc – Zn, iron 

– Fe, manganese – Mn, copper – Cu (LabSynth, Diadema, SP, Brazil), and 
potassium – K (SpecSol, Quimlab, Jacareí, SP, Brazil) at 1000 mg L− 1 

were used. Other reagents/materials were hydrogen peroxide 30% (v/v) 
(LabSynth, Diadema, SP, Brazil); lanthanum oxide (Sigma Chemical Co., 
St. Louis, USA), commercial diluted nitric acid 50% (v/v) (Merck, 
Darmstadt, Germany), ultrapure water (Sartorious, Germany), acetylene 
gas (Messer Gases, Brazil), filter paper of 9 cm diameter (Nalgon REF 
3551, Germany), ultrasonic bath (model 1400, Unique, Brazil), and 
digester block (model M242, Quimis, Brazil). 

The procedure of flame atomic absorption spectrometry (FAAS) was 
carried out according to Baqueta et al. [20] slightly modified. The 
samples were prepared through wet mineralization in an open system 
(digester block) using dilute nitric acid. Blanks and 0.6 g of each sample 
(roasted ground coffee powder) were mineralized with 6 mL of diluted 
nitric acid and 2 mL of hydrogen peroxide for 4 h, filtered and diluted 
with ultrapure water before minerals quantification. A PerkinElmer 
AAnalyst 200 equipped with a deuterium lamp for correction of the 
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background radiation was used to determine the essential minerals. The 
samples were nebulized and mixed with air-acetylene flame (2.5/10 l 
h− 1) at about 2000 ◦C. Hollow cathode lamps (PerkinElmer, Norwalk, 
USA) for Fe – 248.3 nm, Ca – 422.67 nm, Cu – 324.75 nm, Mg – 279.48 
nm, Mn – 285.21 nm, and Zn – 213,86 nm were used. For K 

determination, the equipment was configured for atomic emission. Each 
sample was mineralized in triplicate and then read. 

The method was checked and considered adequate to determine the 
essential minerals [21]. The relative standard deviation (RSD) (%) 
values were 3.9 for Ca, 7.2 for Mg, 7.4 for Zn, 6.7 for Fe, 4.8 for Mn, 8.4 

Fig. 2. Graphical representation of the data set acquired by the different analytical techniques and the division into a training and a test set.  

Fig. 3. Multi-platform information acquired for the 128 samples, showing (A) spectra obtained using portable and benchtop NIR, ATR-FTIR, and NMR, and mineral 
composition (mg/100 g) obtained with FAAS and (B) data organization in matrices for multi-block analysis. 
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Fig. 4. Part 1 – One representative 1H NMR spectra of Robusta 
Amazônico cultivated by the indigenous coffee with resonance sig
nals assigned; Part 2 – 1H NMR fingerprints of different coffee 
groups. (A) Robusta Amazônico from indigenous producers; (B) 
Robusta Amazônico from non-indigenous producers; (C) low-quality 
Canephora; (D) Conilon from Espírito Santo; (E) Conilon from Bahia; 
(F) Arabica; Part 3 – 1H NMR comparison for different coffee groups. 
(1) Expansion of the range 7.9–9.5 ppm. (2) Expansion of the range 
6.2–7.7 ppm, and (3) Expansion of the range 3.1–7.9.   
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for Cu, and 8.6 for K. The correlation coefficients were >0.9997 for Ca; 
>0.9996 for Mg; >0.9991 for Zn; >0.9996 for Fe; >0.9995 for Mn; 
>0.9999 for Cu; and >0.9901 for K. The LOD (limit of detection) and 
LOQ (limit of quantification) (mg/100 g) for Ca were (LOD: 0.11, LOQ: 
0.18); Mg (LOD: 0.0001, LOQ:0.0001); Zn (LOD: 0.15, LOQ: 0.24); Fe 
(LOD: 0.60, LOQ: 1.01); Mn (LOD: 0.002, LOQ: 0.004); Cu (LOD: 0.09, 
LOQ: 0.15); K (LOD: 0.0004, LOQ: 0.006). 

2.3. Chemometric methods 

After data collection, the data were imported in Matlab R2019a (The 
Mathworks, Natick, MA). The matrices collecting the data acquired by 
the different techniques had the following dimensions: 128 × 125 in the 
case of portable NIR, 128 × 6001 for benchtop NIR, 128 × 1733 for ATR- 
FTIR-MIR, 128 × 248 in the case of 1H NMR, and 128 × 7 for FAAS. 
Samples in the five data matrices representing the different data blocks 
(one per technique) were always organized in the same sequence: from 
sample 1 to 25 the Robusta Amazônico samples from indigenous pro
ducers (class 1), from sample 26 to 50 the Robusta Amazônico samples 
from non-indigenous producers (class 2), from 51 to 75 the Conilon 
samples from Espírito Santo (class 3), from 76 to 100 the Conilon 
samples from Bahia (class 4), from 101 to 125 the Arabica samples (class 
5), and from 126 to 128 the low-quality Canephora. Choice of the most 
suitable preprocessing for the different blocks was made based on the 
previous experience with similar data. 

2.3.1. ComDim multi-block exploratory data analysis 
ComDim multi-block analysis [10] is an exploratory data analysis 

technique which focused on the extraction of common components that 
jointly explain as much as possible of the variance of the different 
blocks. This allows to understand relations between the variables in the 
different blocks and to relate the corresponding underlying latent 
structure to the differences observed among the samples. Models with 
different differentiation purposes/sample classes were built to exten
sively explore the potential of the different techniques together for 
characterization. The concatenated matrix always had 8114 variables 
considering all data blocks and the number of samples in each model 
was varied. Ten common components (CCs) were calculated to evaluate 
and discuss the contributions or saliences from all the data blocks on 
sample distribution through scores. CCs with great contributions of the 
different data blocks and explaining high total variance were selected. 

2.3.2. SO-PLS-LDA multi-block discrimination 
In order to externally validate the models, samples were divided into 

a training and a test set for multi-block discrimination by the Duplex 
algorithm [22] using a strategy based on taking into account the vari
ability of all five data blocks differently pretreated described in 
Ref. [15], i.e., applying the Duplex algorithm on the ComDim scores, 
individually for each category. A total of 18 samples from each class 
were selected for model building and selection, resulting in 90 training 
samples. The remaining 35 samples (7 from each class) constituted the 
test set. The 3 low-quality Canephora samples were not considered for 
the discrimination study. A graphical representation of the composition 
of the data set is shown in Fig. 2. 

SO-PLS [23] is a multi-block regression method, which, by intro
ducing the dummy matrix coding for class belonging and applying linear 

discriminant analysis to the predicted responses or the scores, can be 
extended to discrimination purposes [11,24]. It sequentially extracts 
information from each data block and use it for the prediction of the 
desired response(s), in this case, the dummy binary Y, which is made of 
5 columns, one for each of the 5 category: Robusta Amazônico from 
indigenous producers (class 1), Robusta Amazônico from 
non-indigenous producers (class 2), Conilon from Espírito Santo (class 
3), Conilon from Bahia (class 4), and Arabica (class 5). Firstly, the al
gorithm calculated a SO-PLS model and then LDA was applied on the 
predicted Y [25]. The discriminant ability of the model was determined 
by sensitivity (equation (1)) and specificity (equation (2)) rates. These 
parameters can assume values from 0 to 100% and are calculated for 
training, cross-validation, and prediction sets considering true positive 
(TP) and negative (TN), and false-positive (FP) and negative (FN) rates. 

Sensitivity=
N(true positives)

N(true positives) + N(false negatives)
(1)  

Specificity=
N(true negatives)

N(true negatives) + N(false negatives)
(2)  

where the true positives and the false negatives are the samples of the 
particular class which are correctly predicted as belonging to that class 
or erroneously misclassified as belonging to other classes, respectively. 
On the other hand, the true negatives and the false positives are the 
samples from other categories which are correctly predicted as not 
belonging to the specific class or wrongly classified as belonging to the 
particular class, respectively. 

2.3.3. PLS-DA and CovSel-LDA for benchtop and portable NIR 
discriminations 

PLS-DA was then applied to discriminate the coffee samples in the 
five classes based on the data of specific individual blocks (the NIR ones) 
[15]. In order to try to obtain better results, another discrimination 
method employing variable selection was applied for these data sets. 
Covariance Selection (CovSel) [12] is a variable selection method whose 
algorithm shares similar traits with PLS. Indeed it can be thought as a 
PLS algorithm with binary weights, rather than real-valued ones, this 
characteristics being exploited for feature reduction [26]. CovSel algo
rithm can also be extended to discrimination problems by introducing 
the usual dummy binary Y, and applying LDA either on the selected 
variables or on the predicted Y. 

3. Results and discussion 

Each sample was analyzed by the five instrumental techniques. The 
different spectral data obtained are shown in Fig. 3A. The mineral 
composition obtained with FAAS is also graphically represented. 
Drawing conclusions by visual analysis of the spectroscopic results is 
difficult, because there was an overlap of signals among the samples. 
The same occurred with the results of the essential mineral composition. 
However, a special interest was given to the NMR spectra interpretation 
expanded in Fig. 4. 

Fig. 4 shows the identification of compounds by the 1H NMR spec
troscopy. One sample of Robusta Amazônico cultivated by the indige
nous was chosen to present the chemical characterization. Assignments 
of the main metabolites present in the roasted coffee extracts were 
depicted in Fig. 4 – Part 1. The 1H NMR fingerprints for the different 
coffee groups obtained for the coffee samples were shown in Fig. 4 – Part 
2. 

Fig. 4 – Part 3 brings a comparison between the spectra. Comparing 
the 1H NMR chemical profiles for the different coffee groups was 
possible to observe some main differences (Fig. 4 – Part 3 in 3.1, 3.2 and 
3.3). A semiquantitative analysis based on the internal standard used in 
the 1H NMR analysis allowed differences in the amount of some com
pounds in the different coffee groups. Arabica coffee showed the highest 

Table 1 
Preprocessing approaches applied on the different data blocks.  

Technique Preprocessing 

Portable NIR 2nd derivative + mean centering 
Benchtop NIR 1st derivative + mean centering 
ATR-FTIR-MID Baseline correction +1st derivative + mean centering 
1H NMR Pareto scaling 
FAAS Autoscaling  
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Fig. 5. Contributions of the different data blocks along the 10 CCs for differentiating all samples (A), only Canephora (B), exclusively GI Canephora (C), and 
indigenous and non-indigenous Robusta Amazônico producers (D). 
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amount of 5-HMF (5-hydroxymethylfurfural), with resonance at 9.45 
ppm, while indigenous Robusta Amazônico presented the lowest 
amounts of 5-HMF and N-methylpyridinium with resonances at 8.5 and 
8.8 ppm (Fig. 4 – Part 3 in 3.1). Conilon from Espírito Santo and low- 
quality Canephora coffees showed the lowest amount of N-methylpyr
idinium with resonances at 8.53 and 8.78 ppm. 5-HMF and N-methyl
pyridinium are formed through the roasting process [27]. The expansion 
of the region of 6.2–7.7 ppm (Fig. 4 – Part 3 in 3.2) showed the 

resonances of the chlorogenic acids (quinic esters of hydroxycinnamic 
acids, CGAs). CGAs are important active compounds and the most 
important class of coffee polyphenols; they can be divided into the major 
groups: caffeoylquinic acids (CQAs), being 5-O-caffeoylquinic acid 
(5-CQA), the most common CQA; di-caffeoylquinic acids (di-CQAs), 
feruloylquinic acids (FQAs), p-coumaroylquinic acids (p-CoQA), and 
caffeoylferuloylquinic acids (CFQA) [28,29]. The flavor of roasted cof
fee is highly influenced by CGAs, that directly interfere in the cup 

Fig. 6. Scores of ComDim analysis applied for the sample set comprising 103 Canephora samples of different geographical origins in Brazil (Conilon from Espírito 
Santo – 25 samples, Amazonian Robusta from indigenous – 25 samples and non-indigenous producers of Rondônia – 25 samples, Conilon from Bahia – 25 samples, 
and low-quality Canephora – 3 samples) and 25 Arabica coffee samples. The first analysis was performed with all 128 Canephora and Arabica samples (A); The 
second analysis considered only the Robusta Amazônico samples originated from the indigenous and non-indigenous producers of Rondônia, Conilon from Espírito 
Santo, and Conilon from Bahia (B), the third analysis was applied exclusively for Robusta Amazônico samples originated from the indigenous and non-indigenous 
producers of Rondônia, and Conilon from Espírito Santo, which were registered with geographical indication (C), and the last analysis considered exclusively 
Rondônia samples, which were the Robusta Amazônico samples from the indigenous and non-indigenous producers (D). 

Fig. 7. Division of the samples of each category into training (hollow markers) and test set (filled markers).  
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quality [30]. Although it was possible to observe differences in the 
composition of chlorogenic acids in the different analyzed coffees, there 
are already dozens of CGAs identified and for these compounds to be 
properly identified, future analyzes such as 2D NMR spectroscopy and 
mass spectrometry are necessary. It was also notorious that Arabica 
coffee presented the lowest amount of caffeine, with resonances at 7.80; 
3.86; 3,43, and 3.26 ppm, while non-indigenous Robusta Amazônico 
showed the highest quantities; this is in agreement of the literature when 
comparing Arabica and Robusta contents of caffeine [27]. For trig
onelline and choline, non-indigenous Robusta Amazônico and Arabica 
coffees showed the highest amount while Conilon from Bahia and from 
Espírito Santo presented the lowest amounts. 

3.1. ComDim multi-block exploration 

Each data block had a preprocessing applied to remove unwanted 
sources of variability and enhance the results (Table 1) to perform the 
ComDim analysis. 

The data were organized in matrices as shown in Fig. 3B. To inves
tigate the correlation among the investigated blocks, four ComDim an
alyses were performed, each time considering a different number of 
samples to be included in the analysis. A maximum of ten common 

components (CCs) was calculated in each case, where the saliences/ 
contributions of the different data blocks along the 10 CCs can be 
analyzed in Fig. 5. The contributions/saliences from the different pre
treated data blocks changed when calculating models with different 
sample classes. However, a prominent contribution of the MIR and 
benchtop NIR spectroscopies was always observed in the four analyses, 
mainly on CC1 (Fig. 5). The first five CCs always explained more than 
98% of the total variance in the models. However, the first two CCs were 
always more informative and provided the greatest contribution from 
the different data blocks analyzed jointly. Therefore, CC1 and CC2 
scores were jointly analyzed to obtain interpretations regarding the 
samples. 

The scores of the different ComDim brought information of relevance 
for the study of the Canephora coffees (Fig. 6). It was possible to observe 
that the sample diversity varied considerably between groups and even 
within groups. The first analysis with all samples immediately showed a 
partial distinction between Canephora and Arabica (in green) along CC1 
(Fig. 6). It was also showed that the three low-quality Canephora sam
ples (in cyan) were closely grouped with those Conilon from Bahia (in 
purple), that currently are not predominantly of specialty quality. CC2 
showed a partial distinction of Arabica (in green) and Conilon from 
Bahia (in purple) in relation to the others. This shows how diverse they 
were compared to the other Canephora coffees with GI. Although there 
was contribution from almost all data blocks in distinguishing CC1 (see 
saliences in Fig. 5A), the MIR block dominated. In CC2, the result sug
gested that the portable NIR spectra brought the most important infor
mation (Fig. 5A). 

Other ComDim was developed only with Canephora samples 
(Fig. 6B) in order to ignore the species factor in the differentiation 
observed in the previous model (Fig. 6A). In the model considering 
exclusively Canephora coffees (Fig. 6B), there was a well-defined 
distinction of the Robusta from indigenous (in blue) and Conilon from 
Bahia (in purple). Robusta from the non-indigenous (in orange) and 
Conilon from Espírito Santo (in yellow) overlapped. In this model, the 
portable NIR was found to have the most significant contribution in CC1, 
while the MIR was the most significant in CC2 (Fig. 5B). 

A third ComDim where the samples from Bahia were removed to 
consider only the Canephora coffees with GI was built (Fig. 6C). It 
contained the Robusta from the indigenous and non-indigenous, and 
Conilon from Espírito Santo. Almost the same sample distribution dis
cussed in the previous model (Fig. 6B) was observed, with no consid
erable differences. The same sample distinction trend was observed. 
Although this has occurred, the contribution of the data blocks has 
varied. MIR data block contributed more in CC1, while portable NIR 
more in CC2 (Fig. 5C). 

po It was possible to see that most of them were dispersed differently 
in CC1. However, it was observed also a distinction within the Robusta 
of non-indigenous producers, which could be associated with the di
versity of cultivars available within this class but of unknown charac
teristics. Two subgroups appeared within the indigenous group in this 
and other ComDim analyses and may be differences between local 
producers. The data blocks that contributed the most were again the MIR 
and portable NIR for CC1 and CC2, respectively (Fig. 5D). In general, 
multi-block exploratory data analysis with different ComDim suggested 
that MIR and NIR (both benchtop and portable) spectroscopies were 
dominant techniques for bringing the necessary information for a pre
liminary distinction of samples, either by species, geographical origin, or 
manufacturer. 

3.2. Multi-block discrimination with SO-PLS-LDA analysis 

As anticipated, the split of the samples into training and test set was 
performed by applying the duplex algorithm on the scores of the Com
Dim multi-block analysis. In particular, to obtain a representative and 
reliable selection of training and test samples, the duplex selection was 
carried out individually on each category. The sample selection for the 

Table 2 
Results of modeling with the multi-block strategy based on all the data blocks 
(SO-PLS-LDA) and individual analysis and comparison between benchtop and 
portable NIR for discriminating the samples based on PLS-DA and CovSel-LDA 
methods.  

Sets SO-PLS-LDA based on all the blocks 

Parameters 1 2 3 4 5 

Training Sensitivity 100.0 100.0 100.0 100.0 100.0 
Specificity 100.0 100.0 100.0 100.0 100.0 

Cross-validation Sensitivity 100.0 100.0 100.0 100.0 100.0 
Specificity 100.0 100.0 100.0 100.0 100.0 

Test Sensitivity 100.0 100.0 100.0 100.0 100.0 
Specificity 100.0 100.0 100.0 100.0 100.0  

PLS-DA for benchtop NIR 
Sets Parameters 1 2 3 4 5 
Training Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Cross-validation Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Test Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0  
PLS-DA for portable NIR 

Sets Parameters 1 2 3 4 5 
Training Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Cross-validation Sensitivity 94.4 88.9 77.8 100.0 100.0 

Specificity 97.2 95.8 97.2 100.0 100.0 
Test Sensitivity 100.0 71.4 71.4 100.0 100.0 

Specificity 89.3 100.0 96.4 100.0 100.0  
CovSel-LDA for benchtop NIR 

Sets Parameters 1 2 3 4 5 
Training Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Cross-validation Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Test Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0  
CovSel-LDA for portable NIR 

Sets Parameters 1 2 3 4 5 
Training Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Cross-validation Sensitivity 100.0 100.0 100.0 100.0 100.0 

Specificity 100.0 100.0 100.0 100.0 100.0 
Test Sensitivity 100.0 85.7 71.4 100.0 100.0 

Specificity 89.3 100.0 100.0 100.0 100.0 

*Robusta Amazônico samples from indigenous producers (class 1), Robusta 
Amazônico samples from non-indigenous producers (class 2), Conilon samples 
from Espírito Santo (class 3), Conilon samples from Bahia (class 4), Arabica 
samples (class 5). 
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individual classes is shown in Fig. 7. 
The discrimination results on training, cross-validation and test sets 

are presented in Table 2. With reliably selected sample sets, SO-PLS-LDA 
based on all the five blocks was applied and resulted in 100% correct 
discrimination on training, cross-validation, and test sets, using 5 latent 
variables (LVs) on benchtop NIR and 0 LVs for all the others. Although 
SO-PLS-LDA considered the information contained in all blocks, it sug
gested that only a single block (benchtop NIR) is needed to achieve a 
perfect discrimination of the five coffee classes. Indeed, the LVs from SO- 
PLS-LDA model were selected from benchtop NIR block only. This 
finding encouraged a further comparison of the use of NIR spectroscopy 
in coffee discrimination with the benchtop and portable versions 
available. 

3.3. Comparison between benchtop and portable NIR performance 

PLS-DA models were built for portable NIR and benchtop NIR to 
compare their performance (Table 2). They confirmed the effectiveness 
of NIR spectroscopy. The PLS-DA on benchtop NIR, which, as already 
discussed is completely equivalent to the best SO-PLS-LDA model (since 
LVs were extracted only from that block) had a 100% correct discrimi
nation on the training, cross-validation, and test sets. For portable NIR, 
100% discrimination on all classes was achieved on the training sets. In 
cross-validation and prediction, there were incorrect discriminations for 
classes 1, 2 and 3 using the portable NIR. For classes 4 and 5, the dis
criminations were perfect reaching 100%. It encouraged to check if with 
portable NIR alone could possibly have comparable or at least only 
slightly worse performance than benchtop NIR using other discrimina
tion strategy based on CovSel-LDA to select the best variables for 
benchtop NIR and portable NIR. CovSel-LDA improved portable NIR 
performance as can be seen in Table 2. 

Fig. 8 shows the values of the variable importance in projection (VIP) 

index extracted from the SO-PLS-LDA model for benchtop NIR (A) and 
portable NIR (B), and variables selected by CovSel-LDA for benchtop 
NIR (C) and portable NIR (D). It was found that a significantly smaller 
number of variables were considered to obtain the discrimination 
results. 

4. Conclusions 

The multi-block characterization and discrimination of Brazilian 
Canephora coffees has brought new contributions to the study of this 
coffee species that is on the rise and comes from different regions of 
Brazil. The multi-block exploratory analysis showed that although there 
was a contribution from all the different techniques for characterization, 
the multi-block discrimination showed that NIR spectroscopy domi
nated for this purpose. Due to this finding, comparisons between 
benchtop NIR and portable NIR were proposed. Portable NIR provided 
slightly inferior results to benchtop NIR through variable selection. 

Besides the relevant aspects of chemometrics, this study brought 
results that are of importance for coffee science in particular. The ability 
to discriminate preliminarily or definitively between Brazilian Cane
phora coffees opens the possibility of establishing a more reliable cer
tification system than the current ones based on sensory or physical 
analyses of the beans. 
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