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Abstract 

Introduction  White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for con-
temporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated 
with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two condi-
tions are still unclear. The aim of this study was to identify miRNAs differentially expressed (DE) between normal 
and WS and WB-affected broilers, and to verify the possible role of these miRNAs in metabolic pathways related 
to the manifestation of these pectoral myopathies in 28-day-old broilers.

Results  Five miRNAs were DE in the WS vs control (gga-miR-375, gga-miR-200b-3p, gga-miR-429-3p, gga-miR-
1769-5p, gga-miR-200a-3p), 82 between WB vs control and 62 between WB vs WS. Several known miRNAs were 
associated with WB, such as gga-miR-155, gga-miR-146b, gga-miR-222, gga-miR-146-5p, gga-miR- 29, gga-miR-21-5p, 
gga-miR-133a-3p and gga-miR-133b. Most of them had not previously been associated with the development of this 
myopathy in broilers. We also have predicted 17 new miRNAs expressed in the broilers pectoral muscle. DE miRNA 
target gene ontology analysis enriched 6 common pathways for WS and WB compared to control: autophagy, insulin 
signaling, FoxO signaling, endocytosis, and metabolic pathways. The WS vs control contrast had two unique path-
ways, ERBB signaling and the mTOR signaling, while WB vs control had 14 unique pathways, with ubiquitin-mediated 
proteolysis and endoplasmic reticulum protein processing being the most significant.

Conclusions  We found miRNAs DE between normal broilers and those affected with breast myopathies at 28 days 
of age. Our results also provide novel evidence of the miRNAs role on the regulation of WS and in the differentiation 
of both WS and WB myopathies. Overall, our study provides insights into miRNA-mediated and pathways involved 
in the occurrence of WS and WB helping to better understand these chicken growth disorders in an early age. 
These findings can help developing new approaches to reduce these complex issues in poultry production pos-
sibly by adjustments in nutrition and management conditions. Moreover, the miRNAs and target genes associated 

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

*Correspondence:
Mônica Corrêa Ledur
monica.ledur@embrapa.br
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-024-09983-9&domain=pdf


Page 2 of 14Pizzol et al. BMC Genomics          (2024) 25:104 

Background
Science and technology have led to a significant increase 
in poultry chain productivity in recent decades [1]. 
However, these advancements have been related to the 
onset of some physiological problems in broiler chick-
ens [2–4]. The main pathological changes reported 
have been abnormalities in the chicken muscle tissues, 
which develop during the growth phase and progres-
sively worsen during the productive life of the animal [5]. 
Currently, two main problems affecting broilers are the 
degenerative disorders caused by White Striping (WS) 
and Wooden Breast (WB) pectoral myopathies [6, 7].

The main feature of WS myopathy is the presence of 
white stripes that form parallel to muscle fibers on the 
breast of affected animals [8, 9]. These stripes are mainly 
composed by adipose tissue, and histological analysis 
reveals the presence of overlaid muscle lesions such as 
myodegeneration, necrosis, lymphocyte and macrophage 
infiltration, fibrosis, lipidosis, and other degenerative 
changes [9, 10]. On the other hand, WB myopathy is 
characterized by regenerative myodegeneration, fibrosis 
and pectoral muscle hardness [11]. WB also causes sev-
eral microscopic changes, such as irregular and disar-
ranged fibers, infiltration of inflammatory cells, increased 
collagen deposition in the tissue, and is often accompa-
nied by WS [11, 12].

Both WS and WB disorders do not represent a risk to 
the consumer´s health; however, they negatively affect 
the physicochemical characteristics of the meat [10, 11, 
13]. Moreover, fillets affected by myopathies tend to be 
rejected by consumers [9]. These are some of the reasons 
why the cuts of the affected animals are undervalued and 
ultimately designated for by-products in the industry. 
Meat from affected chickens also represents problems 
during processing, as their muscle are more exudative, in 
addition to the large deposition of collagen, which signifi-
cantly impact the texture of the food. Therefore, product 
correction is needed through industry interventions [14, 15].

The myopathic pectoral muscle causes damage to the 
entire poultry chain, both due to their low yield caused 
by cooking and dripping losses and their devalued cuts 
[16]. Carcass condemnation rates caused by myopathies 
are reported to be close to 0.8%, preventing the sale of the 
whole chicken (which has high commercial value) and 
resulting in estimated economic losses by approximately 
BRL 5,90 (US$ 1.20) per kilogram of meat, and daily 

losses of up to BRL 21,800.00 (US$ 4.300,00) in a slaugh-
terhouse in Brazil [17].

Genetics has been considered an important factor 
for the development of WS and WB in broilers, with 
moderate to high heritability for WS (h2 = 0.18 ± 0.01 
to h2 = 0.65 ± 0.08) [18, 19] and low heritability for WB 
(h2 = 0.10) [18]. Differences in the occurrence of myopa-
thies were found among fast-growing commercial lines 
[20, 21]. Several authors have reported that high-breast-
yielding broilers are more affected by myopathies than 
standard broiler lines [7, 10, 18, 19, 22–25].

Transcriptomic analyses of the pectoralis major muscle 
(PMM) have provided the identification of the messen-
ger RNA (mRNA) expression profile in broilers affected 
by myopathies [25–30]. These functional studies have 
pointed out several candidate genes for the development 
of these disorders. However, the contribution of epige-
netic factors to the development of breast myopathies 
in chickens are still a challenge, since only one study has 
associated miRNAs profile with the manifestation of WB 
myopathy [31] to date.

Given the significance of miRNAs in muscle develop-
ment and their potential role in the regulation of myo-
pathies in other species [32–34], this study aimed to 
identify differences in the expression profile of miRNAs 
between normal broilers and those affected by WS and 
WB. Additionally, this study seeks to evaluate the poten-
tial of miRNAs’ impact on metabolic pathways associated 
with the onset and differentiation of pectoral myopathies 
in 28-day-old broiler chickens.

Results
Pathological findings
From the 30 pectoralis major muscle evaluated, it was 
possible to classify 27 of them: 4 as normal (no apparent  
macroscopic lesions), 16 with WS and 7 with WB, according 
to the classification criteria established by Kuttappan et al. 
(2013) and Sihvo, Immonen and Puolanne (2014) (Fig. 1).

The histopathological evaluation of 27 out of 30 ini-
tial samples revealed 4 normal muscle samples show-
ing organized muscle fibers of regular size with rare 
hypereosinophilic fibers (Fig.  2A). Sixteen (16) samples 
showed lesions consistent with WS: mild to moderate 
presence of hypereosinophilic fibers, moderate number 
of degenerated and necrotic fibers, an increase in the 
spaces between fibers and muscle bundles and moderate 

with the initial stages of WS and WB development could be potential biomarkers to be used in selection to reduce 
the occurrence of these myopathies in broiler production.
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proliferation of intramuscular adipocytes (Fig.  2B). 
Finally, 7 samples presented WB compatible lesions: high 
number of hypereosinophilic and necrotic muscle fib-
ers, moderate to high proliferation of fibroblasts, muscle 
fibers showing different sizes, looser cells arrangement 
with significant increase in the spaces between fibers and 
muscle bundles, presence of interstitial connective tissue, 
mild heterophile infiltration and moderate intramuscular 
adipose tissue (Fig. 2C).

Based on the macroscopic and microscopic analyses, 
the muscle samples were classified into three groups: 
control (none or slight lesions), WS-affected, and WB-
affected groups. For miRNA analysis, the most represent-
ative samples of each group were selected: three samples 

for the control group, five samples for the WS-affected 
group, and six samples for the WB-affected group.

Sequencing, quality control and mapping
Approximately 133 million reads were sequenced across 
all samples, resulting in an average of 9.55 million reads 
per sample. After quality control analysis, a mean of 7.5 
million reads per sample remained, which were aligned 
against the ribosomal (rRNA) and transporter RNAs 
(tRNA) using RFAM database release 14. Around 1.1% 
of those sequences were removed for downstream anal-
ysis. Then, an average of 67.5% of the sequences were 
mapped in the Gallus gallus genome (GRCg6a, accession 
GCF_000002315.5, Supplementary File 1: Table S1).

Fig. 1  Breasts from 28-day-old broilers representing the macroscopic evaluation of the normal (control) (A), white striping (B) and wooden breast 
(C) groups

Fig. 2  Histopathological analysis of 28-day-old chicken breasts showing microscopic features of the control (A), white striping (B), and wooden 
breast (C) groups. Increase in space between muscle bundles (arrow), several degrees of degenerated fibers (arrowhead)—Haematoxylin and eosin 
stain
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miRNA identification and differential expression analysis
A total of 844 miRNAs were detected based on all miR-
NAs identified by miRDeep2. From those, 755 were 
known miRNAs and 89 were firstly described in this 
study (Fig.  3). After filtering the reads with low expres-
sion according to the standard "filterbyexpr" function 
from EdgeR [35], 303 miRNAs were determined as 
expressed, including 286 known miRNAs and 17 new 
ones.

A multidimensional scaling plot (MDS) was gener-
ated based on the profile of expressed miRNAs, and the 
three groups were separated according to their respec-
tive physiological conditions (Fig. 4A). This result shows 
a consistent miRNA profile in the samples within each 
group, indicating homogeneity. Similar separation pat-
tern was also observed in the heatmap (Fig. 4B).

For the DE analysis, three comparisons were per-
formed: WS vs control group, WB vs control group and 
WB vs WS group. Considering WS vs control, five miR-
NAs were DE, four downregulated and one upregulated 
in the WS group (Table 1).

When comparing WB and control groups, 82 miR-
NAs were DE; 43 upregulated and 39 downregulated in 
the WB-affected group (Table  2, Supplementary file 1: 
Table S2).

Considering the comparisons of the two affected 
groups WB with WS, 61 miRNAs were DE, 37 upregu-
lated and 24 downregulated in the WB group (Table  3, 
Supplementary file 1: Table S3).

Evaluating the three contrasts (Fig.  5), the Venn dia-
gram showed that 31 miRNAs were exclusively DE 

between WB-affected and the control group, 7 miRNAs 
were DE only between WB and WS, and no miRNA was 
exclusively DE in the WS vs control group comparison.

Functional annotation
Once the DE miRNAs were identified, the sRNAtoolbox 
and ShinyGO tools were used to predict the target genes 
for these miRNAs in each of the following contrasts:

White striping‑affected versus control group
Evaluating the five miRNAs DE in this comparison 
(Table  1), 2176 target genes were found in the chicken 
genome, out of which 2131 were previously annotated 
and used for gene ontology analysis. Eight pathways were 
enriched with the target genes predicted for WS (Table 4, 
Supplementary File 1: Table  S4), with autophagy and 
endocytosis as the most significant pathways.

Wooden breast‑affected versus control group
Out of 82 DE miRNAs obtained from this contrast, 7148 
target genes were found in the chicken genome, which 
enriched 20 metabolic pathways, such as Ubiquitin medi-
ated proteolysis, Protein processing in endoplasmic 
reticulum, Cell cycle, Endocytosis, Autophagy, Insulin 
signaling pathway and FoxO signaling pathway (Table 5, 
(Supplementary File 1: Table S5).

Discussion
The regulatory role of miRNAs in myopathies has been 
previously reported in humans and other species [36, 37], 
but very limited research exists for chickens [31]. Our 

Fig. 3  Number of identified (known and new) miRNAs in each sample of pectoralis muscle tissue
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Fig. 4  Multidimensional scale (MDS) plot (A) and heatmap (B) showing the separation of control, white striping (WS) and wooden breast (WB) 
groups through the miRNA’s expression profile. Heatmap hierarchically grouping the expression of 80 DE miRNAs that most differed among the 3 
groups. The intensity of the color represents the degree of regulation (upregulated in red and downregulated in green)
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study focused on 28-day-old broilers, aiming to investi-
gate early stages of WS and WB. These findings shed light 
on mechanisms linked to milder conditions and potential 
onset, underscoring the prevalence of these issues in fast-
growing commercial chicken lines, even before slaugh-
ter age. It is important to emphasize that among the 30 
samples, only four were classified as controls due to the 
challenge of finding birds without macroscopic and his-
tological myopathy lesions.

In the differential expression analysis, five miRNAs 
were DE between WS-affected and control groups, while 
82 were DE between WB-affected and control group. 
Some of those 82, such as gga-miR-146-5p, gga-miR-29, 
gga-miR-21-5p, gga-miR-133a-3p and gga-miR-133b 
have already been associated with WB in broilers at 
42  days of age [31]. However, our study marks the first 
association of miRNAs with the regulation of WS myo-
pathy in broilers. Four out of five DE miRNAs in the 
WS-affected broilers vs control group (gga-miR-375, 
gga-miR-200a-3p, gga-miR-200b-3p and gga-miR-
429-3p) were also DE when Chao et  al. [38] evaluated 
high-fat and low-fat chickens. It has been shown that the 
upregulation of miR-429-3p was correlated with LPIN1 
downregulation, promoting abdominal fat accumulation 
through the PPARγ pathway [38]. Hence, we have found 
miRNAs associated with the regulation of adipogenesis, 
a key biological process for the development of the WS 
phenotype.

Once the DE miRNAs were identified, the target genes 
were predicted, and metabolic pathways were function-
ally analyzed. The discussion initially focused on com-
mon pathways between WB and WS to reveal shared 
mechanisms. Subsequently, the most important exclusive 
pathways for each myopathy were explored.

Shared metabolic pathways enriched in WB 
and WS‑affected groups:
Among the six common pathways, three were selected 
for discussion: autophagy, insulin signaling, and  FoxO 
signaling.

Autopaghy
This was one of the most significant metabolic pathways 
involved in both conditions compared to the control 
group (Tables  4 and 5). Autophagy is a cellular process 
that involves the degradation and recycling of cellular 
components, promoting cell survival and maintaining 
homeostasis. It plays a crucial role in eliminating dam-
aged organelles and proteins and responds to cellular 
stress [39–45]. Dysregulation of this mechanism can 
cause tissue degradation leading to degenerative diseases, 
when upregulated [46], or the accumulation of harmful 

Table 1  Differentially expressed miRNAs between 28-day-old 
control and white striping-affected broilers

logFC log fold-change, logCPM log copy per million, FDR False discovery rate

miRNAs logFC logCPM p-value FDR

gga-miR-375 -4.48 3.51 7.22E-06 0.0022

gga-miR-200b-3p -2.90 4.84 0.00021 0.0230

gga-miR-429-3p -2.56 4.25 0.00023 0.0230

gga-miR-1769-5p 3.67 0.37 0.00057 0.0435

gga-miR-200a-3p -2.74 7.17 0.00074 0.0451

Table 2  Top 5 up and downregulated miRNAs in the 
WB-affected compared to the control group

miRNA logFC logCPM PValue FDR

Upregulated chr22_10817 5.51 -0.29 0.0014 0.0089

gga-miR-
1769-5p

3.69 0.36 0.0003 0.0033

gga-miR-
3530-3p

3.68 0.69 0.0001 0.0013

gga-miR-205a 3.30 3.51 0.0009 0.0064

gga-miR-
222b-5p

2.60 1.34 8.26E-07 4.17E-05

Downregu-
lated

gga-miR-
6553-5p

-1.79 1.21 0.0058 0.0274

gga-miR-
6553-3p

-1.87 3.97 0.0013 0.0086

chr2_9820 -2.00 3.83 2.79E-07 2.11E-05

chr2_9097 -2.72 0.78 0.0004 0.0033

gga-miR-122-5p -4.42 9.15 0.0066 0.0294

Table 3  Top 5 up and downregulated miRNAs in the WB 
compared to WS-affected group

a miRNA names starting with “chr” are predicted for the first time in this study

miRNAa logFC logCPM PValue FDR

Upregulated chr22_10817 5,51 -0,29 3,45E-05 0,000826

gga-miR-
1663-5p

4,72 0,14 3,89E-09 1,18E-06

gga-miR-
200b-3p

3,25 4,83 7,68E-06 0,000258

gga-miR-375 3,21 3,50 0,000298 0,004297

gga-miR-
200a-3p

3,12 7,17 3,55E-05 0,000826

Downregu-
lated

gga-miR-
144-3p

-1,20 5,34 0,0016 0,016015

gga-miR-
193a-3p

-1,24 3,65 0,0004 0,0061

gga-miR-451 -1,32 9,25 2,41E-05 0,000724

chr2_9820 -1,41 3,83 5,48E-05 0,001186

chr2_9097 -1,89 0,78 0,007947 0,043001
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substances, fostering the replication of defective cells, 
when downregulated [46].

A total of 73 miRNAs’ target genes were enriched in 
this BP in the WB vs control comparison, and 33 in the 
WS vs control contrast. Notably, gga-miR-155, gga-miR-
146b, and gga-miR-222, previously identified as upregu-
lated in 42-day-old broilers affected with WB [31], were 

prominent and also over-expressed in the WB vs control 
contrast. These miRNAs, when highly expressed, may 
have implications in numerous human muscle disorders 
[47]. miR-155 is a multifunctional miRNA that modu-
lates autophagy through decreasing the expression of 
Autophagy related 5 gene (ATG5) [48, 49]. This gene, in 
association with the autophagy related 12 gene (ATG12), 
another predicted target, contributes to the structural 
maintenance and maturation of autophagosomes [50–
52]. An indirect evidence of an ongoing impairment of 
the autophagic process is the identification of miRNAs 
targeting genes involved with myoblast differentiation: 
miR-155, which targets myocyte-specific enhancer fac-
tor 2A (MEF2A) [34] and miR-146 targeting the Mothers 
Against Decapentaplegic Homolog 4 (SMAD4), Neu-
rogenic Locus Notch Homolog Protein 1 (NOTCH1) 
and High Mobility Group Protein HMGI-C (HMGA2) 
genes [34]. It has been shown that hindering the myocyte 
fusion in the final stages of myoblast differentiation leads 
to an impairment in the autophagosomes biogenesis 
[53]. Moreover, miRNAs 222b-3p and gga-miR-222b-5p 
play roles in apoptosis regulation [39], a BP that has 
already been associated with WS development [29]. In 

Fig. 5  Venn diagram showing the number of miRNAs differentially expressed in comparisons between each contrast

Table 4  Metabolic pathways regulated by target genes of 
differentially expressed miRNAs in 28-day-old broilers affected by 
White Striping compared to the control group

Pathways Identified 
genes

Pathway Genes FDR

ERBB signaling pathway 20 76 1.0E-02

Autophagy 33 126 7.8E-04

Insulin signaling pathway 29 114 1.7E-03

FoxO signaling pathway 28 119 7.6E-03

Cell cycle 25 114 3.3E-02

Endocytosis 49 225 7.8E-04

MTOR signaling pathway 28 137 4.2E-02

Metabolic pathways 185 1304 4.2E-02
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this sense, FADD Like Apoptosis Regulator (CFLAR), an 
exclusive WB target, coordinates autophagy, apoptosis, 
and necroptosis [40]. Since the CFLAR mRNA could be 
degraded by the activity of miRNAs, an increase in tissue 
autophagy is expected.

Autophagic dysregulation in WS and WB leads to 
degenerative lesions, indicating muscle damage with an 
endogenous origin [11, 41]. This dysregulation could pre-
dispose broilers to myopathies. Both WS and WB exhibit 
fibrotic tissue and degenerative lesions [9, 10], highlight-
ing the critical role of autophagy regulation in the devel-
opment of these myopathies.

Insulin signaling pathway
Chicken affected by WB and WS exhibit elevated lipid 
content in the pectoral muscle [9, 54, 55], suggesting a 
potential association between increased fat deposition 
and the regulation of the insulin pathway. Ebrahimi et al. 
[42] demonstrated that post-transcriptional mechanisms 
regulate the insulin pathway, contributing to disorders 
like insulin resistance and obesity in humans. In the WB 
vs control comparison, two members of the suppressor 
of cytokine signaling (SOCS) family, SOCS3 and SOCS4 
were enriched in this pathway. SOCS3 acts on inflam-
matory processes, whereas SOCS4 is involved in the 
regulation of hormones like insulin and growth factors 
[56]. Studies have shown that increased expression of 

miR-203 reduces SOCS3 levels in humans, evincing the 
translational control over SOCS gene members by miR-
NAs [57]. miR-203, upregulated in the WB broilers, is a 
known regulator of insulin sensitivity, glucose tolerance, 
and subcutaneous white adipose tissue accumulation [58, 
59]. Its upregulation might be linked to the impairment 
of the glucolipotoxicity pathway, previously associated 
with the etiology of WB and other breast myopathies in 
broilers [59].

An exclusive target for WB was the CBL Proto-Onco-
gene B (CBLB) gene, which acts in the proteasome-medi-
ated protein degradation [60], and is regulated by miR-29 
[51]. In our study, several miRNAs of this family were 
upregulated in the WB-affected group, including gga-
miR-29a-5p, gga-miR-29a-3p, gga-miR-29c-3p, gga-miR-
29b-1-5p and gga-miR-29b-3p. They were previously 
found to be DE in WB-affected broilers from a com-
mercial line at 42 days of age, and it is believed that the 
gga-miR-29 has a role in the WB development through 
energy metabolism regulation [31].

Insulin resistance is a key factor in metabolic disorders 
[42], and it has been shown that miRNAs can regulate the 
expression of the insulin pathway and insulin resistance 
[42, 61]. Problems in insulin signaling in the liver have 
been linked to lipidosis [42], as emphasized by Lake and 
Abasht [59]. Therefore, our study suggests that miRNAs 
may regulate genes in the insulin pathway, potentially 

Table 5  Metabolic pathways regulated by target genes of miRNAs differentially expressed in Wooden Breast compared to the control 
group

Pathway Identified genes Pathway Genes FDR

Fatty acid degradation 23 32 1.3E-03

Fatty acid metabolism 35 51 2.5E-04

Biosynthesis of nucleotide sugars 24 36 5.0E-03

Amino sugar and nucleotide sugar metabolism 29 45 3.6E-03

Cysteine and methionine metabolism 27 42 5.0E-03

Peroxisome 50 79 1.9E-04

Ubiquitin mediated proteolysis 80 129 2.7E-06

Protein processing in endoplasmic reticulum 89 149 4.5E-06

Cell cycle 67 114 2.0E-04

Endocytosis 131 225 2.4E-07

Autophagy 73 126 1.9E-04

Cellular senescence 78 137 3.4E-04

Biosynthesis of cofactors 68 120 5.8E-04

Lysosome 64 114 1.2E-03

Insulin signaling pathway 64 114 1.2E-03

FoxO signaling pathway 66 119 1.3E-03

Carbon metabolism 53 96 5.0E-03

Tight junction 78 145 1.3E-03

Salmonella infection 117 226 5.0E-04

Metabolic pathways 647 1304 7.8E-15
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contributing to the development of WS and WB in broil-
ers. The miR-15b has already been directly associated 
with insulin resistance [52] and here, we found that gga-
miR-15b-3p was among the DE miRNAs between WB 
and control group. Furthermore, gga-miR-222b-3p and 
gga-miR-222b-5p were upregulated in the WB group, 
and its upregulation has already been associated with 
induced insulin resistance in mice [62]. These findings 
indicate that these mechanisms possibly alter the insulin 
pathway also in broiler chickens, facilitating the myopa-
thies occurrence.

FoxO signaling pathway
A total of 28 and 66 target genes from the WS vs con-
trol and WB vs control comparisons, respectively, 
were enriched in the FoxO signaling pathway using the 
ShinyGO tool. Among the regulators of this pathway is 
miR-146b, which suppresses FoxO1 and FoxO3 genes, 
promoting adipogenesis in tissues [63]. In the current 
study, gga-miR-146b-5p and gga-miR-146b-3p were 
upregulated in the WB-affected group, potentially con-
tributing to increased body weight and adipose tissue. 
Conversely, miR-130 suppresses adipogenesis [64] and, in 
our study, gga-miR-130a-3p was downregulated in WB-
affected broilers, which could favor lipid deposition.

FoxO1 and FoxO3 genes are also related with vascu-
lar development [65, 66] and their absence can lead to 
severe cardiovascular anomalies in animals. Vascular tis-
sue impairment has already been associated with myo-
pathic conditions [67]. FoxO signaling is also activated 
in response to stress and FoxO3 is associated with the 
induction of autophagy [68]. Studies have shown that 
miR-132 regulates FoxO3 expression, acting as anti-
hypertrophic and pro-autophagic [69]. Notably, gga-
miR-132a-5p, gga-miR-132c-5p and gga-miR-132c-3p 
were upregulated in the WB-affected group. Additionally, 
miR-30d, targeting FoxO3 and associated with reduced 
inflammatory cell death [70], was downregulated in the 
WB-affected group, along with other family members 
like gga-miR-30a-3p, gga-miR-30e-5p, gga-miR-30a-5p, 
gga-miR-30c-5p, and gga-miR-30c-1-3p.

Exclusively enriched pathways in the WS‑affected 
compared with the control group
ERBB signaling pathway
The ERBB family, among other functions, guides cell–
cell interactions in tissues and organ formation dur-
ing animal growth [71]. Most cells have more than one 
type of ERBB receptors [72]. In the WS-affected group, 
approximately 20 target genes in this pathway, includ-
ing MAPK family members (MAPK10, MAP2K4, and 
MAPK9), were identified through DE miRNAs. Notably, 

miR-375, downregulated in the WS-affected group, and 
its target genes ERBB2 and MAPK were involved in fat 
metabolism and considered as adipocyte markers [73]. 
Dysregulated ERBB signaling, reported in kidney dis-
ease [74], contributes to epithelial hyperproliferation, 
inflammation, and fibrosis, which is a hallmark of WS.

The ERBB signaling pathway might be connected 
with changes in WS through the identification of DE 
miRNAs known for suppressing the expression of ERBB 
receptors [75]. mir-375 plays a role in initiating apop-
tosis via ERBB2 receptor expression, and its down-
regulation triggers cell proliferation and tumorigenesis 
[75]. The downregulation of this miRNA could favour 
cell proliferation in the WS-affected broilers. Further-
more, abnormal expression of ERBB pathway were also 
related with inflammation and fibrosis appearance, two 
features observed in chickens affected with WS [10, 76].

mTOR signaling pathway
The mTOR signaling pathway is key in BP related to 
cell growth, survival, aging and healthy muscle devel-
opment [77, 78]. The mTOR positive regulation is 
related with muscular hypertrophy [78, 79]. The mTOR 
regulates insulin sensitivity [80] and integrates infor-
mation from the extracellular environment, such as 
availability of nutrients and energy, into intracellular 
stimuli promoting protein synthesis [81]. Twenty-eight 
target genes from DE miRNAs between WS and con-
trol group enriched the mTOR signaling pathway. The 
miR-375 plays an important role in the mTOR path-
way suppressing cell proliferation and apoptosis [82], 
and also inhibiting cellular signals of osteogenesis and 
adipogenesis [4]. This miRNA, also known to control 
adipogenesis and regulate mTOR-mediated autophagy 
[83], was upregulated in the control group, potentially 
limiting adipogenesis in normal broilers and allowing 
greater lipid deposition in WS-affected broilers mus-
cles. The downregulation of miR-375 and two miR-200 
family members in WS-affected broilers may contrib-
ute to increased adipogenesis in pectoral muscles [83].

Another downregulated miRNA in the WS-affected 
broilers was the gga-miR-429-3p. This miRNA family is 
known to be downregulated during hypoxia [84], sug-
gesting a potential association with increased hypoxia 
levels in chickens with WS [76]. Among all the func-
tions that have been identified for the mTOR pathway, 
it also regulates glucose resistance, cell proliferation 
and autophagy. Our results support the hypothesis that 
WS may result from disruptions in glucose and lipid 
metabolism, aligning with the hypothesis proposed by 
Lake and Abasht [59].
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Exclusively enriched pathways in the WB‑affected broilers 
compared to the control group
Ubiquitin‑mediated proteolysis (UP)
The Ubiquitin–Proteasome (UP) system degrades intra-
cellular proteins and structures dispersed in the cytosol 
with high specificity [85], and 80 genes were predicted 
to be targets of regulation by the miRNAs DE between 
WB and control groups. MiR-122, identified in hypoxic 
skeletal muscles, participates in the Ubiquitin-mediated 
proteolysis pathway, and contributes to the development 
of musculoskeletal diseases, such as myofibrillar deg-
radation [86]. In WB-affected broilers, two downregu-
lated members of the miR-122 family (gga-miR-122-5p 
and gga-miR-122b-5p) were identified and potentially 
linked to histological lesions observed in the pectoral 
muscle, such as increased necrosis levels and myofiber 
degeneration.

Abnormal UP pathway activity can induce pathologi-
cal conditions like muscle atrophy [11, 87–90] and accu-
mulation of oxidized proteins [88]. Additionally, it can 
trigger several anomalies in skeletal muscle, including 
basophilic infiltrations, degenerative and regenerative 
alterations [89]. Most of these microscopic features are 
observed in WB myopathy [11]. Therefore, it is reasona-
ble to assume that miRNAs likely influence the regulation 
of the proteolysis pathway in WB-affected muscle, given 
the UP system’s high activity during myogenesis and its 
role in muscle development [90].

Protein processing in the endoplasmic reticulum
The endoplasmic reticulum (ER) plays a crucial role in 
producing integral and secretory proteins for the plasma 
membrane [91]. Eighty-nine genes involved in ER protein 
processing pathway were identified as targets of DE miR-
NAs between WB and the control group. Studies indicate 
that certain miRNAs inhibit mRNAs translation in the 
ER, directly interfering protein synthesis and processing, 
thus influencing organismal development [92]. miRNAs 
form a complex regulatory network in this pathway, for 
instance, miR-122 can act in UP and apoptosis [39]. In 
our study, gga-miR-122-5p was downregulated in broil-
ers with WB, suggesting its potential influence on WB 
manifestation.

Some miRNAs, including miR-29 [93], respond to ER 
stress conditions by regulating pro-apoptotic genes and 
influencing cell death [39]. In our study, we found six 
mirRNAs of this family overexpressed in broilers with 
WB compared to the control group (gga-miR-29a-5p, 
gga-miR-29a-3p, gga-miR-29c-3p, gga-miR-29b-1-5p 
and gga-miR-29b-3p). Furthermore, the gga-miR-455-5p, 
a miRNA linked to transcription factors involved in ER 
homeostasis [39], was also upregulated in broilers with 
WB. Although not previously associated with myopathic 

disorders, this miRNA might affect ER homeostasis in 
WB-affected chickens. ER stress, associated with degen-
erative disorders and myopathies, may originate from 
glucose and nutrient deprivation, hypoxia, inflammation 
and oxidative stress. High ER stress levels have already 
been related to the development of myopathies [94, 95]. 
Moreover, myopathic features, such as cell death, regen-
erative changes and muscle weakness were also related to 
ER stress [96].

Several changes that cause ER stress are observed in 
chickens with WB, such as hypoxia and oxidative stress 
[11, 54]. These conditions serve as sources of ER stress in 
the pectoralis muscle, disrupting protein synthesis and 
processing in the ER. These observations strongly suggest 
an important role of the ER protein processing pathway 
in the manifestation of WB.

Conclusions
Our study identified hallmark lesions in both WS and 
WB myopathies. The miRNA expression profile unveiled 
only one shared DE miRNA in both conditions compared 
to the control, suggesting that the molecular mechanisms 
underlying these two myopathies may differ, given the 
limited overlap in DE miRNA. Notably, our results pro-
vide a novel evidence of the involvement of miRNAs in 
regulating WS and in the differentiation of both WS and 
WB myopathies. Additionally, when comparing WB and 
WS-affected vs the control group contrasts, WB-affected 
broilers exhibited a higher number of DE miRNAs, sug-
gesting a stronger influence of miRNA control in broil-
ers affected with WB than with WS. These findings 
underscore the role of epigenetic factors in regulating 
both myopathies. Furthermore, functional enrichment 
and ontology analysis of DE miRNA target genes impli-
cated specific metabolic pathways in the manifestation 
of these myopathies. Our results highlight the miR-
NAs’ role in energy and insulin metabolism, hypoxia, 
autophagy, inflammation, protein synthesis and cell 
proliferation mechanisms. Overall, our study provides 
valuable insights into the miRNAs and pathways associ-
ated with the occurrence of WS and WB myopathies at 
an early age, which can possibly help developing new 
approaches to reduce these myopathies by adjustments 
in nutrition and management. Furthermore, the identi-
fied miRNAs and target genes are potential biomarkers to 
be used in selection to reduce these conditions in broiler 
production.

Methods
Animals and sample collection
This work was carried out at the Embrapa Swine and 
Poultry National Research Center, located in Concór-
dia—Santa Catarina State, Brazil. Thirty Ross male 
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broilers were reared in boxes and managed according to 
the commercial line recommendations, receiving stand-
ard feed and water ad  libitum. The broilers were eutha-
nized by cervical dislocation at 28 days of age, following 
the practices recommended by the Committee on Ethics 
in the Use of Animals (CEUA protocol 08/2019). Immedi-
ately after slaughter, the pectoralis major muscle (PMM) 
of the chickens were visually evaluated for the presence 
or absence of WS and WB, according to KUTTAPPAN 
et al. (2013) [76] and SIHVO; IMMONEN; PUOLANNE 
(2014) [11]. Approximately 1 cm2 of the PMM was col-
lected from the cranial region for histopathological and 
miRNA sequencing analyses.

Histopathological analyses
For the histopathological analyses, the collected sam-
ples were fixed in 4% paraformaldehyde until process-
ing. Tissues were cut into 5 mm sections, dehydrated in 
alcohol, diaphanized and embedded in paraffin. Then, 
tissues were cut into 3  μm sections, mounted in slides 
and stained with hematoxylin and eosin for morphologic 
evaluation and identification of myopathic lesions.

RNA extraction, library preparation and sequencing
RNA extraction was performed from 100  mg of pecto-
ral muscle samples, which were ground with a mortar 
and pestle in liquid nitrogen. Then, the total RNA was 
extracted using the Trizol protocol, according to the 
manufacturer’s instructions. Total RNA was quantified 
in a BioDrop spectrophotometer (Biodrop, UK), and was 
considered of good quality when the OD260: OD280 
ratio was greater than 1.8. The integrity of the samples 
was confirmed by electrophoresis for 90 min in a 1% aga-
rose gel and also using a Bioanalyzer Agilent 2100 equip-
ment, where samples with RNA Integrity Number (RIN) 
greater than 8 were used for downstream analyses.

The miRNA libraries were constructed using QIAseq 
miRNA Library kit (Qiagen, Germany) with the stand-
ard protocol. Libraries were quantified and verified in 
the Bioanalyzer Agilent 2100 equipment and by quanti-
tative PCR (qPCR). Sequencing was carried out in Next-
Seq 2000 equipment (Illumina), at the Life Sciences Core 
Facility (LaCTAD) of the University of Campinas (UNI-
CAMP), in Campinas, São Paulo State, following a single-
end protocol (1 × 75 bp).

Sequencing quality control and mapping
The FASTQ files were submitted to quality control (QC) 
analysis using the Trimmomatic tool [97] in order to 
remove sequences with low average Phred quality score 
(PHRED < 20), short reads (length < 18 nucleotides) and 
sequences with undefined bases (identified as N). Fol-
lowing, the unique molecular identifiers (UMIs) were 

extracted and deduplicated using the UMI-tools [98]. 
Then, an initial mapping using bowtie [99] was per-
formed against the Rfam database release 14 (https://​
rfam.​org/) [100] to remove tRNA and rRNAs sequences. 
After that, the miRDeep2 software [101] was used to map 
the remaining sequences against the chicken genome 
(GRCg6a, accession GCF_000002315.5) to identify and 
quantify miRNA sequences present in the analyzed sam-
ples. Furthermore, the miRDeep2 was also applied to 
discover potential novel chicken miRNAs. For quanti-
fication of known miRNAs, FASTA files from miRBase 
release 22.1 [102] and MirGeneDB release 2.1 [103, 104] 
databases were used. These analyses were run in the 
BAQCOM automated pipeline (https://​github.​com/​hanie​
lcedr​az/​BAQCOM).

Reads counting, filtering, miRNA differential expression 
and functional annotation
The miRNA counts were obtained using the miRDeep2 
software [101] and the counts were filtered using the "fil-
terbyexpr" function from the edgeR package [35] from 
R language (R Core Team, 2015). Then, the remaining 
miRNAs were also analyzed with edgeR for differential 
expression among the three groups (control, WS and 
WB). miRNAs with false discovery rate (FDR) < 0.05 were 
considered DE, after correcting for the Benjamini-Hoch-
berg (BH) multiple-test. After obtaining DE miRNAs, 
the target mRNAs were searched using the sRNAtoolbox 
[105] online tool, with the default parameters for the Pita, 
miRanda, TargetSpy and Simple Seed Analysis tools. The 
miRNAs target genes were submitted to gene ontology 
analysis with the ShinyGO software [106].
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