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Abstract: Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable
tomato production in the Amazon region. This study evaluated the potential of bacteria isolated
from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria
selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai
RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the
phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the
ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-
acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons,
P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the
growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high
survival rates (85–90%) and pathogen suppression in the soil (>90%), demonstrating their potential
as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents
against bacterial wilt, contributing to the development of sustainable management strategies for this
important disease.

Keywords: actinomycetes; phylogenomic identification; dDDH; ANI; bioactive metabolites;
bioprospecting

1. Introduction

Bacterial wilt, caused by the Ralstonia solanacearum species complex (RSSC), is one
of the most devastating diseases affecting tomato production worldwide [1–3]. In Brazil,
losses due to this disease are particularly significant in the northern region, such as in the
state of Amazonas, where losses of 40–80% are reported in the production of vegetables,
including tomato, bell pepper, scarlet eggplant, chili pepper, and eggplant, as well as in
banana (Musa paradisiaca) cultivation. In addition to solanaceous crops and banana, beach
daisy (Melanthera discoidea) and miracle tree (Moringa oleifera) have also been reported as
hosts in the state [4–7].

The RSSC, previously classified into phylotypes (I, II, III, IV), has recently been reclas-
sified into three species: R. solanacearum (phylotype II), R. pseudosolanacearum (phylotypes I
and III), and R. syzygii (phylotype IV) [8]. Studies suggest Brazil as a possible center of di-
versity for phylotype II, although phylotype I strains are also found in the country [7,9–15].
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Controlling bacterial wilt is challenging due to the versatile lifestyle of R. solanacearum,
which allows its adaptation to different ecological niches, such as soil, water, and plants
(non-host plant rhizosphere and host xylem), and the ability to survive in the soil for long
periods [10,16–18]. The pathogen infects plants through the roots, invades the xylem, and
spreads throughout the aerial portion via the vascular system, multiplying intensely and
producing exopolysaccharides (EPS) that obstruct the vessels, causing wilting symptoms
and, eventually plant death [19,20].

Current strategies for controlling bacterial wilt in tomato include the genetic improve-
ment of resistant cultivars, such as the Yoshimatsu cultivar, developed to adapt to the
climatic conditions of the Amazon region [21–23]. However, this cultivar still faces chal-
lenges in consumer acceptance due to characteristics such as fruit size and cracking when
ripe. Furthermore, the use of chemicals like validamycin A and validoxylamine to induce
plant resistance is no longer recommended for application in tomato plants [24–26]. Al-
though a mixture of lipopeptides produced by Bacillus amyloliquefaciens has shown potential
for controlling the phytopathogen, no options are currently available on the market [27].

In this context, the formulation of biodefensives using bacteria capable of suppress-
ing the phytopathogen through multiple mechanisms, such as competition, resistance
induction, and the production of antibiotics, siderophores, and/or cell wall-degrading
enzymes, has emerged as a promising approach for promoting sustainable agricul-
ture [28–38]. Therefore, the objective of this study was to explore Amazonian micro-
bial genetic resources, specifically bacteria isolated from sediments of the Negro and
Solimões rivers, as a potential source for the biocontrol of R. solanacearum, focusing on
the development of environmentally sustainable strategies for the control of bacterial
wilt in tomato plants.

2. Materials and Methods
2.1. Bacterial Isolates

Thirty-six bacterial isolates obtained from sediments of the Solimões and Negro
Rivers were used, which are preserved in the Laboratory of Genomics and Applied
Microbiology of the Legal Amazon (GENAGRO) at Embrapa—CPAA. The strains were
maintained in LB media for non-filamentous bacteria, incubated for 24 h at 28 ◦C, and
ISP2 for actinobacteria, incubated for 7 days at 28 ◦C. Access to the genetic heritage was
authorized by SISGEN No. A39C76B.

2.2. In Vitro Antimicrobial Activity against Ralstonia Solanacearum

The antagonism of 36 bacterial isolates from the Negro and Solimões rivers (Table S1)
against R. solanacearum was evaluated in vitro using paired culture tests adapted from Velho-
Pereira and Kamat [36]. In Petri dishes containing LB medium (non-filamentous bacteria) and
ISP2 (actinobacteria), a 7 cm vertical streak of the antagonists was made and incubated for
48 h for LB plates and seven days for ISP2 plates at 28 ◦C. Subsequently, a 3 cm streak of R.
solanacearum was made at a distance of 1 cm from the incubated antagonist for 24 h. All assays
were performed in triplicate. At the end of the assays, with the aid of a caliper, the length
and width of the pathogen were measured to calculate the growth area. The determination of
phytopathogen inhibition was performed according to the following formula:

PASDAAS(%) =
AWG
TGA

× 100

where PASDAAS represents the percentage of specific antibiotic activity of the area score,
AWG the area without growth, and TGA the total growth area of the pathogen. To cal-
culate AWG, the area present in the treatment plate was subtracted by the TGA of the
control plate.
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2.3. Biocontrol Evaluation under Greenhouse Conditions

In planta evaluation in a greenhouse was performed in 1-L pots containing Vivatto
plus® (São Paulo, Brazil) substrate based on a completely randomized design (CRD) with
20 replicates for each treatment using the San Marzano cultivar (Isla®, Porto Alegre, Brazil),
which is susceptible to bacterial wilt caused by R. solanacearum. In the preliminary study,
isolates RN 11, RN 24, and SOL 195 were tested in September (32 ± 6.5 ◦C and humidity of
52 ± 8%), and the final test was performed with the best-performing isolate in December
(28 ± 1.5 ◦C and humidity of 71 ± 10%) 2023. Tomato seedlings grew in a seedbed for
30 days, but on the 23rd day, the seedlings referring to the treatments with the isolates
were inoculated with 5 mL of cell suspension (1010 CFU mL−1) of each isolate, while in the
negative and positive controls, 5 mL of distilled water was added. On the 30th day, the
seedlings were transplanted, and after 5 days, small incisions were made in the roots at a
distance of 2 cm from the collar of all seedlings for infection with 5 mL of R. solanacearum
suspension (1010 CFU mL−1) in the positive control and treatments. In the negative control,
5 mL of sterile distilled water was added. The calculation of the percentage of disease
incidence is given by

Disease incidence(%) =
DP
TP

× 100

where DP is the number of diseased plants and TP is the total number of plants in the
experiment. Tomato plants were considered to be diseased when they presented at least one
of the symptoms: wilted leaves and wilted branches. Symptom monitoring was performed
daily for 30 days, and to avoid misinterpretation of the seedlings’ condition, the evaluation
was performed 1 h after irrigation. Survival was calculated using the following formula:

Survivor(%) =
LP
TP

× 100

where LP is the number of live plants and TP is the total number of plants in the experiment.
To evaluate the effect of the biocontrol agent on aspects related to plant development in the
presence of the pathogen, the following were measured: height (cm), stem diameter (cm),
root length (cm), as well as shoot dry weight (g) and root dry weight (g). The seedlings
were measured using a measuring tape and caliper.

2.4. Analysis of R. solanacearum Suppression in Soil

At the end of the in planta tests, soil samples were collected from all treatments and
controls. In a test tube, 1 g of soil was resuspended in 10 mL of sterile distilled water and
shaken. From this tube, serial dilution was performed up to a concentration of 10−8. In
triplicate, 100 µL of the 10−1, 10−5, and 10−8 concentrations was plated on Petri dishes
containing LB medium and incubated at 28 ◦C for 7 days, with daily monitoring of colony
appearance. Bacterial colonies with colorimetry similar to that of the phytopathogen
were inoculated on CPG (casamino acid-peptone-glucose) and TTC (triphenyl tetrazolium
chloride) media for confirmation, where the formation of opaque white colonies on CPG
medium turned dark pink on TTC medium, which was considered indicative of the pres-
ence of R. solanacearum [37,38]. Suppression was calculated using the following formula:

Suppression(%) = 100 −
(

n◦ of R. solanacearum colonies in treatment
n◦ of R. solanacearum colonies in PC

× 100
)

2.5. DNA Extraction, Sequencing, and Genome Assembly

Only the isolates selected for in planta tests were identified. Isolate RN 11 was cultured
in LB medium for 24 h, while isolates RN 24 and SOL 195 were cultured in ISP2 medium for
96 h. The cultures were centrifuged, and the supernatants were discarded to obtain the cell
mass. DNA was isolated using the CTAB protocol [39]. The amount of DNA obtained was
estimated by spectrophotometry (NanoDrop 2000, Thermo Scientific, Waltham, MA, USA),
while integrity was verified by electrophoresis on 0.8% (w/v) agarose gel. The Illumina
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platform (150 bp paired-end) was used for complete genome sequencing, with a minimum
sequencing coverage of 100X. Genome De Novo assembly was performed using SPAdes
assembler [40], kmer = 123, read correction algorithm was also performed in order to reduce
the number of mismatches and short indels.

2.6. Phylogenomic Identification

The identification of isolates at the species level was performed based on the complete
genome through comparison with type species using the TYGS platform (https://tygs.
dsmz.de, accessed on 8 January 2024). From the most closely related species identified
in TYGS, the dDDH calculation was obtained using the d2 formula with the aid of the
GGDC platform (https://ggdc.dsmz.de/ggdc.php#, accessed on 10 January 2024) and the
ANI (Average Nucleotide Identity) calculation was performed using the OAT software
(https://www.ezbiocloud.net/tools/orthoani, accessed on 10 January 2024), where dDDH
< 70% and ANI < 95% were used as indicative of a new species [41–43]. For the search
of plasmids in the genomes, they were analyzed through Plasmidfinder, available on the
Galaxy Europe platform (https://usegalaxy.eu/, accessed on 15 February 2024).

2.7. Production of Extracellular Enzymes

For extracellular enzymes, the assays were performed only for the isolates selected for
biocontrol tests in specific media for amylase [44], cellulase [45], lipase [46], protease [47], and
chitinase [48]. Starch (amylase), skimmed milk (protease), Tween 80 (lipase), chitin (chitinase),
and carboxymethyl cellulose (cellulase) were used as substrates in the enzymatic tests. All
assays were performed in triplicate with 5 mm discs of bacterial cultures and incubated for
48 h at 28 ◦C for subsequent measurement of halos (mm) with the aid of a caliper.

2.8. Production of In Vitro Growth Promotion Inducers

All the assays described below were performed with the selected isolates (RN 11, RN
24, and SOL 195) for the biocontrol tests in tomato plants.

2.8.1. Phosphate (P) and Zinc (Zn) Solubilization

The P solubilization was performed in Pikovskaya’s medium [49], while Zn solubi-
lization was performed according to Saravanan et al. [50] with modifications, where
the medium was composed of 798 mL of distilled water, 200 mL of M95X solution
(33.78 g L−1 Na2HPO4, 15 g L−1 KH2PO4, 2.5 g L−1 NaCl, and 5 g L−1 NH4Cl), 2 mL
of 1M MgSO4.7H2O solution, 100 µL of 1 M CaC2.2H2O solution, 15 g of agar, and 1 g
of Zn source. ZnO and ZnSO4 were used as Zn sources. All assays were performed in
triplicate with 5 mm discs of isolate cultures and incubated for five days at 28 ◦C for
subsequent measurement of halos with the aid of a caliper.

2.8.2. Siderophore

The assay was performed according to the modifications made by Thampi and
Bhai [51] to the assay described by Schwyn and Neilands [52], where MGs-1 medium
was used (20 g L−1 dextrose, 1 g L−1 KNO3, 0.1 g L−1 NaCl, 0.1 g L−1 MgSO4.7H2O,
0.5 g L−1 K2HPO4, 15 g L−1 agar, 900 mL of distilled water, and 100 mL of CAS). All assays
were performed in triplicate with 5 mm discs of isolate cultures and incubated for five days
at 28 ◦C for subsequent measurement of halos with the aid of a caliper.

2.8.3. Indole Acetic Acid (IAA)

Isolate RN 11 was cultured in LB medium, and isolates RN 24 and SOL 195 were
cultured in ISP2 medium, both supplemented with tryptophan (150 mg L−1), in triplicate
under agitation at 150 rpm in the dark for 7 days. The cultures were centrifuged for 30 min
at 4000 rpm to obtain the supernatant. The assay was performed with 1 mL of supernatant
and 1 mL of Salkowski’s solution. The reaction was incubated for 60 min in the dark for

https://tygs.dsmz.de
https://tygs.dsmz.de
https://ggdc.dsmz.de/ggdc.php#
https://www.ezbiocloud.net/tools/orthoani
https://usegalaxy.eu/
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subsequent reading at 595 nm. In the blank, sterile culture medium was used instead of the
supernatant. For quantification, a standard curve with IAA was made [51].

2.8.4. Ammonia

The isolates were cultured in triplicate in peptone-water medium (10 g L−1 peptone,
5 g L−1 NaCl) for 48 h at 30 ◦C. The culture was centrifuged for 30 min at 4000 rpm, and
10 mL of the supernatant was transferred to test tubes. Five hundred microliters of Nessler’s
solution was added, and the color change to yellow or brown was observed [53].

2.9. Statistical Analysis

The data were subjected to analysis of variance (ANOVA) using R 4.3.1. software,
and when significant (p < 0.05), the Scott-Knott mean test was applied. The assumptions
of ANOVA, such as normality and homoscedasticity of residuals, were verified using the
Shapiro–Wilk and Levene’s tests, respectively.

3. Results
3.1. In Vitro Antimicrobial Activity

Of the 36 isolates from sediments of the Solimões and Negro rivers evaluated against
R. solanacearum, only three (RN 2, SOL 110, and SOL 229) did not show antibiotic activity.
Twenty-nine isolates exhibited PASDAAS (percent area specific differential antibiotic activ-
ity score) between 7 and 36%, while isolates RN 11, RN 24, SOL 116, and SOL 195 stood out
with the highest indices (Table S1). With the exception of SOL 116 (67% antibiotic activity),
the others presented indices equal to or greater than 70% and were selected for biocontrol
evaluation in the greenhouse. Isolates RN 11 and SOL 195 completely inhibited the growth
of R. solanacearum, and RN 24 inhibited 87.62% (Figure S1).

3.2. Phylogenomic Identification

Phylogenomic analyses of isolates RN 11, RN 24, and SOL 195 were performed
using ANI and dDDH. The results revealed that isolated RN 11 belongs to the species
Priestia aryabhattai, with ANI and dDDH values of 98.61% and 88.3%, respectively. On
the other hand, isolates RN 24 and SOL 195 presented ANI and dDDH values below the
cutoff points for new species, and the most closely related type species were Streptomyces
ardesiascus and Kitasatospora aureofaciens, respectively (Table 1). RN 24 exhibited 92.29%
ANI and 46.8% dDDH with S. ardesiascus, while SOL 195 presented 86.36% ANI and
31.1% dDDH with K. aureofaciens.

Table 1. Taxonomic identification of bacterial isolates tested in planta for biocontrol potential against
Ralstonia solanacearum.

Isolate Size (pb) Scaffolds Type Species NCBI Accession Specie ANI (%) dDDH2 (%)

RN 11 5.262.007 45 Priestia aryabhattai NZ_CP024035 Priestia aryabhattai 98.61 88.3
RN 24 8.364.889 366 Streptomyces ardesiascus BEWC01000001.1 Streptomyces sp. nov. 92.29 46.8

SOL 195 9.091.611 397 Kitasatospora aureofaciens CP020567.1 Kitasatospora sp. nov. 86.36 31.1

3.3. Production of Growth Promotion Inducers and Enzymes

The selected isolates were evaluated for the production of extracellular enzymes and
plant growth inducers (Table 2). Kitasatospora sp. SOL 195 stood out in the production of
amylase (20 ± 1.2 mm) and chitinase (18.2 ± 0.9 mm), while P. aryabhattai RN 11 showed
the highest production of lipase (26 ± 1.5 mm) and was the only one to produce protease
(17.7 ± 1.1 mm). Streptomyces sp. RN 24 exhibited the highest production of cellulase
(31 ± 1.8 mm) (Figure S2).

All isolates produced indole-3-acetic acid (IAA) and ammonia, with the strain Ki-
tasatospora sp. SOL 195 presents the highest levels for both compounds and RN 11 the
lowest. Streptomyces sp. RN 24 did not produce P and Zn solubilizers or siderophores
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under the tested conditions (Table 2). P. aryabhattai RN 11 was the only one to solubilize Zn
(both sources) and showed the highest production of siderophores.

Table 2. Plant growth inducers and enzymes produced in vitro by Priestia aryabhattai RN 11, Strepto-
myces sp. RN 24 and Kitasatospora sp. SOL 195.

Assay P. aryabhattai RN 11 Streptomyces sp. RN 24 Kitasatospora sp. SOL 195

Siderophore (mm) 12 ± 1.6 0 5 ± 0.8
IAA (µg/mL) 26.1 ± 2 42.1 ± 1.8 47.8 ± 2.3

Ammonia + ++ +++
P (mm) 0 0 0

ZnO (mm) 11 ± 1.5 0 0
ZnSO4 (mm) 15 ± 2 0 0

+ weak reaction; ++ medium reaction; +++ strong reaction; mean of triplicate.

3.4. Biological Control under Greenhouse Conditions

In the Amazonian dry period (September), plants inoculated with P. aryabhattai RN
11 showed symptoms after 10 days, while in plants inoculated only with the pathogen
(positive control), symptoms were observed 24 h post-inoculation. Plants inoculated with
the microbial agents Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 demonstrated
symptoms from the third and sixth day, respectively. In this period, when the survival
index was evaluated, the positive control presented an index of 65%, while this value
increased to 85% in the treatment with SOL 195 and 90% with RN 11 and RN 24. Treatment
with RN 11 reduced disease incidence by 40%, followed by RN 24 and SOL 195, which
reduced incidence by 20% and 5%, respectively. In addition, all isolates suppressed the
pathogen in the soil with indices > 90% (Figure 1).

Still in the dry period, in addition to the control of R. solanacearum, isolates RN 11,
RN 24, and SOL 195 were also evaluated for their positive effect on parameters related
to growth promotion under conditions of infection with R. solanacearum (Table 3). The
results obtained demonstrated that treatment with RN 24 provided a significant increase
in plant height compared to the positive control (PC), reaching values similar to the
negative control (NC). Regarding stem diameter and leaf size, all treatments, except
for those still in the dry period, in addition to the control of R. solanacearum, isolates
RN 11, RN 24, and SOL 195 were also evaluated for their positive effect on parameters
related to growth promotion under conditions of infection with R. solanacearum (Table 3).
The results obtained demonstrated that treatment with RN 24 provided a significant
increase in plant height compared to the positive control (PC), reaching values similar
to the negative control (NC). Regarding stem diameter and leaf size, all treatments,
except for SOL 195, were significantly superior to PC, with emphasis on RN 11, which
did not differ statistically from NC for these parameters. Regarding root growth, all
treatments showed significant differences compared to PC, with RN 11 being equal to
NC. In addition, all treatments with biocontrol agents resulted in a higher number of
branches when compared to PC. Isolates RN 11 and RN 24 stood out in the parameters
of shoot dry weight (ADW) and root dry weight (RDW), presenting values significantly
higher than PC, although they did not differ from each other.

Based on the best performance obtained in the dry period, the strain P. aryabhattai RN
11 stood out from the other isolates based on disease incidence and survival of infected
plants, being selected for evaluation in the rainy period. The disease incidence in the
positive control in the rainy period was 80% with a mortality rate of 65%. Compared to the
previous period, there was a 20% reduction in incidence and a 10% increase in mortality.
The same is observed in the treatment with RN 11, which presents a high incidence (60%)
in the dry period and low in the rainy period (10%); however, both the mortality rate (10%)
and pathogen suppression (>90%) in the soil are similar in both periods (Figure S3).
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Figure 1. (a) Appearance of seedlings from control groups and those treated with Priestia aryabhattai
RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195. (b) Survival indices, (c) disease
incidence, and (d) suppression of Ralstonia solanacearum in the soil using the microbial agents as
biological controllers during the Amazonian dry period.

Table 3. Growth promotion of tomato cv. San Marzano infected with Ralstonia solanacearum using agents
Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195 during summer.

Test Height (cm)
Stem

Diameter
(cm)

Root (cm) Branch
(unid) Leaf (cm) ADW (g) RDW (g)

NC 51.96 ± 5.9 a 0.40 a 14.77 ± 2.1 a 8 ± 1 b 7.05 ± 0.17 a 0.618 ± 0.06 a 0.116 ± 0.02 c
PC 42.64 ± 7.2 b 0.20 c 10.69 ± 1.7 c 6 ± 1 c 3.77 ± 0.22 c 0.309 ± 0.02 c 0.094 ± 0.01 d

RN 11 46.21 ± 3.1 b 0.36 ± 0.05 a 15.46 ± 2.8 a 8 ± 1 b 7.04 ± 0.12 a 0.525 ± 0.03 b 0.151 ± 0.01 b
RN 24 50.81 ± 3.2 a 0.32 ± 0.07 b 13.37 ± 1.9 b 8 ± 1 b 6.81 ± 0.35 b 0.509 ± 0.02 b 0.142 ± 0.01 b

SOL 195 44.85 ± 3.3 b 0.25 ± 0.05 c 13.96 ± 1.6 b 7 ± 1 b 3.74 ± 0.36 c 0.332 ± 0.01 c 0.116 ± 0.01 c

ADW—air dry weight (total); RDW—root dry weight (total); NC—negative control without pathogen;
PC—positive control with pathogen. Means followed by the same letter do not differ by Scott-Knott test at
5% probability.

In the rainy period, the growth promotion parameters are significantly influenced
by the treatment with RN 11 compared to the positive control (PC) in all aspects eval-
uated (Table 4). The height of plants treated with RN 11 (42.04 cm) was significantly
higher than both PC (34.19 ± 2.5 cm) and negative control (NC) (37.69 ± 3.1 cm). Stem
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diameter was also positively affected by RN 11 (0.38 ± 0.03 cm), being statistically
superior to PC (0.22 ± 0.02 cm) and NC (0.3 ± 0.09 cm). Regarding root length, treat-
ment with RN 11 (29.04 ± 3.6 cm) did not differ significantly from NC (27 ± 4.3 cm),
but both were superior to PC (19.73 ± 3.6 cm). The number of branches was higher in
plants treated with RN 11 (8 units) compared to PC and NC (both with 7 units). Leaf
size did not differ between RN 11 (5.77 ± 0.5 cm) and NC (5.71 ± 0.4 cm), both being
significantly superior to PC (4.77 ± 0.9 cm). Shoot dry weight (ADW) was significantly
higher in the treatment with RN 11 (1.32 ± 0.23 g) compared to PC (0.94 ± 0.11 g) and
NC (1.1 ± 0.28 g). Root dry weight (RDW) was statistically similar between RN 11
(0.26 ± 0.07 g) and NC (0.266 ± 0.08 g), both being superior to PC (0.126 ± 0.03 g). These
results indicate that P. aryabhattai RN 11 can act not only as an efficient biocontrol agent
but also as a growth promoter in tomato plants grown in the Amazon during the rainy
period, significantly improving various plant development parameters compared to the
positive control infected with R. solanacearum.

Table 4. Growth promotion effect with Priestia aryabhattai RN 11 on tomato cv. San Marzano infected
with Ralstonia solanacearum in the rainy period.

Test Height (cm) Stem Diameter
(cm) Root (cm) Branch

(unid) Leaf (cm) ADW (g) RDW (g)

NC 37.69 ± 3.1 b 0.3 ± 0.09 b 27 ± 4.3 a 7 ± 1 b 5.71 ± 0.4 a 1.1 ± 0.28 b 0.266 ± 0.08 a
PC 34.19 ± 2.5 c 0.22 ± 0.02 c 19.73 ± 3.6 b 7 ± 1 b 4.77 ± 0.9 b 0.94 ± 0.11 b 0.126 ± 0.03 b

RN 11 42.04 ± 4.8 a 0.38 ± 0.03 a 29.04 ± 3.6 a 8 ± 1 a 5.77 ± 0.5 a 1.32 ± 0.23 a 0.26 ± 0.07 a

ADW—air dry weight (total); RDW—root dry weight (total); NC—negative control without pathogen;
PC—positive control with pathogen. Means followed by the same letter do not differ by Scott-Knott test at
5% probability.

4. Discussion

The dynamics of rivers and their tributaries promote the exchange of organic matter
and microbial agents capable of producing diverse secondary metabolites, creating a unique
dynamic in these ecosystems that favors the emergence and diversification of microbial
lineages, enhancing the discovery of new biological solutions for challenges in health,
agriculture, and industry [54–60]. In this context, Amazonian rivers have proven to be a
rich source of microbial biodiversity with the capacity to produce new antimicrobial agents
with biotechnological potential, filling the gaps in current knowledge about the diversity
and potential of these microorganisms [61–63].

Exploring the microbial diversity of two Amazonian rivers with distinct character-
istics, the Negro River and the Solimões River, provides a comprehensive view of the
biotechnological potential of aquatic microorganisms in the region. The Negro River is
considered the largest blackwater river in the world and is characterized by its high acidity
(pH < 5.0), high concentration of humic compounds, low sediment load (clay), and low
concentration of chemical elements (mainly cations), which is why it has low electrical
conductivity [64–66]. In contrast, the Solimões River is classified as a whitewater river,
with a pH of 5–7, rich in Ca2+ and HCO3, and a high amount of suspended material and
dissolved salts, resulting in a greater diversity of microorganisms [67].

The microbial diversity of the Amazonian aquatic environment, exemplified in this
study by the exploration of microorganisms from the sediments of the Solimões and Negro
rivers, reveals that this ecosystem can be an important source for the development of
new inputs for the biological control of R. solanacearum, a serious problem for agriculture,
especially related to vegetable production in northern Brazil. The results obtained in this
study fill a gap in knowledge about the potential of Amazonian aquatic microorganisms
for controlling this economically important phytopathogen.

The antibiotic activity identified against R. solanacearum, based on the Percent Area
Specific Differential Antibiotic Activity Score (PASDAAS), showed variation among the
selected isolates RN11, RN 24, and SOL195, with inhibition ranging from 87.55 to 100%.
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This variation in antimicrobial efficacy reflects what has been observed in previous studies
documenting the metabolic diversity of aquatic microorganisms and their ability to produce
bioactive compounds [55,59,68–70]. The observed differences in the antibiotic activity of
the isolates may be related to the diversity of secondary metabolites produced by each
strain and the cultivation conditions used in the assays. Additional studies are needed to
elucidate the specific compounds responsible for antibiotic activity and to optimize the
production conditions of these metabolites.

The results obtained confirm the identification of RN 11 as P. aryabhattai, because
the ANI and dDDH values were above the cutoff points. On the other hand, the ANI
and dDDH values below the cutoff points for RN 24 and SOL 195 provide strong
evidence that these isolates represent new species within the genera Streptomyces and
Kitasatospora, respectively. The ANI and dDDH metrics have been widely employed
to delimit bacterial species, offering a robust and reliable alternative to conventional
methods. The established cutoff points for species delimitation correspond to 95–96%
for ANI and 70% for dDDH [41–43]. The discovery of new species of Streptomyces
and Kitasatospora from Amazonian river sediments highlights the importance of this
ecosystem as a source of unexplored microbial diversity. Future studies may investigate
the biotechnological potential of these new species and their distribution and ecological
role in the aquatic environments of the region.

Actinobacteria, such as those of the genera Streptomyces and Kitasatospora, are known
for their range of molecules with antimicrobial, antitumor, and immunosuppressive prop-
erties, with emphasis on aspects related to biocontrol and growth promotion in agricul-
ture [35,71–81]. The results of this study provide promising perspectives for the bioprospect-
ing of new secondary metabolites from the RN 24 and SOL 195 strains, contributing to the
expansion of the diversity of known bioactive compounds and to the advancement in the
discovery of molecules with biotechnological applications.

In addition to secondary metabolites, the production of extracellular enzymes and
plant growth inducers by bacteria is an important mechanism for promoting plant
growth [82]. Extracellular enzymes, such as amylases, cellulases, chitinase, lipases, and
proteases, play fundamental roles in the degradation of complex polymers, making
nutrients available to plants and contributing to the suppression of phytopathogens [83].
In this study, the isolates showed different enzymatic production profiles, with emphasis
on Kitasatospora sp. SOL 195 in the production of amylase and chitinase, P. aryabhattai
RN 11 in the production of lipase and protease, and Streptomyces sp. RN 24 in the
production of cellulase. This functional diversity can be exploited for the development
of microbial inoculants with multiple enzymatic activities, aiming at promoting plant
growth and protection against phytopathogens.

The production of protease by Bacillus subtilis B315 was used as evidence of antag-
onistic potential against R. solanacearum, as the enzyme assists in resistance to the phy-
topathogen by degrading the extracellular polymeric substances (EPS) and the biofilm
produced by the pathogen [84]. Considering that Bacillus and Priestia are closely related
genera, there is a possibility that P. aryabhattai RN 11 uses this mechanism, differentiating
itself from Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195, which did not demonstrate
protease production. Additional studies are needed to elucidate the specific role of the
protease produced by P. aryabhattai RN 11 in the suppression of R. solanacearum and to
investigate other antagonism mechanisms that may be involved.

In addition to enzymes, the isolates also produced plant growth inducers, such
as IAA, ammonia, and siderophores. IAA is an important plant hormone involved
in regulating plant growth and development, while ammonia contributes to nitrogen
nutrition [85]. Siderophores, in turn, are iron-chelating compounds that facilitate the
absorption of this micronutrient by plants, especially in soils with low iron availabil-
ity [86]. The production of these plant growth inducers by the isolates suggests their
potential for promoting plant growth, in addition to their biocontrol activity against
R. solanacearum. Future studies may evaluate the effect of these isolates on the growth



Microorganisms 2024, 12, 1364 10 of 16

and development of different agricultural crops, as well as investigate the molecular
mechanisms involved in the plant-microorganism interaction.

The ability to solubilize trace nutrients, such as P and Zn, is another relevant mecha-
nism for promoting plant growth. Although none of the isolates solubilized P under the
tested conditions, RN 11 stood out in the solubilization of Zn from different sources (ZnO
and ZnSO4). The solubilization of Zn by actinomycetes can increase the availability of this
micronutrient for plants, contributing to their growth and productivity [87]. The ability of
P. aryabhattai RN 11 to solubilize Zn suggests its potential for application as a biofertilizer,
especially in soils deficient in this micronutrient. Additional studies are needed to eval-
uate the effectiveness of RN 11 in promoting plant growth under field conditions and to
investigate the mechanisms involved in Zn solubilization.

The strains RN 11, RN 24, and SOL 195, when evaluated for the biological control of
R. solanacearum under greenhouse conditions, demonstrated efficacy in suppressing the
phytopathogen in the soil > 90%, but only RN 11 showed a high survival rate associated
with reduced disease incidence and a significant growth promotion effect compared to the
positive control. These results highlight the potential of P. aryabhattai RN 11 as an effective
biocontrol agent against R. solanacearum, capable of suppressing the pathogen in the soil,
reducing disease incidence, and promoting plant growth. Future studies may investigate
the efficacy of RN 11 under field conditions, as well as evaluate its compatibility with other
integrated disease management practices.

Agricultural production losses caused by R. solanacearum vary due to several factors
such as the level of resistance of the cultivar used, climate, soil, and genetic variation of
the R. solanacearum strains present in the crop [26]. In this complex context of interactions
influenced by various factors, we evaluated the biological control of R. solanacearum in the
two main climatic seasons that occur in the Amazon region (summer and rainy period). As
observed in the obtained results, the isolate RN 11 showed a 40% reduction in the incidence
of tomato disease in summer and 90% in the rainy season, exemplifying what was exposed
by Yuliar et al. [26], but it is important to note that the climatic effect did not interfere with
the suppression of the phytopathogen in the soil or with the survival rate promoted by
biological control.

The analysis of the results under different climatic conditions provides insight into the
robustness of P. aryabhattai RN 11 as a biocontrol agent, demonstrating its efficacy in differ-
ent environmental contexts. This characteristic is highly desirable for the implementation
of large-scale biocontrol strategies, as climatic conditions can vary significantly between
different regions and times of the year.

The results obtained with P. aryabhattai RN 11 are superior to those observed with the
use of improved mutants of Bacillus amyloliquefaciens for the biocontrol of R. solanacearum.
In the study by Yadav et al. [88], conducted under climatic conditions similar to those of the
rainy period in the present work, the mutants of B. amyloliquefaciens DSBA-11 (MNTG-21,
MUV-19, and MHNO2-20) provided a 50–73% reduction in disease incidence and 60–88%
survival. These values are lower than those obtained with the RN 11 strain, demonstrating
its greater potential in controlling R. solanacearum, even when compared to a species
already consolidated as a biological control agent for various phytopathogens, such as B.
amyloliquefaciens [31,89–95].

The fact that P. aryabhattai RN 11 presents superior results to improved mutants of
B. amyloliquefaciens further highlights the potential of this strain, as it has not undergone
genetic modifications to enhance its biocontrol efficiency. These findings open up promising
perspectives for the development of microbial inoculants based on P. aryabhattai RN 11,
with the potential to surpass the efficacy of products already on the market.

Priestia aryabhattai, previously known as Bacillus aryabhattai [96], was isolated as an
endophytic bacterium and has evidence in the literature regarding its potential for the
biocontrol of phytopathogens such as Fusarium oxysporum [97] and Ralstonia syzygii [98], a
species that is part of the R. solanacearum species complex that causes bacterial wilt [8].
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The results of the present study corroborate and expand the knowledge about the potential
of P. aryabhattai as a biocontrol agent, demonstrating its efficacy against R. solanacearum under
different climatic conditions and highlighting its potential for application in the integrated
management of bacterial wilt in tomato. Furthermore, this is the first report of a P. aryabhattai
strain isolated from Amazonian river sediments, revealing the importance of this ecosystem as
a source of microorganisms with biotechnological potential.

As promising perspectives, these studies open up a range of opportunities for future
research aimed at exploring the biotechnological potential of bacteria isolated from Amazo-
nian river sediments. Among the most relevant possibilities is the development of microbial
inoculants based on P. aryabhattai RN 11 for the integrated management of bacterial wilt in
tomato. To this end, additional studies are needed to evaluate the efficacy of this isolate
under field conditions, as well as to optimize the formulations and application methods of
the inoculant.

Another promising line of research is the investigation of the molecular mechanisms
involved in the interaction between P. aryabhattai RN 11 and the host plant, as well as in
the suppression of R. solanacearum. The elucidation of these mechanisms, through omic
approaches (genomics, transcriptomics, proteomics, and metabolomics), may provide
insights for the improvement of biological control strategies and plant growth promotion
mediated by this microorganism.

Moreover, the discovery of new species of Streptomyces sp. (RN 24) and Kitasatospora sp.
(SOL 195) opens up perspectives for the bioprospecting of bioactive secondary metabolites
from these actinomycetes. Future studies may focus on the isolation, structural characteri-
zation, and evaluation of the biological activities of the compounds produced by these new
species, aiming at the identification of new antimicrobial, antitumor, and immunosuppres-
sive agents, among others.

5. Conclusions

The present study revealed the biotechnological potential of bacteria isolated from
sediments of the Amazonian rivers Negro and Solimões as biocontrol agents against R.
solanacearum and plant growth promoters. Among the evaluated isolates, P. aryabhattai
RN 11 stood out for its efficacy in suppressing the phytopathogen in the soil, reducing
the incidence of bacterial wilt, and promoting the growth of tomato plants under different
climatic conditions. These results open up promising perspectives for the development of
microbial inoculants based on P. aryabhattai RN 11, aiming at the integrated management of
bacterial wilt in tomato.

Furthermore, the discovery of possible new species of Streptomyces (RN 24) and Ki-
tasatospora (SOL 195) highlights the importance of the microbial biodiversity of Amazonian
rivers as a source of new bioactive compounds and biocontrol agents. These findings
emphasize the need for future studies to explore the biotechnological potential of these
new species, as well as to investigate the efficacy of the isolates under field conditions and
elucidate the molecular mechanisms involved in the plant–microorganism interaction.
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