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Introduction

Coffee is one of the most widely traded tropical commodities, 
with 80% of global production attributed to farming house-
holds (FAO 2022). Among the coffee species (Coffea spp.), 
C. arabica L. and C. canephora P., account for 56% and 44% 
of worldwide production, respectively (ICO 2023). C. ara-
bica, which originated from natural interspecific hybridization 
involving C. canephora and C. eugenioides, yields a higher 
quality beverage that carries greater economic value (Clarindo 
and Carvalho 2008; Bertrand et al. 2006).

The majority of cultivated C. arabica are susceptible to the 
main coffee diseases and pests. Coffee leaf rust (CLR), caused 
by the biotrophic fungus Hemileia vastatrix Berk. and Broome 
(Basidiomycota, Pucciniales), is the most important disease 
affecting Arabica coffee (Talhinhas et al. 2017). In Brazil, 
production losses caused by CLR can reach more than 50%, 
depending on favorable conditions for the disease development, 
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Abstract
Coffee leaf rust (CLR) is one of the most economically important diseases affecting Coffea arabica production, having a 
significant economic impact. Among the main goals of coffee breeding programs is the development of cultivars resistant 
to this disease. A source of resistance genes is Híbrido de Timor (HdT), a spontaneous hybrid originated from the cross 
between C. arabica and C. canephora. Previously, in a transcriptome study, the Ca TDF77 NBS-LRR gene from HdT 
involved in resistance to CLR was identified. Hence, our aim was to characterize the genomic region surrounding the Ca 
TDF77 NBS-LRR gene in Coffea spp. Furthermore, we aimed to analyze the transcriptional profile of this gene, in the 
C. arabica cultivar IAPAR 59, which is originated from HdT introgression and is resistant to CLR race II. The outcome 
delineated the gene’s localization on chromosome 11 (canephora subgenome) of C. arabica, spotlighting intragenic poly-
morphisms between HdT and Arabica coffee susceptible to CLR race II. The genomic region surrounding the gene in 
Coffea spp. revealed a tandem structure and transposable elements. Notably, within IAPAR 59, the gene exhibited signifi-
cant upregulation at 24 and 72 h post CLR infection, contrasting starkly with the susceptible genotype. This observation 
validates its role in fortifying the defense mechanism of this particular cultivar. This study enriches our understanding of 
the evolutionary dynamics of Coffea spp. genomes and also provides genomic resources instrumental in devising biotech-
nological strategies for resistance to CLR.
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prolonged periods of drought, and resistance level of cultivars 
(Zambolim and Caixeta 2021; Sera et al. 2022). This disease 
has also become a problem for other C. arabica producing 
regions such as Colombia, Central America, Mexico, Peru 
and Ecuador (Cristancho et al. 2012; Avelino et al. 2015), and 
nowadays in Hawaii (Keith et al. 2022). Early defoliation and 
desiccation of branches due to CLR result in reduced fruit pro-
duction in the following year (Zambolim 2016).

The coffee plant’s defense against CLR is contingent upon 
at least nine major genes with dominant effects (SH1 - SH9). 
The SH1, SH2, SH4 and SH5 genes have been identified in Ethio-
pian accessions of C. arabica. The SH3 gene is derived from 
C. liberica, while SH6, SH7, SH8 and SH9, and others not yet 
identified biologically, come from C. canephora (Rodrigues et 
al. 1975; Bettencourt 1981; Várzea and Marques 2005). Flor’s 
hypothesis (1971) is applicable to the interaction between 
the coffee and CLR, postulating a complementary virulence 
gene (vr gene) in the pathogen for each host-resistance gene 
(Noronha-Wagner and Bettencourt 1967). More than 50 physi-
ological races of CLR have already been identified and spread 
throughout all coffee growing areas. CLR race II is the most 
common and widespread in Brazilian coffee plantations (Tal-
hinhas et al. 2017; Zambolim and Caixeta 2021).

A spontaneous hybrid between C. canephora and C. ara-
bica, designated as Híbrido de Timor (HdT), became a valu-
able material for breeding programs, facilitating the integration 
of CLR resistance genes from C. canephora into C. arabica 
(Avelino et al. 2015). The main sources of resistance used 
by Brazilian and other American countries in genetic breed-
ing programs are HdT CIFC 832/1 and HdT CIFC 832/2. The 
first was crossed with Caturra Vermelho CIFC 19/1 giving rise 
to the cultivars of the Catimor group, while the second was 
crossed with Villa Sarchi CIFC 971/10 giving rise to the cul-
tivars of the Sarchimor group. Those crossing were performed 
by the Coffee Rust Research Center (Centro de Investigação 
das Ferrugens do Cafeeiro, CIFC) and selected resistant plants 
were provided to all coffee-growing countries (Munõz-Pajares 
et al. 2023). HdT derivative is the main source of rust resistance 
in coffee breeding programs worldwide. Among the Sarchimor 
cultivars developed in Brazil, IAPAR 59 stands out for remain-
ing highly resistant to CLR for more than three decades, since 
its commercial launch (Del Grossi et al. 2013; Sera et al. 2022).

Substantial efforts have been dedicated to unraveling the 
molecular mechanisms governing genetic resistance to CLR 
and to applying this knowledge in breeding (Diola 2009; Diola 
et al. 2011, 2013; Pestana et al. 2015; Florez et al. 2017; Barka 
et al. 2020; Almeida et al. 2021; Angelo et al. 2023; Silva et 
al. 2023). Sequence Characterized Amplified Region (SCAR) 
markers were used to order eight clones from a Bacterial Arti-
ficial Chromosome (BAC) library of HdT CIFC 832/2, located 
near a CLR race II resistance locus (Diola 2009; Cação et al. 
2013). Two of these clones were pinpointed as overlapping the 

resistance gene in the physical map. Employing a transcrip-
tomic approach, genes exhibiting increased expression dur-
ing the incompatible interaction between HdT UFV 427 − 15 
and CLR race II were identified (Diola et al., 2009; Diola et 
al. 2013). Notably, among these upregulated genes, one was 
predicted to encode an NBS-LRR protein and was referred to 
as Ca TDF77 NBS-LRR in the studies.

The genes belonging to the NBS-LRR class are the most 
representative among those that encode resistance proteins 
(Jones et al. 2016). NBS-LRR proteins are polymorphic intra-
cellular receptors that intercept pathogen effectors (avirulence 
proteins – avr) and induce a robust resistance called effector-
triggered immunity (ETI). ETI inhibits pathogen growth and is 
often associated with localized plant cell death, referred to as 
the hypersensitivity response (HR) (Cui et al. 2015). Accord-
ing to their N-terminal domain, NBS-LRR proteins can be 
classified as coiled-coil type (CC), TOLL/ INTERLEUKIN-1 
RECEPTOR/RESISTANCE PROTEIN (TIR)   type, and 
RPW8 type (CCR) (Jones et al. 2016).

The detailed knowledge of a gene linked to a trait of 
interest allows the implementation of biotechnological tools 
for the development of elite genotypes. Characterization of 
genes can enable the definition of targets for gene editing 
and/or genetic transformation (Jiang et al. 2019; Nagy et 
al. 2021). Moreover, from genomic characterization, func-
tional polymorphisms between contrasting genotypes for 
the trait can be identified and used for the development of 
molecular markers (Salgotra and Stewart 2020). Another 
approach involves the genomic characterization of ortho-
logs, which facilitates studies on evolutionary relationships 
(Ratnaparkhe et al. 2011; Santos et al. 2022).

Therefore, the objectives of this study encompassed: (1) 
characterizing a genomic locus implicated in CLR resistance 
in Coffea spp.; (2) identifying allelic divergence between 
the Ca TDF77 NBS-LRR gene from HdT and from C. ara-
bica cultivar susceptible to CLR race II; and (3) validating 
the activity of the Ca TDF77 NBS-LRR gene in the defense 
response to CLR in C. arabica cv. IAPAR 59.

Materials and methods

Characterization of genomic regions

To identify the specific genomic locus hosting the Ca TDF77 
NBS-LRR gene within C. arabica, a homology search was 
conducted. The gene’s unique primers, as described by 
Diola (2009), were employed to scan the C. arabica cv. 
Caturra Vermelho genome available on the NCBI platform 
for public access (GCA_003713225.1). In order to identify 
the orthologous genomic region in C. canephora and C. 
eugenioides, ancestral species of C. arabica, the search for 
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homology using the specific primers for Ca TDF77 NBS-
LRR gene was also carried out in C. canephora genome 
accessed on the Coffee Genome Hub (http://coffee-genome.
org) (Denoeud et al. 2014), and in C. eugenioides genome 
available on the NCBI (GCA_003713205.1). Homology 
searches were conducted directly within the genome data-
bases, utilizing the BLASTn tool.

Genomic regions of approximately 21 kilobase pairs 
(kbp) of C. arabica cv. Caturra Vermelho, C. canephora, 
and C. eugenioides, surrounding genomic positions homol-
ogous to the pair of primers targeting Ca TDF77 NBS-LRR, 
were submitted to the NCBI domain platform (Lu et al. 
2020). This methodological approach facilitated the precise 
delineation of the Ca TDF77 NBS-LRR gene location within 
the C. arabica genome and its corresponding orthologs in C. 
canephora and C. eugenioides.

Predictive analyses of the secondary structures of Ca 
TDF77 NBS-LRR protein and its orthologous proteins were 
conducted using the web-based program SMART - Simple 
Modular Architecture Research Tool (http://smart.embl.de) 
(Letunic and Bork 2018).

Clone BAC HdT library sequencing

The clone BAC HdT CIFC 832/2, namely 14F3, identified to 
overlap the locus of resistance to CLR race II (Diola 2009), 
was sequenced employing Illumina HiSeq 2000 technology 
(100 base pairs, paired-end sequences), at the Carolina Cen-
ter for Genome Sciences, University of North Carolina.

Illumina raw reads from clone BAC HdT CIFC 832/2–
14F3 were trimmed using Trimmomatic v0.36 (Bolger et 
al. 2014) with parameters: sliding window: 4:25; leading: 
25; trailing: 25; minlen: 50. The FastQC v0.11.5 software 
(www.bioinformatics.babraham.ac.uk/projects/fastqc/) was 
used to evaluate the quality of reads before and after trim-
ming. Trimmed results were mapped to the C. canephora 
v1.0 reference genome using HISAT2 (Denoeud et al. 
2014; Kim et al. 2019). Insert sizes were analyzed using 
the Picard InsertSizeMetrics function (http://broadinstitute.
github.io/picard/javadoc/picard/analysis/InsertSizeMetrics.
html). The reads with average insert size of 250 base pairs 
(bp) were assembled using SOAPdenovo2 (Luo et al. 2012). 
Sequence statistics of the assembly were calculated using a 
Perl script FastaSeqStats (https://github.com/aubombarely/

GenoToolBox/blob/master/SeqTools/FastaSeqStats). Con-
tigs more than 500 bp and with 61 K-mer were used to 
assemble scaffolds.

Using the sequence of primers specific to the Ca TDF77 
NBS-LRR gene, a homology search was conducted within 
the scaffolds assembly of HdT CIFC 832/2. For this, 
we used BioEdit software (http://www.mbio.ncsu.edu/
BioEdit/bioedit.html) (Hall 1999) with BLASTn tool local 
alignment.

Polymorphism identification

Aiming to identify potential polymorphisms linked to the 
Ca TDF77 NBS-LRR gene functionality, an alignment was 
performed between C. arabica cv. Caturra Vermelho (SH5, 
susceptible to CLR race II) and HdT CIFC 832/2 (SH5, SH6, 
SH7, SH8, SH9, SH?, resistant to CLR race II). For this, the C. 
arabica cv. Caturra Vermelho genome and HdT CIFC 832/2 
scaffolds database were used. Alignments were performed 
using the BioEdit software and BLASTn tool for local 
alignment. BLASTn parameters were calibrated with an 
expected cutoff value of 0.1 and 250 alignment descriptions.

Gene expression assays

To validate the activity of Ca TDF77 NBS-LRR gene in 
C. arabica cv. IAPAR 59, infection assays were carried 
out using CLR race II (vr5), following the methodology 
described by Eskes and Toma-Braghini (1982). For com-
parative analysis, C. arabica cv. Catuaí Vermelho IAC 99, 
known for its susceptibility, was utilized as control. The SH 
genes identified in these cultivars were detailed in Table 1.

Following inoculation, the leaf discs were transferred to 
Gerbox® acrylic boxes, and kept in the absence of light for 
24 h. These boxes contained a foam layer (0.8 cm) with 30 
mL of water, maintained at 22 ± 3 ºC. To assess spore viabil-
ity, three drops of the uredospore solution were dispensed 
onto a microscope slide and left for 5 h without exposure 
to light. The resulting solution was then examined under a 
light microscope to verify the germination of H. vastatrix 
uredospores with the presence of haustorium.

Biological triplicates of leaf disc samples were collected 
at 0, 24, 48, and 72 h after inoculation (hai). RNA extrac-
tion followed the protocol described by Chang et al. (1993). 
Subsequently, cDNAs were synthesized using 2.5 µg of 
RNA and the reverse transcriptase enzyme (SuperScript® III 
First-Strand Synthesis SuperMix kit -Invitrogen), following 
the manufacturer’s instructions.

The pair of primers specific to the Ca TDF77 NBS-
LRR gene was employed to generate amplicons of 80 bp 
at an annealing temperature of 60 °C (Table 2). For data 

Table 1 Coffea arabica cultivars used in gene expression assays, its 
respective SH genes and resistance responses to Hemileia vastatrix 
race II
C. arabica cultivar Resistance genes Interaction with

H. vastatrix 
race II

IAPAR 59 SH5, SH6, SH7, SH8, 
SH9, SH?

resistant

Catuaí Vermelho IAC 99 SH5 susceptible
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Caturra Vermelho. In the C. canephora genome, comple-
mentarity was observed on chr 11, whereas in the C. euge-
nioides genome, it was detected on chr 5 and chr 11. The 
specific base pair positions of the genomic regions comple-
mentary to the Ca TDF77 NBS-LRR primers are illustrated 
in Supplementary Fig. 1.

Upon subjecting the genomic sequences surrounding the 
region complementary to the Ca TDF77 NBS-LRR primers 
to domain identification analysis, intriguing findings sur-
faced. For instance, on chr 11 of C. canephora, C. eugenioi-
des, and on chr 11 (canephora sg) of C. arabica cv. Caturra, 
tandem TIR-NBS-LRR genes were observed (Fig. 1). Addi-
tionally, on chr 5 of C. eugenioides and chr 5 (eugenioi-
des sg) of C. arabica cv. Caturra, the analysis revealed the 
presence of the NB-ARC domain alongside other domains 
associated with nucleic acid binding functions, such as zinc-
binding in reverse transcriptase (zf-RTV) and DUF4283. 
Transposable elements (TEs), including retrotransposon 
gag protein (RT-gag), retropepsin_like, and BED zinc finger 
(zf-BED) were also identified on chr 5 of C. eugenioides 
and chr 5 (eugenioides sg) of C. arabica cv. Caturra.

The precise positions of these genomic regions within 
each chromosome investigated in this study were detailed 
in Fig. 1. Specifically, the Ca TDF77 NBS-LRR gene was 
located between 33,482,226 bp and 33,491,120 bp on chr 
11 (canephora sg) of C. arabica cv. Caturra. Orthologs to 
the Ca TDF77 NBS-LRR gene were identified between 
30,628,644 bp and 30,637,615 bp on chr 11 of C. canephora, 
and between 44,304,326 bp and 44,313,218 bp on chr 11 of 
C. eugenioides.

Upon alignment the Caturra genome and the HdT scaf-
folds database, 12 scaffolds from clone BAC HdT − 14F3 
displayed significant similarity (Table 3). Among these scaf-
folds, only three (2902, 2612, and 2552) showed polymor-
phisms compared to Caturra (Table 3; Fig. 1).

HdT scaffolds 2902, and 2552 were complementary to 
Caturra genomic regions that completely cover the NB-
ARC and TIR domains of the rust resistance gene, respec-
tively. Furthermore, HdT scaffold 2902 was complementary 
to a small part of the LRR domain. HdT scaffold 2612 was 
complementary to a genomic region between the NB-ARC 
and TIR domains (Fig. 1).

The alignment between the HdT scaffold 2902 and 
Caturra showed 98% nucleotide identity, revealing 24 sin-
gle-nucleotide polymorphisms (SNPs) and six insertions 
and deletions (InDels). HdT scaffold 2612 exhibited 94% 
nucleotide identity, involving 30 SNPs and 25 InDels. HdT 

normalization, GAPDH gene transcripts were used (Table 2) 
(Barsalobres-Cavallari et al. 2009).

The transcriptional profile of the genes was assessed 
using qPCR (7500 Fast Real-Time PCR System, Applied 
Biosystems) with the following components: 12.5 µL of 2x 
SYBR Green/ROX qPCR Master Mix - Applied Biosys-
tems, 0.5 µL of each primer (10 µM), 10.5 µL of water, and 
1 µL of cDNA (20 ng).

Reactions were prepared in technical triplicates, employ-
ing the following thermocycling parameters: an initial dena-
turation at 95 ºC for 10 min, followed by 40 amplification 
cycles at 95 ºC for 30 s and 60 ºC for 60 s. To ensure the 
specificity of the amplification products, dissociation curves 
were analyzed.

Relative gene expression was evaluated through 
ΔΔCt = ΔCt (sample) – ΔCt (normalizer), using GenEx soft-
ware (MultiD Analyzes AB, Göteborg, Sweden). The tran-
scriptional pattern at 0 h for each cultivar was used as the 
calibrator to compare the transcriptional patterns at different 
hai. Standard deviation calculations were also performed 
using the GenEX software. Statistical analysis was car-
ried out employing analysis of variance (ANOVA) and the 
Tukey test, both at a significance level of 5%.

Samples of inoculated leaf discs were monitored for up 
to 21 days after inoculation (dai) to assess phenotypes and 
inoculum efficiency.

Results

Clone BAC HdT library sequencing

The sequencing of reads from clone BAC HdT CIFC 
832/2–14F3 yielded an assembly of 493 scaffolds, vary-
ing in size from 501 bp to 92,164 bp. One specific scaffold 
(2902) from clone BAC HdT CIFC 832/2–14F3 exhibited 
complementarity with the Ca TDF77 NBS-LRR primers 
(Supplementary Fig. 1). This outcome establishes that the 
locus associated with resistance to CLR, initially identified 
through SCAR markers on a physical map by Diola (2009), 
indeed corresponds to the Ca TDF77 NBS-LRR gene.

Genomic characterization and polymorphism 
identification

The Ca TDF77 NBS-LRR primers exhibited complementar-
ity with chromosome (chr) 11 of the canephora subgenome 
(sg) and chr 5 of the eugenioides sg within C. arabica cv. 

Table 2 Primer sequences used in qPCR
Target Forward/Reverse (5’- 3’) Reference
Ca TDF77 NBS-LRR  A T C A G T T G G T A A A A C T G C C G/ C T A G C T G G C T C G A G A G A A T G Diola (2009)
GAPDH  G G C T G G A A A C C C C T T C A T T T/ T G A A A G C A A T A T G C A C A G T T G G A Barsalobres-Cavallari et al. (2009)
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orthologous protein structure identified on chr 11 of C. 
eugenioides displayed TIR-NBS-LRR domains. However, 
in C. eugenioides, an observed premature peptide truncation 
disrupted the structure into two segments: a sequence con-
sisting of 755 aa containing the TIR and NB-ARC domains, 
and another segment of 627 aa containing the LRR domain 
(Fig. 2).

Ca TDF77 NBS-LRR gene activity in response to CLR

During the absence of the pathogen (0 hai), the Ca TDF77 
NBS-LRR gene exhibited similar transcript levels in both 

scaffold 2552 displayed 94% nucleotide identity, with 21 
SNPs and 27 InDels.

Proteins structure

The Ca TDF77 NBS-LRR gene, identified on chr 11 
(canephora sg) of C. arabica cv. Caturra, and its ortho-
log discovered on chr 11 of C. canephora, were found to 
have predicted protein sequences comprising 1,301 amino 
acids (aa) and 1,225 aa, respectively. Both C. arabica and 
C. canephora exhibited proteins with well-defined TIR-
NBS-LRR domains, as depicted in Fig. 2. Similarly, the 

Fig. 1 Schematic representation of genomic regions surrounding 
the sequences complementary to Ca TDF77 NBS-LRR primers in C. 
canephora, C. eugenioides, and C. arabica cv. Caturra Vermelho. The 
designation ‘Ca TDF77 NBS-LRR’ in this figure denotes the homol-
ogous position with primers specific to a Hemileia vastatrix race II 
resistance gene, identified in a transcriptome study (Diola 2009; Diola 

et al. 2013). Dotted lines in the figure delineate polymorphic genomic 
regions between C. arabica cv. Caturra Vermelho and HdT CIFC 
832/2. Each polymorphic genomic region between Caturra and HdT 
CIFC 832/2 is detailed, showing the corresponding HdT scaffold and 
the percentage of nucleotide identity
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compatible interaction with CLR race II. IAPAR 59 samples 
showed no symptoms (Fig. 3b).

Discussion

Comparative genomic study

The findings of this work indicate that the TIR-NBS- LRR 
tandem structure were present in the common ancestor of 
C. canephora and C. eugenioides. This tandem structure 

IAPAR 59 and Catuaí Vermelho (Fig. 3a). However, follow-
ing inoculation, the pathogen triggered distinct responses 
in these cultivars. At 24 hai, IAPAR 59 maintained tran-
scriptional levels similar to those observed at 0 h, whereas 
Catuaí Vermelho displayed down-regulation. Both cultivars 
showed up-regulation at 48 hai, although the up-regulated 
transcriptional profile persisted only in IAPAR 59 at 72 hai 
(Fig. 3a).

Catuaí Vermelho samples showed the presence of spores 
at 21 dai, indicating the complete reproductive cycle and 

Fig. 2 TIR-NBS-LRR proteins encoded by the Ca TDF77 NBS-LRR 
gene in Coffea arabica cv. Caturra Vermelho and its orthologs in C. 
canephora and C. eugenioides. Peptide domain prediction showed the 
presence of TIR, NB-ARC, and LRR domains in all three species. A 
premature peptide truncation was identified in C. eugenioides. In the 

visual representation, purple regions denote low-complexity proteins, 
while blue regions represent transmembrane structures, both identified 
using the web-based program SMART - Simple Modular Architecture 
Research Tool (http://smart.embl.de)

 

HdT CIFC 832/2 lenght
(pb)

Bits score aligment
e-value

identities genomic region (bp) 
on chr 11 (canephora 
subgenome) of C. 
arabica Caturra

scaffold 3000 6,721 1,198 0 100% 33,481,226–33,482,424
scaffold 2712 1,428 1,428 0 100% 33,482,415–33,483,842
scaffold 2758 1,700 1,700 0 100% 33,483,830–33,485,529
scaffold 2902 3,593 3,414 0 98% 33,485,469–33,489,065
scaffold 2612 1,084 833 0 94% 33,489,151–33,490,209
scaffold 2552 923 727 0 94% 33,490,522–33,491,442
scaffold 2678 1,307 1,306 0 100% 33,492,005–33,493,310
scaffold 2512 856 856 0 100% 33,493,370–33,494,225
scaffold 2316 520 520 0 100% 33,494,445–33,494,964
scaffold 2978 5,528 5,528 0 100% 33,494,959–33,500,486
scaffold 2664 1,246 1,246 0 100% 33,500,479–33,501,724
scaffold 2404 626 428 0 100% 33,501,800–33,502,227

Table 3 Scaffolds of clone BAC 
HdT CIFC 832/2–14F3 that 
showed significant similarity 
compared to the Coffea arabica 
cv., Caturra Vermelho genome
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related TEs at distant genomic positions, resulting in large-
scale deletions, duplications, and inversions (Bennetzen and 
Wang 2014).

The homeologous counterpart to the Ca TDF77 NBS-
LRR gene on chr 11 of the eugenioides subgenome in C. 
arabica cv. Caturra Vermelho was not identified. Corre-
spondence was also not identified for the other NBS-LRR 
tandemly aligned with the Ca TDF77 NBS-LRR gene. How-
ever, the absence of these homeologous counterparts may 
be related to the quality of the genome assembly. Therefore, 
further investigations are necessary to confirm this loss of 
homeologous regions.

Genomic characterization and potential 
biotechnological tools

Polymorphisms identified between the Ca TDF77 NBS-LRR 
gene of Caturra Vermelho and HdT CIFC 832/2, particu-
larly those inserted in the NB-ARC and TIR domains, might 
impact gene functionality and efficiency in pathogen detec-
tion and activation of the defense mechanism. The NBS 
central domain consists of strictly ordered conserved motifs 
crucial for ATP and GTP binding and hydrolysis, leading to 
conformational modification and consequently shifting the 
protein state from ‘OFF’ to ‘ON’ (Bernoux et al. 2016).

Alterations within specific residues in NB-ARC domain 
motifs can compromise protein function, triggering self-
activation or disrupting the regulation/initiation of defense 

has been maintained in C. arabica, an interspecific hybrid 
of C. canephora and C. eugenioides (Fig. 1). In order to 
detect hundreds of pathogens and pests, NBS-LRRs recep-
tors must be capable of responding to various elicitors. 
This is possible due to the diversity of resistance genes in 
plants (Shao et al. 2016). The majority of NBS-LRRs are 
grouped in tandem duplicates. This repetitive genomic 
structure allows new paralog generation through rearrange-
ments between the duplicates (Andersen et al. 2020). These 
rearrangements are recognized as primary sources of new 
resistance genes that can recognize new pathogen effectors 
(Ratnaparkhe et al. 2011).

Results for the Ca TDF77 NBS-LRR protein secondary 
structure prediction in C. arabica cv. Caturra, C. canephora, 
and C. eugenioides indicated extreme allelic divergence 
between orthologs, mainly within the LRR domain (Fig. 2). 
This suggests an evolutionary trajectory for this genomic 
region that may contribute to functional innovation in NBS-
LRR proteins. Another aspect to consider regarding the 
evolutionary dynamics of the Ca TDF77 NBS-LRR gene is 
the presence of transposable elements (TEs) identified on 
chr 5 of C. eugenioides and chr 5 (eugenioides sg) of C. 
arabica cv. Caturra. TEs can influence regulatory networks 
and produce genetic variation, potentially promoting mech-
anisms for genome evolution and adaptation through rapid 
phenotypic variation (Zhang et al. 2021; Springer et al. 
2018; Niu et al. 2019). Furthermore, recombination events 
can occur between highly homologous regions scattered by 

Fig. 3 (a) Transcriptional profile of the Ca TDF77 NBS-LRR gene dur-
ing the interaction between coffee plants and Hemileia vastatrix race 
II at 0, 24, 48, and 72 h after inoculation (hai). The values represent 
the mean ± standard deviation (n = 3). Lowercase letters denote com-
parisons within the same cultivar at different times post-inoculation, 

while uppercase letters compare different cultivars at the same time 
post-inoculation. Different letters indicate statistical significance 
between groups, determined by Tukey’s test at a 5% probability level. 
(b) shows the phenotypic response to CLR race II in coffee cultivars 
observed 21 days after inoculation
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study of the incompatible interaction between C. arabica 
S4 Agaro (SH4, SH5) and CLR race II showed the death of 
subsidiary and mesophilic cells invaded by haustorium from 
72 hai (Silva et al. 2008). Consequently, the highest tran-
script levels of the Ca TDF77 NBS-LRR gene in the resis-
tant cultivar IAPAR 59 at 72 hai might correlate with the 
gene’s involvement in an effective plant defense response 
and control of pathogen proliferation. In susceptible cof-
fee plants, the death of guard cells and adjacent cells was 
observed from the third day after inoculation, but only in a 
small percentage of infection sites where the fungus ceased 
its growth early (Silva et al. 2002). The decrease in Ca 
TDF77 NBS-LRR expression in Catuaí Vermelho at 72 hai 
might be linked to a deficiency in controlling infection in 
adjacent cells.

The formation of haustorial mother cells in the incompat-
ible interaction between C. arabica and CLR was observed 
24 h after it was seen in the compatible interaction (Silva et 
al. 2002). This demonstrates that the timing of haustorium 
formation depended on the plant genotype. Therefore, based 
on the hypothesis that haustorium formation in IAPAR 59 
occurs more slowly than in Catuaí Vermelho, the repression 
of the Ca TDF77 NBS-LRR gene in Catuaí Vermelho at 24 
hai might also indicate plant susceptibility in post-haustorial 
responses.

Overall, these results highlight the role of the Ca TDF77 
NBS-LRR gene in the defense mechanism against CLR in C. 
arabica cultivar with HdT CIFC 832/2 introgression.
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mechanisms. The TIR and CC domains might also contrib-
ute to pathogen recognition and subsequent signaling for 
plant defense response (Maekawa et al. 2011; Williams et 
al. 2014). Therefore, these polymorphisms hold potential 
for developing functional molecular markers (FMs) in cof-
fee. FMs play a crucial role in gene pyramiding programs 
and marker-assisted selection (MAS), enhancing accuracy 
in identifying target plants while reducing time and costs.

Another biotechnological approach involving the charac-
terization of the Ca TDF77 NBS-LRR gene position in the 
C. arabica genome is its cloning for genetic transformation 
events. In Ma et al. (2015), Agrobacterium-mediated trans-
formation introduced the Pi64 gene, an NBS-LRR, into rice 
blast-susceptible Oryza sativa cultivars. The authors dem-
onstrated that introgressing the Pi64 gene into susceptible 
cultivars conferred a high level of resistance to the disease, 
showcasing its potential in breeding programs.

Additionally, the genomic region responsible for resis-
tance to CLR in C. arabica, identified in this study, con-
sists of two TIR-NBS-LRR genes in tandem, presenting the 
potential for approaches aimed at creating new rearrange-
ments through gene editing. Using CRISPR/Cas9 target-
specific endonucleases, Nagy et al. (2021) cleaved disease 
resistance locus composed of tandem clusters in soy. Sub-
sequently, natural DNA repair mechanisms facilitated new 
rearrangements, leading to new NBS-LRR variants.

Ca TDF77 NBS-LRR gene activity in response to CLR

One of the most remarkable adaptations of rust fungi is the 
haustorium, a specialized infection structure facilitating 
biotrophic association with hosts. This structure develops 
after penetrating a living host cell wall, enabling the patho-
gen to extract nutrients and secrete effector proteins that 
manipulate the physiological and immune responses of host 
cells (Garnica et al. 2014; Lorrain et al. 2019). Cytologi-
cal studies on the interaction between hosts and rust fungi 
have consistently shown that plant resistance, controlled by 
resistance genes, is typically expressed after the initial haus-
torium formation, often triggering a hypersensitive response 
(HR) (Mellersh and Heath 2003). For C. arabica and CLR 
interaction, both pre-haustorial and post-haustorial resis-
tance have been identified. Pre-haustorial resistance is prob-
ably associated with PAMP-triggered immunity (PTI) (Silva 
et al. 2002, 2008; Florez et al. 2017; Castro et al. 2022).

In a cytological study of incompatible interaction 
between HdT CIFC 832/2 and CLR race II, haustorium for-
mation was observed starting at 48 hai (Diniz et al. 2012). 
Therefore, the up-regulation of the Ca TDF77 NBS-LRR 
gene at 48 and 72 hai in C. arabica cv. IAPAR 59, which 
carries HdT CIFC 832/2 introgression, corroborates with 
a post-haustorial defense mechanism. Another cytological 
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