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Abstract

In the past decade, there has been a recognized need for innovative methods to monitor and manage plant diseases, aiming to meet the precision demands
of modern agriculture. Over the last 15 years, significant advances in the detection, monitoring, and management of plant diseases have been made, largely
propelled by cutting-edge technologies. Recent advances in precision agriculture have been driven by sophisticated tools such as optical sensors, artificial
intelligence, microsensor networks, and autonomous driving vehicles. These technologies have enabled the development of novel cropping systems, allowing
for targeted management of crops, contrasting with the traditional, homogeneous treatment of large crop areas. The research in this field is usually a highly
collaborative and interdisciplinary endeavor. It brings together experts from diverse fields such as plant pathology, computer science, statistics, engineering,
and agronomy to forge comprehensive solutions. Despite the progress, translating the advancements in the precision of decision-making or automation into
agricultural practice remains a challenge. The knowledge transfer to agricultural practice and extension has been particularly challenging. Enhancing the
accuracy and timeliness of disease detection continues to be a priority, with data-driven artificial intelligence systems poised to play a pivotal role. This
perspective article addresses critical questions and challenges faced in the implementation of digital technologies for plant disease management. It underscores
the urgency of integrating innovative technological advances with traditional integrated pest management. It highlights unresolved issues regarding the
establishment of control thresholds for site-specific treatments and the necessary alignment of digital technology use with regulatory frameworks. Importantly,
the paper calls for intensified research efforts, widespread knowledge dissemination, and education to optimize the application of digital tools for plant disease

management, recognizing the intersection of technology’s potential with its current practical limitations.
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Driving Motivation

Agricultural crop production, including the production of food,
feed, and fiber, faces multiple challenges. Crop science and agricul-
tural practice are caught between sustainable productivity increases,
challenging and changing environmental conditions, increased bi-
otic and abiotic stresses, and shifting policy frameworks. Digital
agriculture is a burgeoning approach that can meet the challenge of
creating a sustainable global agricultural production system (Basso
and Antle 2020). Plant diseases reduce the quality and quantity
of crop yield, and integrated crop protection strategies need to be
implemented while addressing environmental concerns and being
sensitive to regulatory practices. Regulations continue to tighten
conventional plant protection products to mitigate environmental
risks and protect nontarget organisms and human health. A re-
cent strategic position paper, the European Green Deal with the
Farm to Fork (F2F) Strategy, describes aims to reduce the num-
ber of conventional pesticides applied to crops by 50% by 2030
and to promote organic production (Purnhagen et al. 2021). The
challenges demand a new paradigm for agricultural production and
implementing innovative approaches in crop protection. Integrated
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pest and disease management (IPM) aims to utilize the breadth of
agronomic measures for disease control, including cultivation of re-
sistant varieties, crop rotation and biotechnology, and biological or
conventional chemical-based plant protection. Decision-making is
based on accurate diagnosis and disease quantification. Currently,
management decisions for disease control rely on a combination
of visual detection and monitoring by experts, incorporating dig-
ital expertise and prediction systems based on weather data and
epidemiological parameters of plant diseases (Madden and Hughes
1995; Ristaino et al. 2021; Rossi et al. 2010).

Plant disease prediction models have been developed as either
data-driven (empirical) or concept-driven (mechanistic) models that
use mainly within-season weather as the key variable, together
with other agronomic and biological factors. Existing literature has
recently thoroughly investigated and reviewed the principles of de-
cision support or early warning systems (Bregaglio et al. 2022; Dong
etal. 2020). To develop and validate such models, experimental data
from several years and differing environments are required, prefer-
ably at a high resolution (Ojiambo et al. 2017). Advisory services
and farmers can use decision support systems that integrate the
prediction models to optimize crop protection and maximize yield
(Hughes 2017). Rossi et al. (2019) stress that the use of decision
support systems has been restricted to certain geographic areas and
crops and a limited group of users, mainly in developed countries.
There is an opportunity to promote the expansion of decision sup-
port system use once the hurdles in data collection, processing, and
dissemination are overcome (Deichmann et al. 2016). Integration
and calibration of “conventional” plant disease prediction models
with high-resolution sensor data offers the opportunity to validate
the outcome of these models and vice versa (Camino et al. 2021;
Zhang et al. 2014). It is now acknowledged that not only are digital
technologies of technical and economic value in developing novel
disease management approaches, but their use will also impact the
environment and thus affect social and ethical aspects of crop pro-
duction (Klerkx et al. 2019; Lajoie-O’Malley et al. 2020; Wegener
et al. 2019).

Interestingly, there are parallels between the introduction of IPM
in the mid-1960s (Carlson and Castle 1972; Smith and Reynolds
1966; Smith and van den Bosch 1967) as a revolutionary concept
providing a sustainable approach to plant protection and the recent
integration of digital technologies into the IPM toolbox. IPM has
endeavored to promote sustainable forms of agriculture, pursued
sharp reductions in synthetic pesticide use, and thereby resolved a
myriad of socioeconomic, environmental, and human health chal-
lenges (Deguine et al. 2021). High demands and expectations were
placed on this concept but were not fully met in agricultural practice,
as reviewed by Deguine et al. (2021). Inconsistent definitions and
inconsequential implementation by farmers are considered potential
reasons for the poor uptake. However, IPM is a dynamic concept,
closely linked to plant protection via conventional pesticides, which
adapts fast to new, emerging situations and challenges—and by this
measure is a success story, even if the value is difficult to measure.
Hundreds of definitions of IPM exist worldwide, depending on the
disciplinary background, the experience, and the location in the
world. Thus, we see multiple similarities and parallels with digital
technologies for crop protection. It is a nascent, emerging toolbox
with great potential to contribute to today’s challenges and demands.
There are thousands of views and focal points, and a meaningful
knowledge transfer is crucial to establish a common understanding
for scientists and stakeholders, which is a necessary basis to achieve
its full potential.

During the last 20 years, technological innovations have devel-
oped rapidly and provided an opportunity to revolutionize plant pro-
tection, particularly detection, monitoring, and decision-making.
The well-established routine of decision-making can be expanded
by integrating digital technologies and elements of phytopathome-
try (disease measurement). Digital technologies in agriculture can
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be classified into six groups: (i) optical sensor systems, (ii) robotics
and actuators, (iii) geoinformation systems, (iv) mechanistic fore-
casting and early warning models, (v) artificial intelligence (AI) and
computing power, and (vi) global networks (Bogue 2016; Mahlein
et al. 2018). Based on innovations in these six areas, smart agricul-
ture and smart plant protection are under development and have been
prioritized by several corporations in the agricultural sector. The
motivation to embrace digital technologies for disease management
is driven first by the need for improved accuracy in disease monitor-
ing given that visual estimates of disease severity are prone to errors
(Bock et al. 2010; Nutter et al. 2006). Second, digital technolo-
gies offer an opportunity for automation and cost-saving routines,
especially on a large scale. Imaging sensors enable the characteri-
zation of selected plant variables. Frequently used technologies are
red-green-blue cameras with high resolution (Gorlich et al. 2021),
multispectral or hyperspectral imaging (Thomas et al. 2018), 3D
technologies (Paulus 2019), thermography, and chlorophyll flu-
orescence imaging (Mahlein 2016). Detailed information on the
measuring principles of the individual sensor types can be found
in existing review articles (Bock et al. 2020, 2022; Mahlein 2016;
Mabhlein et al. 2019; Paulus 2019). In combination with powerful
analytical routines from Al (e.g., supervised or unsupervised clas-
sification, regression models, neural networks), useful information
can be extracted from unstructured and complex datasets and used to
provide interpretable results (Behmann et al. 2015). Al has attracted
much public attention. However, no clear and common definition of
Al exists in the community (Wang 2019). The most appropriate and
accepted definition is likely “information or computer systems able
to perform tasks normally requiring human intelligence.” Within
this context, multiple studies have applied and developed Al in the
form of machine learning or computer vision approaches to detect,
predict, or identify plant diseases. Recently, expert knowledge has
been integrated with machine learning approaches, which enhances
rational machine learning routines (Schramowski et al. 2020). For
plant disease management, the use of digital technologies can be
applied directly in the producers’ field in a decision-support role.
Further, they can be applied in plant breeding, pesticide develop-
ment, and other research contexts where disease must be detected or
quantified. In plant breeding, digital technologies have supported
the automation of screening and breeding routines for the identi-
fication and development of disease-resistant or -tolerant varieties
or compound testing, respectively. The associated disciplines and
concepts are presented in Figure 1.

With the advances in digital technologies, the science of disease
detection and measurement enters a new era with many new terms
and concepts, as phytopathometry is no longer the sole realm of
expert visual assessment by an individual. A recent glossary (Bock
et al. 2022) provides an updated list of terms used in phytopathom-
etry (including those used in digital technologies).

New Achievements—Continuing Restrictions

Several review articles have highlighted the benefits of sensors,
sophisticated data analyses, and automation of disease detection and
monitoring methods developed by multidisciplinary teams (Bock
etal.2022; Fahlgren etal. 2015; Mahlein 2016; Ruwona and Scherm
2022; Sankaran et al. 2010). The articles are complemented by re-
search studies, developing and establishing advanced digital sensor-
based approaches for accurate estimation of disease incidence,
severity, and the effects of diseases on yield and product quality
(Bohnenkamp et al. 2021; Chaerle et al. 2009; Gorlich et al. 2021;
Mabhlein et al. 2013; Pethybridge and Nelson 2018; Schramowski
et al. 2020). A list of sensor-based studies is provided by Bock et al.
(2020; see Tables 4 and 7). The research has generally used a nonin-
vasive sensor system in combination with sophisticated approaches
for data analysis based on machine learning. Monitoring crop
plants for health status (diseased versus non-diseased) is addressed
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as abinary task. The studies cover arange of host-pathogen systems,
the type and capability of sensor equipment, and disease variables
measured and vary in the machine learning methodology and data
analysis pipeline. However, during pathogenesis, there is a charac-
teristic progression from healthy to diseased, showing unspecific
symptoms. In this phase in particular, the detection accuracy might
be low, and confusion with other stress-causing factors may oc-
cur. Some studies are performed under controlled conditions in a
laboratory setting using digital technology to assess disease at a
leaf or single plant scale (Bohnenkamp et al. 2021; Gold et al.
2020; Kuska et al. 2015). In a greenhouse environment, both con-
trol algorithms for decision-making and early warning in disease
prevention (Katsoulas et al. 2021) and sensor applications for di-
rect detection have been developed (Liu et al. 2023; Schor et al.
2017). Other studies have addressed disease detection and quantifi-
cation under challenging conditions in the field (Heim et al. 2018;
Kalischuk et al. 2019; Selvaraj et al. 2020). Indeed, the integration

FIGURE 1

The use of digital technologies to
detect and measure plant disease
provides a basis for smart crop
protection in commercial agriculture
and the application of the technology
in associated research.

Optical sensors
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of sensors on a robotic platform is a relatively recent development:
Unmanned aerial vehicles (UAVs) and unmanned ground vehicles
provide the potential to fully automate disease detection and quan-
tification at different scales, providing a high-throughput system
(Ampatzidis et al. 2017; Barbedo 2019). UAV in-field disease de-
tection follows a series of procedures: (i) flight mission and image
capture, (ii) image processing and development of ortho mosaic
images, (iii) plot extraction, (iv) single plant identification based
on computer vision, (v) leaf detection using deep learning, and (vi)
symptom classification by machine learning (Fig. 2) (Barreto et al.
2023a; Ispizua Yamati et al. 2024). Most of the studies to date have
tracked and studied only one disease compared with healthy plants,
and only very few studies have investigated and compared different
diseases (Bohnenkamp et al. 2021; Mahlein et al. 2013) or used
multiple stressors (Chaerle et al. 2009). Some studies have enabled
reliable and accurate early detection of plant diseases before visible
symptoms appeared (Rumpf et al. 2010; Zarco-Tejada et al. 2018).
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Integrating Digital Technologies into IPM

The basis for accurate and sensitive disease detection and mea-
surement relies on a well-designed combination of digital tech-
nologies (Mahlein et al. 2018). As Bock et al. (2022) emphasized,
accuracy is the closeness of an estimate to the assumed “gold
standard” or true value. Sensitivity as a statistical measure can
be understood as a proportion of positives that are identified cor-
rectly. Under controlled conditions, complex sensor systems, such
as hyperspectral imaging, which has hundreds of wavebands in 3D-
hyperspectral data cubes, or chlorophyll-fluorescence with specific
demands on the measuring routine, such as dark adaptation, are ad-
equate for the task. In these conditions, measuring setups can be
designed based on the demands of the sensing system (in general
by a static measuring chamber with optimal illumination condi-
tions, a stable distance between the sensor and the object, and stable
temperature conditions). In contrast, measuring setups in the field
must be designed based on the demands of the cultivation system
and environment (all aforementioned aspects can be variable). Fur-
thermore, under controlled conditions, time series measurements
can be performed easily and compared. Detailed information on
the host-pathogen interaction, disease dynamics, and epidemiology
should be available and could be retrieved using data-intensive ap-
proaches based on digital technologies. In the field, detection and
quantification are more challenging, and the sensor system must
be robust, lightweight, and easy to use. A discerning equilibrium
among throughput, data quality (noise and stability), and spectral
and spatial resolution must be achieved. Less complex multispectral
or high-resolution red-green-blue cameras are therefore preferable.

FIGURE 2

Assessment of disease symptoms on
the scale of disease incidence (D) and
disease severity (DS) using an
unmanned aerial vehicle
(Quadro-copter, DJI Inspire 2, Da-Jiang
Innovations Science and Technology
Co., Ltd., China) equipped with a
multispectral camera (RedEdge-M,
MicaSense, U.S.A.). The camera
provides three visible spectral bands
(475 nm [blue], 560 nm [green], 668
nm [red]) and two nearinfrared (NIR)
spectral bands (717 nm [red edge], 840
nm [NIR]). Images show a sugar beet
variety trial near Goéttingen, Germany.
Sugar beet plants were diseased with
Cercospora leaf spot. The analysis
pipeline includes (i) flight mission and
image capture, (i) image processing
and development of ortho mosaic
images, (iii) plot extraction, (iv) single
plant identification based on computer
vision, (v) leaf detection using deep
learning, and (vi) symptom
classification and assessment (e.g., DI
or DS) by machine learning.

Field site Plot
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There remain challenges to developing and transferring exist-
ing digital technologies to function accurately in the field, green-
house, orchard, or other cultivation systems. Existing models and
approaches often cannot be generalized among different environ-
ments, and sensor settings may need adjustment even among vari-
eties within one crop species. As shown in various research articles,
the extrapolation of results from controlled conditions to the field
remains challenging (Appeltans et al. 2022; Bohnenkamp et al.
2021).

However, it is crucial to derive parameters or characteristics from
sensor data for decision-making. Only a few studies have addressed
the assessment of well-characterized parameters such as disease
incidence or disease severity in the field (Barreto et al. 2023a).
Assessing disease incidence and disease severity digitally has the
potential to create site-specific application maps and reduce the
amounts of pesticides applied (Barreto et al. 2023b; Giinder et al.
2022; Lizarazo et al. 2023). This information can guide robots
equipped with spot-spraying capability or direct spray drones to
target plant protection measures specifically where they are needed.
More research and development of digital technologies are needed
for crop disease detection, quantification, monitoring, and subse-
quent control. Another area of research where the practical use of
digital technologies has huge applications is in plant breeding for
disease resistance. With relatively controlled and managed field
conditions, the implementation of sensor-based disease ratings and
monitoring has been demonstrated (Gorlich et al. 2021).

Digital technologies can be integrated with IPM by substitut-
ing some current methods and supporting various components. The
potential of digital technologies for IPM goes further. The entire

Unmannend aerial vehicle wi

Symptom
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decision-making process, including initiating plant protection mea-
sures, can benefit from sensors, robotics, and Al. Sensor data can be
utilized to generate application maps, reflecting the variable disease
occurrence in space. Performing site-specific disease control is fea-
sible while also reducing the input of pesticides (Mahlein et al. 2018;
West et al. 2003; Yang et al. 2016). Agricultural production systems
can be redesigned in a completely new way. Diversifying agricul-
tural fields and reducing field size at the landscape scale can result
in beneficial effects on biodiversity. This is now a practical propo-
sition by utilizing small, automated equipment, guided by optical
sensors. Concepts currently under development are spot farming
(Wegener et al. 2019) or diversifying fields in patches, considering
site-specific characteristics and risk of disease occurrence while
promoting ecosystem services (Bellingrath-Kimura et al. 2021).
Furthermore, digital documentation of plant protection measures
is feasible and will support farmers in ensuring good agricultural
practices. Software-embracing approaches and routines to consider
and omit protected areas, such as field margins or bodies of water,
when applying plant protection compounds have been developed
and are available to farmers. These are important complementary
components to improve and support the sustainability of crop pro-
tection and crop production. Furthermore, it should be noted that
sensor technologies used for disease detection and quantification
enhance our understanding of diseases and symptom characteristics
and advance the science of phytopathometry.

Additionally, we must transfer recent developments and trends
in digital technology to farmers and advisory services to ensure
that the benefits of the technologies for plant disease management
are fully realized. In terms of digital technologies for plant protec-
tion, bidirectional knowledge transfer will improve the applicability
and acceptance of innovation. The benefits will include but are not
limited to early detection and accurate quantification, improved de-
cision support, more targeted crop management practice, and less
impact on the environment and human health. The platforms for
digital technologies are already diverse and will doubtless continue
to morph. Mobile phones, tablets, and other computers enable a
fast and seamless transfer of data and associated recommendations
or other information; any existing usage or communication barri-
ers can be overcome by continuing to implement and adapt novel
technology (Hallau et al. 2018; Pethybridge and Nelson 2018). The
potential in developing regions of the world is particularly profound,
where farmer information systems using mobile applications can be
a fast-track approach to improve and impact management practices
(da Silveira et al. 2023; Duncombe 2014). In terms of digital tech-
nologies for plant protection, bidirectional knowledge transfer will
improve the applicability and acceptance of innovation.

Aspects that cannot be addressed in detail in this article but need
further consideration are data security, data rights, ethical consid-
erations, and risk factors of digitalization in IPM. As Tzachor et al.
(2022) emphasized, systemic risk factors of Al in agriculture need
to be considered, such as interoperability, reliability, and relevance
of the data. We strongly believe that an open data policy will be a
driver of innovation. FAIR data principles (findability, accessibility,
interoperability, and reusability) must be adapted and considered for
agricultural applications (Top et al. 2022). Corporations or govern-
ments that seek to protect information will impede the innovation
needed for developing these applications. A concept of equality
and transparency will contribute substantially to the success of IPM
digitalization.

Open Questions and Unsolved Issues Regarding
Digital Technologies and How Best
to Address Them

The following list considers relevant fields of action, pointing out
the individual research needs and resulting impact. The list cannot
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claim to be comprehensive, and each point must be considered
individually.

* How early should plant diseases be detected? Detection
before symptom development has been demonstrated in lab-
oratory settings, but how can the technology be transferred
effectively to the field, where so many variables can impact
sensor-based detection? This central question could be the topic
of an entire article. Presymptomatic detection is highly depen-
dent on the individual pathosystem, its biology, and epidemi-
ology. Not every disease must be detected before symptoms
are visible. To cite one example with a very long latent phase,
citrus greening disease (huanglongbing) can lead to the loss
of entire orchards if not detected before symptoms appear be-
cause infected trees should be removed as an inoculum source
(Bassanezi et al. 2020). Other diseases produce infectious struc-
tures as soon as the first symptoms appear after the initial
infection and produce multiple generations during the grow-
ing season. Red-green-blue and multispectral sensors cannot
provide sufficient information for early detection, but hyper-
spectral images and alternative approaches (e.g., photonics) in
combination with classical diagnostics have shown promise.
With regard to decision-making in IPM, threshold values in-
dicate the disease incidence or severity at which control with
plant protection products is economically reasonable (Stein-
mann et al. 2021). Thus, a system must be sensitive enough
to assess thresholds correlated with disease incidence or dis-
ease severity, and each digital strategy must be matched to the
individual host-pathogen system (Barreto et al. 2023a). Further-
more, combining optical sensor data, epidemiological data, and
environmental data can improve precision and reliability within
the context of the disease triangle because a higher information
content can be beneficial (Mahaffee et al. 2023). There are a
few data fusion and information fusion techniques (in terms of
integrating data from different kinds of sensors into a model)
that can help with this task (Barbedo 2022b).

How accurate should sensors and other technologies be,
and how do we reference them? Accuracy, particularly with
imaging sensors, requires a robust gold standard and very large
datasets. Al models, and especially those based on the concept
of deep learning, have reached a level of maturity sufficient to
tackle virtually any classification problem. The bottleneck is in
the data. If the classification/measurement is to be performed
in the field under uncontrolled conditions, all possible sources
of variation need to be considered. As a result, datasets usually
need to be large and representative of the variability associated
with the problem. To make matters more complicated, the image
annotation process by a human is subjective and slow. In many
cases, the amount of information contained in the data (images
or other kinds of data) is not enough for unambiguous answers.
In such cases, data fusion (an approach that is quickly gaining
momentum) or augmented data may be the only option for a re-
liable automated system (Barbedo 2022a). There is also a need
for accurate disease severity measurement. For the information
to be useful, we must know not only what is there but also how
much. To obtain this information, sensor-based methods of as-
sessment are available but could often be unreliable concerning
accuracy. To determine the level of accuracy in particular cases,
quantitative ordinal scales (Chiang et al. 2014) have been used
as gold standards against sensor-based methods, but this relies
on estimates made by human raters who assign values to visu-
ally observed samples on scales that are constructed based on
grouping of discrete units into categories; often, these scales use
very few categories. In such cases, a rater’s measurement has
been regarded as the reference value. When a quantitative ordi-
nal scale is being used for reference or validation, it is crucial to
identify its structure (i.e., does the scale have equal or unequal
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intervals? What is [are] the interval width[s]?). However, there
are very few investigations into sensor-based measurement that
have considered the ramifications of using a quantitative ordinal
scale for validation. Therefore, further development of quantita-
tive ordinal scales for validation of sensor-based measurement
needs to be considered.

The quality of data obtained by optical sensors is critical.
Is the quality of the data we currently collect with optical
sensors high enough to enable accurate, reliable detection,
considering the spatial and temporal diversity present in a
given environment? Data availability and data quality are cru-
cial for research, as well as for practical application in the field,
greenhouse, and other growing systems. Three aspects related to
data quality need to be considered: (i) Do the data cover the en-
tire variability associated with the problem, (ii) the quality of the
annotation ([i] and [ii] are discussed under the previous point),
and (iii) the quality of the data itself (Behmann et al. 2015;
Dong et al. 2022)? In the case of optical sensor data, unfavor-
able illumination, blur, inadequate angles, and more can reduce
data quality. However, deep learning models show remarkable
robustness to low-quality images if these are not too numer-
ous (Li and Chao 2021). In general, this is a problem mostly
associated with the time of image capture, environmental fac-
tors, manual versus automatic image capture, and employing
multiple individuals to capture the images for model training.
Statistical methods exist to detect and quantify errors within
data and to assess the data quality, such as principal component
analysis or artificial neural networks. Through a systematic re-
view, Teh et al. (2020) found that methods proposed to address
physical sensor data errors cannot be directly compared and
needed to be tailored to each individual setting and data source.
How can we address the complexity of dynamic and diverse
crop architectures and geometries in different field crop
species stands during the growing season? For example, how
can we assess disease symptoms occurring on lower leaf levels
in closed canopies? Are there ways disease in the lower canopy
can be modeled reliably based on disease measured or detected
elsewhere? Are additional light sources needed, and how can
we best use these in the canopy where leaves will still be obscur-
ing each other? What about use of digital technologies in tree
crops and their canopies? To some extent, hyperspectral imag-
ing can detect the effects of diseases from a top-down view, but
for a direct assessment of symptoms on leaves obscured under
other leaf layers, new imaging settings with, for example, minia-
turized autonomous vehicles (rovers, UAVs) may be needed.
However, much further research and development are required
before swarms of robots can be utilized to monitor crops for
disease (Albiero et al. 2022; Schranz et al. 2020). Recently,
functional and structural plant models for different crops and
cropping systems have become available (Bailey 2019). These
models can be the basis for digital twins of crops, recreating the
behavior of crops in diverse environments and under different
abiotic and biotic stresses (Purcell et al. 2023; Skobelev et al.
2020).

How can we mitigate the impact of environmental factors
on the accuracy and reliability of optical measurements un-
der field conditions? Environmental factors (sunlight, shadow,
wind, rain) impact the data quality and information content. In
some cases, calibration and normalization are possible (varying
illumination conditions); in other cases, the use of sensor sys-
tems will not be possible (wind or rain) (Thomas et al. 2018).
Transfer of models developed in the laboratory or plots will
need to be ramped up and adapted to be of practical use at the
full range of spatial scales, particularly the field scale but pos-
sibly even larger scales. So far, a direct transfer from the lab to
the field failed in several research studies (Bohnenkamp et al.
2019, 2021), and the reasons still need to be investigated. It is
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likely that the aspect of external factors will be addressed by
larger datasets for training algorithms and innovative machine
learning algorithms that are better able to cope with varying
illumination conditions, for example. In terms of sensor devel-
opment, robust snapshot systems with relatively low integration
times could further counteract quality losses. A new trend from
machine learning that may contribute to solving this problem are
general purpose foundation models (Chen et al. 2024). The first
promising applications have been demonstrated in healthcare.
Despite their huge potential, the development process demands
massive amounts of data and is costly (He et al. 2024).

New or invasive plant diseases arise sporadically. How can
digital technologies be as sensitive to these as a human expert
might be? In an increasingly globalized world, plant pathogens
are known to be unwitting passengers between regions, and
early detection and management can be crucial to successful
eradication (Oerke 2020). Prominent examples are citrus green-
ing disease in the United States, quick olive decline syndrome in
Italy, and syndrome basses richesses of sugar beet in Germany
(Sankaran et al. 2013; Zarco-Tejada et al. 2018). Can digital
technologies rise to this challenge, and do we need a global
library of digital disease signatures?

What are the requirements to enable accurate and reliable
identification and quantification of multiple stressors and/or
multiple diseases at once? Sensors and associated digital tech-
nologies must be capable of discerning a range of diseases on
different varieties or cultivars of the same host crop species.
Whereas a human expert can readily and rapidly differentiate
causes, digital sensors have not yet been sufficiently challenged
or tested. This is an area of research that needs urgent attention.
Regarding the use of digital technologies for disease man-
agement, what is the effect of spot application on disease
control and the subsequent epidemic development and dis-
ease dynamics? Has the disease already spread? If it is identi-
fied in a particular area, does a buffer area need to be treated,
and if so, to what distance? Further research is needed to per-
form and evaluate site-specific pesticide applications. Research
to develop approaches for effective “spot” disease management
and to determine the benefit to the environment and biodiver-
sity is needed. Recent developments integrated not only optical
sensors on UAVs for disease detection but also fungicide ap-
plications using spray drones. In addition to clarifying the
regulatory framework, the performance and precision of such
approaches need to be investigated.

What does site-specific application of a pesticide mean for
registration routines and risk assessment, and can digital
technologies be reconciled with national regulations such as
control thresholds? Registration of pesticides is a costly and
complex process; several authorities are involved. The current
registration routine focuses on the application of the product
to entire fields. Toxicity and harmful effects are evaluated and
considered. With digital technologies, site-specific applications
become feasible, and risks and harmful effects may be reduced
(Rajmis et al. 2022). How can this be incorporated into registra-
tion routines? How is the persistence and distribution of plant
protection compounds affected by site-specific application? Na-
tional regulations such as control thresholds are a central part of
IPM. New, sensor-based approaches need to be able to perform
accurate assessment of control thresholds.

How should the digital technologies eventually be trans-
ferred to the end users? Should the systems themselves be
available, or should they be provided as a service through
crop management consultants or advisory services? Thisis a
complex topic that depends on the technology being transferred
(Giua et al. 2022; Steinke et al. 2021; Storm et al. 2024). Sim-
ple applications such as smartphone apps can be easily trans-
ferred. The more complex the technology, the more careful its
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introduction must be, and the more expert knowledge is re-
quired. Intellectual property laws may be applicable. Further-
more, if a user does not apply the technology properly, the result
could be substantial crop losses, which can increase the re-
sistance to the uptake of the technology. Legal action may be
implemented against the purveyor of the digital technology. The
cost for digital technology could be relatively high, the tech-
nologies have complex routines, and users are generally highly
trained individuals. Will the technology eventually be packaged
in an easy-to-use system and be economically feasible?

Classical university degrees and education do not include
classes on sensors, robotic or machine learning, and their ap-
plication or implementation in crop science. How should the
training of students, farmers, and consultants be developed?
The basics of digital technologies in the plant sciences must be
integrated into current degree programs, training courses, and
vocational training. In addition to theoretical principles, it is
also necessary to teach practical skills—from recording sensor
data to agronomic interpretation and decision-making. Because
technologies develop fast and innovations enter the market, a
regular learning program must be offered to keep practitioners
updated (Klerkx et al. 2019; Pogorelskaia and Vdrallyai 2020).

Conclusion

Noninvasive digital technologies for the detection and quantifi-
cation of plant diseases, including sensors, robotics, and machine
learning, have improved dramatically recently. The incorporation of
these technologies into disease monitoring is advancing, although
their accuracy is still affected by various factors, such as the tar-
get’s characteristics, sensor operation scales, and the environment.
Although transferring research to practical application faces hur-
dles, digitalization promises to enhance IPM and align with policy
and environmental goals. Digitalization will help to further develop
and advance IPM, making it an increasingly effective approach for
disease management in the future. Human expertise, particularly
that of scientists and farmers, remains crucial in this technological
evolution.
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