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Abstract: The scientific field of precision agriculture employs increasingly innovative techniques to
optimize inputs, maximize profitability, and reduce environmental impact. However, obtaining a
high number of soil samples is challenging in order to make precision agriculture viable. There is a
trade-off between the amount of data needed and the time and resources spent to obtain these data
compared to the accuracy of the maps produced with more or fewer points. In the present study, the
research was based on an exhaustive dataset of apparent electrical conductivity (aEC) containing
3906 points distributed along 26 transects with spacing between each of up to 40 m, measured by the
proximal soil sensor EM38-MK2, for a grain-producing area of 72 ha in São Paulo, Brazil. A second
sparse dataset was simulated, showing only four transects with a 400 m distance and, in the end,
only 162 aEC points. The aEC map via ordinary kriging (OK) from the grid with 26 transects was
considered the reference, and two other mapping approaches were used to map aEC via sparse grid:
kriging with external drift (KED) and geographically weighted regression (GWR). These last two
methods allow the increment of auxiliary variables, such as those obtained by remote sensors that
present spatial resolution compatible with the pivot scale, such as data from the Landsat-8, Aster, and
Sentinel-2 satellites, as well as ten terrain covariates derived from the Alos Palsar digital elevation
model. The KED method, when used with the sparse dataset, showed a relatively good fit to the
aEC data (R2 = 0.78), with moderate prediction accuracy (MAE = 1.26, RMSE = 1.62) and reasonable
predictability (RPD = 1.76), outperforming the GWR method, which had the weakest performance
(R2 = 0.57, MAE = 1.78, RMSE = 2.30, RPD = 0.81). The reference aEC map using the exhaustive
dataset and OK showed the highest accuracy with an R2 of 0.97, no systematic bias (ME = 0), and
excellent precision (RMSE = 0.56, RPD = 5.86). Management zones (MZs) derived from these maps
were validated using soil texture data from clay samples measured at 0–10 cm depth in a grid of
72 points. The KED method demonstrated the highest potential for accurately defining MZs for
irrigation, producing a map that closely resembled the reference MZ map, thereby providing reliable
guidance for irrigation management.
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1. Introduction

The main scope of precision agriculture methods is to reduce the inputs necessary for
planting by identifying the heterogeneities of the factors controlling productivity [1]. Much
has been studied in precision agriculture to locate more or fewer productive regions [2,3]
to reduce productivity costs and maximize profit. Some tools have been implemented
to identify these regions with characteristics prone to generating adequate productivity
conditions for the desired crop.

According to the U.S. Soil Survey and Classification manual, proximal soil sensing
refers to equipment sensitive to some soil property. Based on mathematical modeling, it
represents soil properties that are generally difficult to measure [4].

Before these tools became recognized as a method of efficiently identifying the patterns
of the soils, some researchers wrote extensively about the methods of obtaining data via
proximal sensors of the conductivity meter type [5–14]. The results described by them served
as a subsidy and support for the scientific field that is currently known as precision agriculture.
The potential of using non-contact sensors with the soil to recognize its variabilities through
electromagnetic properties, gamma spectrometry, or even with other radiation ranges, such as
visible and infrared variations, has been extensively reported [15–21].

Allied to proximal sensing methods, remote sensing, in essence, involves a similar
piece of equipment to proximal sensing. However, it consists of a sensor embedded in a
satellite with another potential range and sensitivity that obtains data with a higher spatial
resolution [19,22–24]. When the data from remote and proximal sensors are combined, the
data fusion methodology is defined [25–32].

In precision agriculture, another demand is obtaining soil data to analyze with the
proximal and remote sensors data. In this sense, obtaining other data sources does not dis-
pense with obtaining soil samples, since the relationships between the measured properties
must be established [21,33].

Imagine the scenario of a farm with 1000 rainfed hectares and five irrigation pivots
covering 500 ha each. The irrigation pivots and the areas without this equipment have
slightly distinct geomorphologies with slope variation within the range of 3% slope. Con-
sidering the factors of soil formation as being a combination of relief, climate, organisms,
parental material, existing soil types, and anthropic effects acting together in a given time
in the scenario of precision agriculture, the most significant factors for understanding the
dynamics between the properties measured by remote and proximal sensors and the soil
properties that reflect the crucial parameters for irrigation control will be affected mainly
by the type of soil [34–36].

In this scenario, the person responsible for mapping this critical information can
combine the data from remote sensors with proximal sensors to improve the maps of soil
properties such as texture, density, porosity, depth, etc. The person in charge must collect
the proximal sensing data using equipment attached to the vehicle, such as conductivity
and non-contact susceptibility meters, commonly available to consumers [37,38].

From then on, the person responsible must decide answers to the typical questions
that still do not exist in the literature: What is the way to drive the vehicle to collect those
data? How much data should I collect? What is the ideal spacing between my curves?
The person in charge must consider the trade-off to obtain data ranging from exaggeration
regarding the time and fuel spent to sub-represented soil properties data from spacing too
far and collecting too few points.

In this Scopus, the hypothesis for this article arises: Is it reliable to reduce the amount
of data collected using a proximal conductivimeter by combining its data with remote
sensing data? To prepare an answer to this hypothesis, a simulation of different driving
routes to obtain the proximal sensor data can be analyzed as a digital twin [39,40].

Therefore, we intend to answer the hypothesis by obtaining apparent electrical con-
ductivity data from a commercial electromagnetic sensor commonly used in precision
agriculture, such as the EM38-MK2.
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We collected sensor data considering the most detailed sampling design possible,
covering 72 ha of bean plantation in São Paulo, Brazil, totaling 25 transects. A second grid
was simulated by maintaining only four transects of apparent electrical conductivity data
to represent the scenario of obtaining proximal sensor data to configure a sparse grid.

To answer the hypothesis, the objectives of the article are (a) to map the apparent
electrical conductivity data using the ordinary kriging method from an exhaustive grid
with 25 lines and consider it a reference; (b) to map the apparent electrical conductivity
data using kriging with external drift in association with remote sensing data; (c) to map
the apparent electrical conductivity data using geographically weighted regression in
association with remote sensing data; (d) to evaluate the accuracy of the maps produced
in (a–c); (e) to define irrigation management zones based on clustering using the maps
produced in (a–c); and (f) to evaluate the potential for distinguishing areas of management
for irrigation from the maps produced in (a–c) using texture data, such as clay concentration.

2. Materials and Methods
2.1. Brief Presentation of the Methodology

The flowchart in Figure 1 illustrates the two parallel methodologies employed in
the study, providing a clear and comprehensive overview of the Digital Twins approach
applied to original and simulated aEC datasets.
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Figure 1. Flowchart of the methodology of simulation of the aEC dataset with sparse sampling and
the mapping methods followed by the management zones approach.

The original aEC dataset undergoes a straightforward mapping process using the
ordinary kriging (OK) method. A k-means clustering algorithm generates a management
zone map, dividing the area into three distinct zones. The efficiency of these zones is
then assessed by comparing them with soil sampling locations, specifically evaluating
clay content.

In contrast, the simulated aEC dataset, representing a more data-sparse scenario,
follows a more complex methodology. Initially, a preselection of covariates begins with
Pearson’s correlation to identify covariates with the highest correlation to aEC. A stepwise
selection process is then employed to reduce multicollinearity, ultimately selecting the
covariate set with the lowest Bayesian information criterion (BIC) for further analysis.
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This refined set of covariates is then used in three different mapping methods: Ordinary
kriging (OK), kriging with external drift (KED), and geographically weighted regression
(GWR). Each method produces separate maps, which are then used to create three k-
means maps, each defining three management zones. The efficiency of these zones is also
evaluated by comparing them with soil sampling locations based on clay content, like the
original approach.

2.2. Study Area

The area of the irrigation pivot is 72 ha and is in the Zacharias watershed, in the munici-
pality of Itaí, state of São Paulo, Brazil, with central coordinates 23.5854◦ S and 48.9395◦ W,
with an elevation of approximately 685 m altitude (Figure 2). According to Köppen-Geiger,
the region’s climate presents the Aw weather pattern. The average annual rainfall for Itaí—SP
is 119 mm, and the average annual temperatures range from 16 to 26 ◦C [41].
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Figure 2. Location of the study area with the height gradient and digital elevation model.

The soil types were described explicitly as Ferralsols, with the texture in the clayey
surface layer (515 g kg−1) and very clayey (600 g kg−1) in the subsurface. Usually, the
study area is planted with minimal soil disturbance, being classified as a no-tillage area
on straw. The crop rotation method is implemented to improve the physical structure of
the soil aggregates and to improve the incorporation of nutrients that have been removed
by leaching erosion or used by the plants in the last harvest [42]. This type of soil allows
the implementation of agricultural machinery when managed under periods of adequate
humidity. Any natural acidification caused by the high presence of aluminum values can
be corrected by commonly used liming methods [43,44].

Figure 2 shows a plane of the elevation profile for the irrigation pivot studied. The
boundary of this pivot is outlined in red, and a brown transect represents the landscape’s
gradient. The digital model (Figure 2) can also help understand the 30-m elevation variation
of the landscape.

2.3. Proximal Soil Sensing EM38-MK2

The principle of operation of the EM38-MK2 (Geonics, Mississauga, ON, Canada)
is based on the generation of an electromagnetic field through a transmitter coil, which
induces eddy currents in the soil. These currents, in turn, create a secondary magnetic field
detected by a receiver coil. The strength of this secondary field is directly related to the
electrical conductivity of the soil, which can be influenced by various factors such as soil
texture, moisture content, salinity, and temperature [45]. The sensor operates in horizontal
and vertical dipole modes, allowing for measurements at different depths, typically within
a range of 0.75 to 1.5 m, depending on the orientation and configuration of the device. From
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the study area in Figure 2, the EM38-MK2 sensor was used horizontally, and the coil was
used at a 1-m distance for soil volume up to 0.75 cm deep.

Before starting field measurements, the EM38-MK2 is placed on the calibration cane in
a horizontal position (Figure 3A), ensuring that the cane supports the sensor at a known and
consistent height above the ground. This setup creates a stable and predictable environment
where the sensor’s response to the induced electromagnetic field can be assessed without
the influence of varying soil conditions. The calibration can ensure that the sensor operates
within its expected range and that the output is accurate relative to known standards. The
sensor readings are then adjusted to reflect this baseline, compensating for any deviations
due to environmental factors such as temperature or instrument drift. Figure 3B shows the
sensor configuration for the one-second interval to perform each reading. It was coupled to
an all-terrain vehicle driven at a 15 km/h speed.
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Figure 3. (A) EM38-MK2 being calibrated to the specific magnetic scenario of the field; (B) the sensor
is paired with the handheld controller to set the timing acquisition.

An exploratory analysis of the original EM38-MK2 data was performed to investigate
possible outlier values due to the potential for electromagnetic interference by the metal
parts with which the irrigation pivot is constructed. The interferences generated very high
electrical conductivity values in specific highly conductive locations. Also, to remove the
conductivity reading points made very close to each other collected during brief shutdowns
for operational maintenance, the zerodist function present in the sp package of the R
software (V. 4.3.3) was applied. Furthermore, the existing electrical conductivity points
displaced from the transect format were removed so that the walking simulations with
the sensor would get as close as possible to sampling in the format of parallel transects,
resulting in a final dataset of 4306 aEC points.

2.4. Sampling Designs for the Apparent Electrical Conductivity of EM38-MK2

To characterize the study area, 25 transects were covered with the sensor spaced 40 m
apart. This path was treated as an exhaustive design, with greater precision for preparing
maps of apparent electrical conductivity, and was, therefore, the best characterized for
digital twins (Figure 4).

To simulate a digital twin with little data, reducing sampling costs while maintaining
the accuracy of the final electrical conductivity map, a second walk with the EM38-MK2
sensor was configured with only four lines and 400 m spacing between each transect line.
This was understood to be the shortest possible distance a producer must travel to produce
a transect map (Figure 4).

In addition to the distance between the walking lines being at least twice as large as an
Exhaustive Grid for a Sparse Grid, the number of points present in the first is 3906 points
while the second and sparce is only 162 reading points (Figure 4).
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From the original grid of apparent electrical conductivity, that is, before the data
groups for the Exhaustive and Sparse grids were separated, a set of 400 points of apparent
electrical conductivity was separated to be used as external validation data for the maps to
be produced and compared (Figure 4).

The mapping method considered to be the reference is ordinary kriging using Exhaus-
tive Grid data. This map served as an optimal target during the digital twin stage. The
mapping method using the Sparse Grid of the apparent electrical conductivity data was
kriging with external drift and geographically weighted regression.

After obtaining an exhaustive and sparse grid, the next step was to optimize the
mapping of the sparse grid to generate an electrical conductivity map with an error close
to that of the map with an exhaustive grid. Satellite data from a digital elevation model
and satellite images were obtained to be fused into the sparse aEC dataset.

2.5. Remote Sensing Variables

As the data from proximal sensors were obtained in the first field campaign (September
2018) and the data analyzed in the laboratory were from the second campaign (October
2019), it was decided to select data from remote sensing referring to the two dates of the
campaigns to contemplate the two scenarios in which the soil was.

To complement the remote sensing covariate information, the digital elevation model
(DEM) obtained by the Alos Palsar satellite with a spatial resolution of 12.5 m was used,
and ten relief covariates were derived using the RSAGA package [46] present in the R
software [47], and the covariables evaluated were the topographic variables such as aspect,
elevation, slope, curvature plan, curvature depth, convergence, topographic wetness index,
length-slope factor, relative slope position, channel network distance, and channel network
base level.

The Aster satellite bands ast_B1, ast_B2, and ast_B3N were used with wavelength
ranges of 0.52–0.60, 0.63–0.69, and 0.78–0.86 µm, respectively.

The data provided by the Sentinel 2 satellite, managed by the European Satellite
Agency, included sent_year_B2, sent_year_B3, sent_year_B4, sent_year_B8, sent_year_B5,
sent_year_B6, sent_year_B7, sent_year_B8A, sent_year_B11, and sent_year_B12. The data
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covers diverse wavelengths ranging from 0.44 to 2.31 µm. These variables present optical
bands at 10 m resolution and SWIR bands at 20 m resolution.

The Landsat 8 satellite data, organized and distributed by NASA, were used as
land_year_B1 to land_year_B11, offering imagery across wavelengths from 0.43 to 12.51 µm
at a resolution of 30 m.

Figure 5 provides a comprehensive visual representation of the various covariates used
in the study, including digital elevation model (DEM) derivatives and satellite imagery
from multiple sensors and time points.

The leftmost column illustrates the DEM derivatives, showcasing topographic features
derived from the Alos Palsar satellite with a spatial resolution of 12.5 m. These derivatives
include various topographic variables crucial for understanding the landscape’s influence
on soil properties.

Moving to the right, the subsequent columns display the spectral images obtained
from different satellite platforms. The Aster satellite imagery is shown next, with its
bands capturing specific wavelength ranges that contribute to the analysis. Following this,
Sentinel 2 satellite images are presented for both the 2018 and 2019 campaigns, highlighting
the temporal changes in the spectral characteristics of the study area. Finally, the Landsat 8
satellite images for 2018 and 2019 are displayed, providing additional spectral data across a
broad range of wavelengths.

Each set of images demonstrates the variability in the landscape as captured by the
different sensors and during the different periods, emphasizing the importance of multi-
temporal and multi-sensor approaches in environmental monitoring and modeling. This
figure helps to visualize the spatial distribution of the covariates and their changes over
time, supporting the methodological choices made in the study.

2.6. Preselection of Covariates

The methodology employed for selecting relevant covariates and developing a regres-
sion model to predict apparent electrical conductivity (aEC) using the sparse dataset took a
stepwise approach, involving the computation of correlations, filtering of covariates, and
final model fitting.

2.6.1. Correlation Matrix Computation

A correlation matrix was computed using Pearson correlation for the set of covariates,
including 49 raster layers and the target variable (aEC). The correlations were calculated
pairwise to handle missing data, ensuring that all available data points were used as
described in the following Equation (1):

coraECsparsed = cor(X, use = pairwise.complete.obs) (1)

where X represents the matrix of covariates. The diagonal elements of this correlation
matrix were set to NA to avoid considering self-correlation (autocorrelation).

2.6.2. Reshaping and Filtering of Correlations

The correlation matrix was then reshaped from a wide format into a long table format,
facilitating the identification of the highest correlation values for each variable. The filtering
step retained only those pairs of variables with an absolute correlation value greater than
or equal to 0.9, as described in Equation (2).

maxcoraECsparsed = {Var1, Var2 : |cor(Var1, Var2) | ≥ 0.9} (2)
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2.6.3. Elimination of Redundant Covariates

For each pair of highly correlated variables identified in the previous step, one variable
was dropped based on its lower correlation with the target variable aEC. Specifically, for
each correlated pair (Var1, Var2), the variable with the smaller correlation to aEC was
eliminated using Equation (3):

drop variablesaECsparsed = min(cor(aEC, Var1), cor(aEC, Var2)) (3)

The remaining covariates formed the final set of independent variables for
subsequent modeling.

2.6.4. Subset Selection Using Exhaustive Search

To identify the most relevant subset of covariates, an exhaustive subset selection
method was employed using the regsubsets function, optimizing for the Bayesian informa-
tion criterion (BIC) and adjusted R-squared (R2) using Equation (4):

RegSubsetaECsparsed = argminsubset BIC(subset) and argmaxsubset adj R2(subset) (4)

The optimal subset of covariates was determined based on the smallest BIC and the
highest adjusted R2.

2.7. Mapping Methods
2.7.1. Ordinary Kriging—Reference Map

The original dataset contained 3906 apparent electrical conductivity (aEC) points and
was used as the reference grid in the digital twin approach. To achieve a normal distribution
of the aEC data, the aEC for the Neperian log was transformed.

A semivariogram was adjusted for this set of points. The data were spatialized by
ordinary kriging (OK) using the krige function of the gstat package [48] from the R software.

The semivariogram estimates a value in a region with a known distance using data
near the estimation site [49]. In this way, ordinary kriging uses just the distance between
points to comprehend the phenomena of the distribution of the aEC, for instance.

The aEC sparse data was also mapped to show how a mapping via OK of the sparse
data would be. All maps were interpolated using a spatial resolution of 10 m.

2.7.2. Kriging with External Drift

The external drift kriging (KED) method was used to map the sparse aEC data associ-
ated with the remote sensing trend. KED incorporates the local trend within a neighborhood
search window as a linear function of a mildly varying secondary variable, and the trend
of the primary variable must be linearly related to the secondary variable [50].

Therefore, KED interpolated the apparent electrical conductivity using the gstat pack-
age’s krige function [48] associated with preselected satellite covariables. The KED aEC
map’s final resolution was 10 m, compared to the aEC reference map using ordinary kriging.

2.7.3. Geographically Weighted Regression

Geographically weighted regression (GWR) was also applied to the sparse aEC dataset.
GWR accounts for spatial non-stationarity by allowing local rather than global parameter
estimation. The regression model was constructed with selected remote sensing and relief
covariates as predictors and the aEC as the response variable. The local coefficients were
estimated using the spgwr package [51] in R, and the predicted aEC values were mapped
across the study area. The GWR aEC map’s final resolution was 10 m, compared to the aEC
reference map using ordinary kriging.

2.8. Maps of Irrigation Management Zones and Efficiency Assessment

To associate apparent electrical conductivity (aEC) with soil moisture levels, we cate-
gorized the aEC values into three classes based on the ordinary kriging map generated from
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the exhaustive aEC dataset. The range of aEC values less than 8.44 mS/m was designated
as “Dry”, the range from 8.44 to 13.77 mS/m was classified as “Intermediate”, and the range
from 13.77 to 19.11 mS/m was classified as “Moist”. These categories were established to
provide a practical framework for interpreting the aEC data in terms of moisture content
within the soil, facilitating the identification of areas with varying moisture levels.

Four management zone (MZ) maps for irrigation were defined using the aEC ex-
hausted map via OK, the aEC OK map using the sparse dataset, the aEC map using the
KED method, and the aEC map using the GWR. The kmeans function was used in the stats
package natively present in the R software. The four electrical conductivity maps were
organized in a data matrix format and grouped using the k-means method. This method
partitioned the dataset into k groups.

In the present study, three zones were chosen as the k value, as many would not
be operationally practical for farmers. All the data used in the kmeans function were
parameterized to the values of zero, mean, and variance one, using the scale function
present in the stats package of the R software.

Apparent electrical conductivity (aEC) is a valuable indirect measurement for assessing
soil moisture and clay content due to how these properties influence the soil’s ability to
conduct electricity. Moisture content significantly impacts aEC, as water enhances the soil’s
conductivity, leading to higher aEC values in wetter soils. Similarly, clay-rich soils exhibit
higher aEC because clay particles have a large surface area and a high capacity to retain
water and ions, contributing to increased conductivity. The mineralogical composition of
clay also enhances electrical conductivity, making aEC a common proxy for both moisture
and clay content. Given the strong relationship between clay content and soil moisture
retention, the agreement between zones identified by aEC and those supported by clay
texture data provides some confidence that these zones may reflect variations in soil
moisture, even if direct moisture measurements are unavailable.

To evaluate the potential of using a sparse aEC dataset to produce a map similar
to the exhaustive dataset, as well as the effectiveness of these maps when used as input
information in the kmeans process to define management zones for irrigation, data from
72 soil sampling locations at 0–10 cm depth were collected (Figure 6) and analyzed for clay
content using the sieve and pipette method.
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Figure 6. (A) Soil sampling of 0–10 cm using soil sampler ring; (B) planting area covered by beans
and irrigated by a central pivot on the background.

The 72 points analyzed in the laboratory validated the four MZ maps produced from
aEC mapped via OK, KED, and GWR. The zone classes were extracted from the two MZ
maps for the 72 coordinates associated with the laboratory data using the extract function
present in the raster package in the R software.

Finally, the analysis of variance (ANOVA) was used to identify whether the man-
agement zones could distinguish the variance of the values of the laboratory attributes
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regarding their classes of management zones. The aov function of the stats package in the
R software was used for that.

2.9. Map Accuracy

From the filtered electrical conductivity dataset containing 26 lines, 400 points were
selected randomly using the sample function in R. From this subset of 400 points, metrics
were calculated to evaluate the accuracy of the generated aEC maps. The accuracy values
of the maps generated by KED, GWR, and OK using the sparse aEC dataset were compared
to the aEC reference map produced by OK from the exhaustive dataset.

The metrics used to compare the maps were mean error (ME—Equation (5)), mean absolute
error (MAE—Equation (6)), square root of the mean square error (RMSE—Equation (7)), the
relationship between performance and deviation (RPD—Equation (8)), and the coefficient of
determination (R2—Equation (9)), as follows:

ME =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

MAE =
1
n

n

∑
i=1

∣∣yi − ŷi
∣∣ (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

RPD =

√
Standard Deviations

RMSE
(8)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (9)

where n is the number of observations; yi are the actual values; ŷi are the predicted values;
yi is the average of the actual values of yi.

3. Results
3.1. Exploratory Data Analysis

The descriptive statistics for the aEC exhausted, and the original dataset is described
in Table 1. For the training set with 25 rows of logarithmic scale data, the apparent electrical
conductivity (aEC) ranged from 0.96 to 3.27 millisiemens per meter (mS/m), with a first
quartile (25th percentile) of 1.92 and a third quartile (75th percentile) of 2.45. The mean
was approximately 2.2, and the median was 2.23. The variance was 0.13, and the standard
deviation was 0.36, indicating a relatively concentrated distribution around the mean. The
skewness was −0.09, suggesting a slight tail to the left in the distribution, while the kurtosis
was −0.58, indicating a relatively flattened distribution compared to a normal distribution.

For the external aEC validation dataset, the aEC ranges from 2.62 to 26.25, with a
first quartile of 6.84 and a third quartile of 11.56. The mean is approximately 9.58, and the
median is 9.30. The variance is 11.49, and the standard deviation is 3.39, indicating a wider
data dispersion than the training set. The asymmetry is 0.68, indicating a tail to the right in
the distribution, while the kurtosis is 0.22, which is slightly closer to normal distribution
than the training set.

For the sparse aEC dataset, the aEC ranged from 3.87 to 18.67, with a first quartile
of 7.40 and a third quartile of 11.48. The mean is approximately 9.94, and the median
is 10.39. The variance is 9.67, and the standard deviation is 3.11, indicating a moderate
dispersion of the data. The skewness is 0.28, suggesting a slight tail to the right, while
the kurtosis is −0.22, indicating a slightly less concentrated distribution in the tails than a
normal distribution.
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Table 1. Descriptive statistics of electrical conductivity data mS/m.

aEC Exhausted (log) aEC Exhausted aEC Sparse aEC External Validation

n 3906 3906 162 400
Minimum 0.96 2.62 3.87 3.63
Maximum 3.27 26.25 18.67 25.31
1. Quantile 1.92 6.84 7.40 6.87
3. Quantile 2.45 11.56 11.48 11.49

Mean 2.20 9.58 9.94 9.62
Median 2.23 9.30 10.39 9.53
Variance 0.13 11.49 9.67 11.2
Standard
Deviation 0.36 3.39 3.11 3.35

Skewness −0.09 0.68 0.28 0.78
Kurtosis −0.58 0.22 −0.22 0.92

The electrical conductivity data in their original format showed a slight grouping on
the left, i.e., with a tail on the right (Figure 7A). Thus, Neperian logarithm transformation
was used to normalize the data and use ordinary kriging (Figure 7B).
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3.2. Predictive Model

Based on the pre-processing presented in Section 2.2, the best model for predicting
aEC using the sparse dataset is shown in Table 2. The “landforms_tpi_based” variable
has a negative coefficient of −0.18. This implies that areas associated with this attribute
show reduced aEC. In other words, as the “landforms_tpi_based” values increase, the
aEC decreases.

The variable “curv_total” shows a considerable influence, indicated by the high
coefficient value of −9424.44. This suggests that even a slight increase in “curv_total”
is associated with a significant drop in aEC value.

Analyzing other variables such as the satellite bands “land_2018_B5”, “land_2018_B10”,
“land_2019_B2”, “land_2019_B6”, “sent_2018_B8A”, and “sent_2019_B3”, all have negative
coefficients close to zero. This means that even subtle changes in these attributes are linked to
decreased aEC, although this relationship is relatively tiny. This is interesting because groups
of satellite bands from different years were selected from 2018 to 2019.
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Table 2. Adjustment parameters of the linear electrical conductivity model as a function of remote
sensing data using the best combination of Pearson’s selection, in addition to the BIC criterion and,
finally, using a regsubset function.

aEC (mS/m)

Coefficient Estimated Confidence Interval (95%) p-Value

(Intercept) 29.20 1.34–57.05 <0.05 *
landforms_tpi_based −0.18 −0.31–−0.06 <0.05 *

curv_total −9424.44 −14,713.09–−4135.80 <0.05 *
land_2018_B5 −0.00 0.00–0.00 <0.05 *

land_2018_B10 −0.00 0.00–0.00 <0.05 *
land_2019_B2 0.01 0.01–0.01 <0.05 *
land_2019_B6 −0.00 0.00–0.00 <0.05 *

sent_2018_B8A 0.01 0.01–0.02 <0.05 *
sent_2019_B3 −0.04 0.05–−0.03 <0.05 *
Observations 162

R2/R2 adjusted 0.872/0.866
* Significant at a level of 5%.

It is important to note that all the variables mentioned are statistically significant for
predicting electrical conductivity, as indicated by the small p-values. The coefficient of
determination (R2) shows that the independent variables in the model can explain approxi-
mately 87.2% of the variation of aEC. For example, 1–0.872 indicates that approximately
13% of the variability of the aEC distribution phenomenon “remained” to be modeled in the
semivariogram adjustment stage. Figure 8 shows the adjustment line of the linear model
adjusted for the aEC sparse data as a function of the remote sensing data.
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the models, while the dashed lines are intercepted and idealized as 1 and 0, respectively. R2 adj: R2

adjusted value; aEC: apparent electrical conductivity in mS/m (millisiemens per meter).
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3.3. Semivariograms

The aEC semivariogram for an exhaustive dataset using OK was adjusted by the spher-
ical model, and a minimal random variability (nugget) and significant spatial correlation at
distances up to 500 m (range) were observed (Figure 9A). This semivariogram is treated as
a reference for comparison with the OK, KED, and GWR mapping methods when using
the aEC sparse dataset.
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Figure 9. Empirical (circles) and adjusted (lines) semivariograms of apparent electrical conductivity
(aEC) in mS/m. (A) Using ordinary kriging with 26 lines (reference); (B) using ordinary kriging with
four rows (sparse); (C) using kriging with external drift of aEC data with sparse data as a function of
remote sensor data defined in Section 3.5; (D) using geographically weighted regression with sparse
data as a function of remote sensor data defined in Section 3.5; (E) semivariogram of the R2 indices
obtained by calculating the GWR for spatialization.

The semivariograms using the sparse aEC dataset and OK were better adjusted with
an exponential model, and it revealed a slight increase in random variability (nugget) and
a significant spatial correlation at shorter distances of 250 m (Figure 9B). In the case of
KED, the random variability is more substantial (more considerable nugget value), and the
spatial correlation is strong only over a 25-m range (Figure 9C).

The KED mapping method shows that the 13% variability still showed spatial depen-
dence, even at a range of 25 m. Thus, the semivariogram implemented by the KED model
captured the entire spatial dependency structure of aEC variability in the sparse dataset.

The application of GWR using the sparse dataset showed minimal random variability
(nugget) and a robust spatial correlation at distances up to 233 m (Figure 9D). In contrast,
the spatialization of the R2 values obtained by the GWR model from a semivariogram
adjusted for the Gaussian model shows very low structured variability and a significant
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spatial correlation limited to 130 m (Figure 9E). Compared to KED, the GWR method
presented almost 10× more value of spatial dependence distance (range) despite using the
same covariates for point-to-point prediction. These range values cannot be comparable
because, for KED, we are talking about the residuals of the regression model, while in the
case of GWR, we are talking about spatialization of the predicted aEC values via the GWR
model and subsequent spatialization by OK.

3.4. Electrical Conductivity Maps and External Validation
3.4.1. Maps

The aEC maps using the exhaustive dataset are shown in Figure 10A. The aEC values
were standardized for equal intervals as follows: <8.44; <8.44 and <13.77; <13.77 and
<19.11; and >19.11 millisiemens per meter (mS/m). In this way, we can compare the visual
patterns produced by the different mapping methods. Still, in the aEC reference map, red
represents the lowest aEC values, while blue represents the highest values. The green area
in Figure 10A shows the high aEC values located where there is a natural drainage.

The aEC OK map using the sparse dataset shows a non-representative distribution of
the aEC values, as it is possible to compare to the aEC reference map. The absence of aEC
information between transects significantly impacted the production of the aEC map when
the mapping procedure was OK.

However, when the sparse aEC dataset is combined with the KED mapping method,
the spatial pattern of the aEC (Figure 10C) is like the aEC reference map (Figure 10A).
It represents the success of the data fusion between proximal and remote datasets and
positively proves the present hypothesis.

Despite the well-adjusted model fitted between the aEC sparse dataset and the satellite
covariables, the GWR method for mapping did not present a benefit for use, and the aEC
map presented in Figure 10D does not resemble the aEC reference map.

The point-to-point R2 fit values for the aEC mapping via GWR can be visualized by
looking at the fit map of the data in Figure 10E. The smallest fit values (<0.78) are close to
the original position of the aEC sparse dataset coordinates. In this sense, the relationships
between the dependent and independent variables may have been compromised since the
covariates may not have had good correlations at these distances.
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Figure 10. Maps of apparent electrical conductivity (aEC) in mS/m. (A) Using ordinary kriging with
26 lines (reference); (B) using ordinary kriging with four rows (sparse); (C) using kriging with external
drift of the sparse data as a function of the remote sensing data defined in Section 3.5; (D) using
geographically weighted regression with sparse data as a function of remote sensor data defined in
Section 3.5; (E) map of the adjusted R2 obtained by calculating the GWR for the aEC sparse dataset.

3.4.2. External Validation

The aEC map using OK and the exhaustive dataset presented the coefficient of deter-
mination (R2) reaching 97. In addition, the mean error (ME) is zero, meaning the model has
no systematic bias. The mean absolute error (MAE) is low, indicating an average accuracy
of 0.45 in the predictions. The mean square error (RMSE) is also low, with a value of
0.56, indicating a precision in the predictions. The performance deviation ratio (RPD) is
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relatively high, reaching 5.86, which suggests the model’s excellent ability to predict data
variability. The summarized external validation results are shown in Table 3.

Table 3. Accuracy values of the maps obtained via external validation using the 400 aEC points.

R2 ME MAE RMSE RPD

OK—Exhaustive Dataset
0.97 0.00 0.45 0.56 5.86

OK—Sparse Dataset
0.71 0.00 1.41 1.87 1.25

KED—Sparse Dataset
0.78 0.00 1.26 1.62 1.76

GWR—Sparse Dataset
0.57 0.00 1.78 2.30 0.81

In contrast, the aEC uses OK, but considering the sparse dataset, although the R2 is
still relatively high (0.71), the other metrics show lower performance than the reference
aEC map. The MAE increases to 1.41 and the RMSE to 1.87, indicating a reduced prediction
accuracy, while the RPD decreases to 1.25, suggesting a less reliable forecasting ability
concerning data variability.

The results of the KED mapping for the aEC for the sparse dataset are slightly better
than the aEC and OK method for the sparse dataset but are still inferior to the aEC OK map
for the exhaustive dataset. The R2 is 0.78, indicating a relatively good fit to the aEC data,
while the MAE is 1.26 and the RMSE is 1.62, suggesting moderate accuracy in the forecasts.
The RPD is 1.76, indicating reasonable predictability concerning data variability. We can
see that the KDE method is better than just using the target variable’s spatial dependence
compared to the aEC mapping using OK and sparse datasets.

GWR mapping method for aEC and sparse dataset are the weakest among the methods
evaluated. The R2 is 0.57, indicating a modest fit to the data, while the MAE is 1.78 and
the RMSE is 2.30, indicating relatively low prediction accuracy. In addition, the RPD is
0.81, indicating limited predictive ability concerning data variability. The GWR method
performed worse than the aEC OK mapping procedure when using the sparse aEC dataset.

3.5. Management Zones and Zone Validation
3.5.1. Management Zones Maps

The irrigation MZ maps are exhibited in Figure 11. The OK map of the aEC using the
exhaustive dataset presented the irrigation MZ reference map (Figure 11A). The labels were
created to associate the zones in the maps with our inferences regarding the capacity to
retain the water in the pivot area and consider the values of the aEC and the moisture’s
behavior [52,53]. This way, blue is Dry, yellow is Intermediate, and green is Moist.

As the k-means process just handled one piece of information, the output resembles
the input information, as in the case of the irrigation MZ map made using the aEC sparse
dataset and OK, producing different irrigation borders in Figure 11B. In the same way, the
GWR aEC map produced a different pattern from the reference irrigation MZ map. On the
other hand, the irrigation MZ map using KED and aEC sparse data (Figure 11C) produced
the same MZ pattern as the reference MZ.

From the MZ map (Figure 11A) created from the aEC map taken as the reference map
or the one obtained by the KED method (Figure 9C), we could return to the producer and
recommend that they irrigate the area presented in green for less time than the yellow and
blue areas, which should have more irrigation time.
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Figure 11. Maps of management zones for soil types. (A) Using ordinary kriging with 26 lines
(reference); (B) using ordinary kriging with four rows (sparse); (C) using kriging with external drift
of the sparse aEC data as a function of the remote sensing data defined in Section 2.6.2; (D) using
geographically weighted regression with sparse data as a function of remote sensor data defined in
Section 2.6.3.

3.5.2. Validation of Management Zones

The management zoning process using the OK aEC exhaustive dataset shows in
Table 4 the ANOVA for the reference irrigation MZ map when the efficiency was tested to
distinguish the irrigation zones when comparing the texture properties.

For the irrigation MZ map using the aEC sparse dataset and the OK method, although
the Scott–Knott test indicated a possible significant difference, the ANOVA did not confirm
this discrepancy (Pr > Fc = 0.07). Therefore, there is insufficient statistical evidence to state
that the irrigation management zones map in this combination should present any benefit
to treating the digital twin heterogeneity of the soil.

The irrigation MZ map using the aEC sparse dataset and GWR method showed
significant differences in the reference treatment (Pr > Fc = 0.03). The Scott–Knott test also
corroborated these differences, providing statistical support (Table 4).



Sensors 2024, 24, 5742 19 of 22

Table 4. Analysis of variance (ANOVA) of MZ classes created from aEC maps via OK 26 and 4 lines,
via KED and GWR via 4 aEC lines.

aEC 26 Lines OK

Treatment Scott–Knott Mean GL SQ QM Fc Pr > Fc CV (%)
Shapiro–

Wilk
(p-value)

Homogeneity
of Variances

(p-value)

Treatment 1 a—Moist 431.11 2 20,067.00 10,033.40 5.51 0.01 10.32 0.00 0.00
Residue 2 a—Dry 425.88 69 125,533.00 1819.30

Total 3 b—Intermediate 393.10 71 145,600.00

aEC 4 Lines OK

Treatment Scott–Knott Mean GL SQ QM Fc Pr > Fc CV (%)
Shapiro–

Wilk
(p-value)

Homogeneity
of Variances

(p-value)
Treatment 1 a 401.33 2 10,806.00 5402.90 2.77 0.07 10.69 0.00 0.00
Residue 2 a 438.00 69 134,794.00 1953.50

Total 3 a 416.87 71 145,600.00

aEC 4 Lines KED

Treatment Scott–Knott Mean GL SQ QM Fc Pr > Fc CV (%)
Shapiro–

Wilk
(p-value)

Homogeneity
of Variances

(p-value)
Treatment 1 a—Moist 431.11 2 13,760.00 6,879.90 3.60 0.03 10.58 0.00 0.00
Residue 2 a—Dry 427.82 69 131,840.00 1910.70

Total 3 b—Intermediate 401.00 71 145,600.00

aEC 4 Lines GWR

Treatment Scott–Knott Mean GL SQ QM Fc Pr > Fc CV (%)
Shapiro–

Wilk
(p-value)

Homogeneity
of Variances

(p-value)
Treatment 1 a—Moist 440.00 2 14,686.00 7343.10 3.87 0.03 10.54 0.00 0.00
Residue 2 a—Dry 431.25 69 130,914.00 1897.30

Total 3 b—Intermediate 403.67 71 145,600.00

The irrigation MZ map using the KED aEC sparse dataset and GWR presented a similar
potential to distinguish the irrigation boundaries considering the ANOVA. Irrigation MZ
maps using the sparse aEC dataset and KED and GWR mapping methods demonstrated
statistically significant differences from the reference procedures. Hence, the final decision
should consider additional factors such as cost, practicality of implementation, or other
criteria relevant to the study context.

For example, although both were efficient in distinguishing treatment areas, we can
understand that operationally, the management zone map produced by the KED aEC sparse
dataset presents spatial patterns compatible with the possible alteration of an irrigation
pivot commonly found in Brazil. It is possible to set the irrigation pivot speed up or
down in certain areas, considering a “pie slices” format. On the other hand, considering
the irrigation MZ map by GWR, it could be challenging to recommend speeding up the
rotation since the zone patterns are in the “amorphous” format.

4. Conclusions

The incorporation of remote sensing data significantly enhanced the accuracy of
mapping apparent electrical conductivity (aEC), even when a sparse dataset was used.
Specifically, when remote sensing data was combined with the kriging with external drift
(KED) method, the resulting aEC map achieved a relatively high R2 value of 0.78, outper-
forming both the ordinary kriging (OK) method applied to the sparse dataset (R2 = 0.71)
and the geographically weighted regression (GWR) method, which had the weakest per-
formance with an R2 of 0.57. The KED method also demonstrated moderate prediction
accuracy with a mean absolute error (MAE) of 1.26 and a root mean square error (RMSE) of
1.62, indicating its effectiveness in mapping aEC in scenarios with limited data.

When evaluating irrigation management zones (MZs), the map generated using the
exhaustive aEC dataset and the OK method was able to delineate three distinct zones for
differentiated irrigation treatment. These zones were validated using soil texture data,
confirming the map’s ability to identify areas with higher soil moisture conservation.
Furthermore, the irrigation MZ map produced using the sparse dataset and the KED
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method could distinguish irrigation zones with comparable precision to the reference MZ
map. The ANOVA results for the MZs identified by the KED method were consistent with
those from the reference map, underscoring the reliability of remote sensing data and KED
in precision agriculture, even with reduced sampling density.
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