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Abstract
The SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm was applied with MODIS images and gridded 
weather data from 2007 to 2021, to monitor the energy balance components and their anomalies, in the Atlantic Forest (AF) 
and Caatinga (CT) biomes inside the coastal agricultural growing zone, Northeast Brazil. Considering the long-term data, the 
 Rn values between the biomes are not significantly different, however presenting distinct  Rn partitions into latent (λE), sensi-
ble (H), and ground (G) heat fluxes between biomes. The  Rn values annual averages are 9.40 ± 0.21 and 9.50 ± 0.23 MJ  m−2 
 d−1, for AF and CT, respectively. However, for respectively AF and CT, they are respectively 5.10 ± 1.14 MJ  m−2  d−1 and 
4.00 ± 0.99 MJ  m−2  d−1 for λE; 3.80 ± 1.12 MJ  m−2  d−1 and 5.00 ± 1.00 MJ  m−2  d−1 for H; 0.50 ± 0.12 MJ  m−2  d−1 and 
0.40 ± 0.10 MJ  m−2  d−1 for G, yielding respective mean evaporative fraction (Ef = λE/(Rn – G) values of 0.60 ± 0.12 and 
0.50 ± 0.15. Anomalies on λE, H, and Ef were detected through standardized index for these energy balance components by 
comparing the results for the years 2018 to 2021 with the long-term values from 2007 to each of these years, showing that 
the energy fluxes between surfaces and the lower atmosphere, and then the root-zone moisture conditions for both biomes, 
may strongly vary along seasons and years, with alternate positive and negative anomalies. These assessments are important 
for water policies as they can picture suitable periods and places for rainfed agriculture as well as the irrigation needs in 
irrigated agriculture, allowing rational agricultural environmental management while minimizing water competitions among 
other water users, under climate and land-use changes conditions.
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Introduction

Climate and land-use changes, affecting the energy and 
water balance components, have been detected worldwide, 
making geotechnologies powerful tools for monitoring these 
components, to subsidize policies for rational environmental 
management (Jardim et al. 2022; Rampazo et al. 2020; Safre 
et al. 2022; Teixeira et al. 2017a, b; 2021a). Understanding 
the effects of these changes is critical for ecological restora-
tion (Yang et al. 2016; Zhang and Zhang 2019), demand-
ing large-scale studies to support sustainable explorations 

of the natural resources (Almeida et al. 2023; Araujo et al. 
2019; Santos et al. 2020). These tools on different tempo-
ral and spatial scales, can be also used to detect anomalies 
on the energy and water balance components for specific 
periods, by using long-term satellite images and weather 
data (Beguería et al. 2014; Bento et al. 2018; Gouveia et al. 
2017; Vicente-Serrano et al. 2018; Yang et al. 2014; Zhang 
et al. 2019, 2021).

Accounting the energy balance components, the net 
radiation  (Rn) is the difference between incoming and out-
going energy fluxes of both short and long wavelengths, 
being partitioned into latent (λE), sensible (H), and ground 
(G) heat fluxes, and the magnitudes of these partitions are 
dependent on solar radiation levels and the root-zone mois-
ture conditions. Monitoring λE is outstanding, because it 
represents the energy used for evapotranspiration, which 
is the main water use from any agroecosystems. On one 
hand, although evapotranspiration is related to agricultural 
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production, increases of its rates means less water avail-
ability for other water sectors (Teixeira et al. 2023). On 
the other hand, the magnitude of H may indicate warm-
ing or cooling conditions (Bhattarai et al. 2017; Teixeira 
et al. 2017a, b; 2021a; Zhang et al. 2016). Teixeira et al. 
(2017b) showed that the replacement of natural vegetation 
by sugarcane, in Southeast Brazil, reduced λE, increasing 
H, while when this replacement happened with coffee, the 
opposite situation was verified, increasing λE, dropping H. 
Quantifying these components, describing their dynamics 
and anomalies along the years, is meaningful to assess the 
dimension of environmental impacts (Yang et al. 2016; 
Zhang and Zhang 2019; Zhang et al. 2021).

The Normalized Differences Vegetation Index (NDVI) 
is worldwide used to indicate vegetation greenness (Bento 
et al. 2018; Brouwers et al. 2015). The NDVI standardized 
index was developed by Peters et al. (2002), to describe the 
probability of variation from its normal value over multiple 
years of data on a weekly time step. However, in terms of 
reflecting impacts of environmental stress on vegetation, 
NDVI often shows delayed, regarding the root-zone moisture 
responses (Zhang et al. 2019). Thus, standardized indices, to 
detect environmental anomalies, have been generally based 
on large-scale NDVI, precipitation (P), actual evapotran-
spiration (ET), and soil moisture (Hao and AghaKouchak 
2013; Kim and Rhee 2016; Mu et al. 2011; Teixeira et al. 
2021b, Vicente-Serrano et al. 2018; Yao et al. 2010; Zhang 
et al. 2021), such as Standardized Soil Moisture Index (SSI) 
(Hao and AghaKouchak 2013); the Standardized Precipi-
tation Evapotranspiration Index (SPEI) (Vicente-Serrano 
et al. 2018; and the Standardized Moisture Anomaly Index 
(SZI) (Zhang et al. 2021). The inclusion of the energy bal-
ance components in these assessments is important for envi-
ronmental monitoring, as they are highly variable on both 
space and time (Ford and Labosier 2017; Otkin et al. 2013; 
Teixeira et al. 2017a, b, 2021a, b; Zhang and Zhang 2019; 
Zhang et al. 2021.

According to Vicente-Serrano et al. (2018), ET anomaly 
analyses in semi-arid regions are appropriate, as there are 
more instabilities on the root-zone moisture levels, affect-
ing biomass production and canopy structure (Zhang et al. 
2016). Zhang et al. (2015) developed a water moisture index, 
by incorporating some advantages regarding other indices, 
whose performance has been verified on different scales for 
long-term water assessments. Their index employs a water-
energy balance model to estimate the aggregate moisture 
departure. Hence, an accurate assessment of environmental 
impacts on vegetation activity is crucial for understanding 
the response of the biomes to anomalies (Zhang et al. 2019, 
2021), especially under water scarcity conditions, as in case 
of some Northeast Brazilian areas.

In the coastal Brazilian biomes, inside the Northeast 
region, the ecosystems are experiencing environmental 

impacts because of deforestations; burnings; air, water and 
soil pollutions, as well intensive agricultural crops replacing 
the natural vegetation (Lewinsohn and Prado 2005; Mariano 
et al. 2018). This is the case of SEALBA, acronym for the 
agricultural growing region involving the states of Sergipe 
(SE), Alagoas (AL) and Bahia (BA), with increasing mixed 
agroecosystems within the Atlantic Forest (AF) and Caatinga 
(CT) biomes, over the last years, and these land use changes, 
together climate instabilities, affect the available energy par-
titions into λE and H, what can increase water consumptions 
or warming conditions. The delimitation of the agricultural 
potential for SEALBA was based on the average totals of 
precipitation ranging between 450 and 1400 mm, from April 
to September. According to Procopio et al. (2019), these 
rainfall amounts could supply water for several crops (grains, 
fruits, sugar cane, forestry, and pasture). However, to know 
the real water availabilities for agriculture, besides rainfall 
as input, the output, i.e., water fluxes represented here by λE 
in energy units, must be also considered. In the SEALBA 
coastline, is the AF biome and more to the west side is the 
CT biome, both experiencing replacements of their natural 
vegetation by crops. Despite their aptitude for agriculture 
when water is available, this fast replacement, together with 
climate changes, may increase environmental impacts. The 
use of long-term energy balance data and standardized indi-
ces based on its components is suitable for policy decision-
making under these unstable conditions.

Some field energy and water balance studies were done 
by different methods in the Brazilian AF and CT biomes 
(Marques et al. 2020; Pereira et al. 2010; da Silva et al. 2017; 
Teixeira et al. 2008). However, time specific point measure-
ments are not suitable for large-scale long-term account-
ings, because of strong spatial and temporal variations on 
the energy and mass exchanges between surfaces and the 
lower atmosphere. Few efforts have been carried out for 
monitoring the energy and water balance components along 
the years inside these biomes considering a large data series 
for average conditions, allowing to monitor anomalies for 
specific periods. These analyzes can help to understand the 
responses of natural vegetation and agricultural crops to the 
environmental impacts.

Remote sensing from satellites, together with weather 
data from field stations, have been used for energy and 
water balance assessments through algorithm applications 
in distinct agroecosystems at different spatial and temporal 
scales (Allen et al. 2007; Bastiaansssen et al. 1998; Teixeira 
2010). These algorithms are very useful to evaluate the 
impacts from human activities upon natural resources, 
due to their efficiencies to account these components at 
different spatial and temporal resolutions. Because of its 
operationality, the Penman–Monteith (PM) equation has 
been inserted in some of remote-sensing algorithms (Cleugh 
et al. 2007; Consoli and Vanella 2014; Consoli et al. 2016; 
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Nagler et  al. 2013; Olivera-Guerra et  al. 2018), which 
when applied with gridded weather data, are suitable for 
using with low spatial resolution satellite images, but with 
good temporal resolutions (Mateos et al. 2013; Teixeira 
et al. 2023; Vanella et al. 2019), as for example, applying 
to MODIS images with spatial resolution of 250 m and 
1,000 m in the visible and thermal bands, respectively, at 
daily temporal resolution (Teixeira et al. 2013).

Considering operational aspects of the Penman–Monteith 
equation, the SAFER (Simple Algorithm for Evapotranspira-
tion Retrieving) algorithm was developed by using simulta-
neous field and remote sensing measurements in Northeast 
Brazil to estimate the energy and water balance components. 
The bands 1 to 7 from Landsat 5 satellite; and bands 1–2 
together with the bands 31–32 from MODIS sensor were used 
together with micrometeorological data to derive and validate 
all the SAFER´s equations (Teixeira et al. 2008, 2010; 2013). 
The reason for the SAFER´s choice in the current research, 
besides its applicability, other important advantage, regard-
ing other algorithms, is that in its newer version there is no 
need of the thermal bands, being possible to use only the red 
(MODIS spectral range 0.62–0.67 µm) and near infrared bands 
(MODIS spectral range 0.84–0.87 µm), more easily available 
(Consoli and Vanella 2014). In addition, the thermal bands of 
the MODIS sensor, having a spatial resolution of 1 km, means 
that the images should cover more mixed surface types, when 
comparing with the 250-m spatial resolution of its red and 
near infrared bands.

Aiming to implement an operational monitoring system 
for biomes experiencing climate and land-use changes, 
taking the SEALBA region as a reference, we tested the 
latest version of the SAFER algorithm, by using MODIS 
MOD13Q1 reflectance products and long-term weather data 
from 2007 to 2021 at the same satellite 16-day timescales, to 
retrieve the dynamic of the energy and water balance condi-
tions along the years. Besides characterizing average condi-
tions, we used a standardized index based on the energy bal-
ance components  (EBSTD) for further anomaly assessments 
on these components for specific periods of the four last 
years of this long-term data set. The authors believe that the 
success of applications for this specific region may encour-
age replications of the methods in other environmental con-
ditions with simple calibrations of the modelling equations.

Material and methods

Biomes and data set

Figure 1 shows the location of the SEALBA agricultural 
growing region within the Brazilian states of Sergipe – SE, 
Alagoas – AL, and Bahia- BA, in Northeast Brazil (Fig. 1a); 
biomes involved by the region (Fig. 1b) according to the 

Geographic and Statistical Brazilian Institute (IBGE ˗ www. 
ibge. gov. br); and altitudes together with the 17 weather sta-
tions used (Fig. 1c) from the National Meteorological Insti-
tute (INMET ˗ https:// www. gov. br/ agric ultura/ pt- br/ assun 
tos/ inmet).

Considering the MODIS pixel size of 250  m, the 
SEALBA region comprises 6.2 Mha (Fig. 1a), involving the 
Atlantic Forest (AF) and Caatinga (CT) biomes (Fig. 1b). 
The AF areas, mostly below 275 m of altitude, are in a por-
tion closer to the coastline, while CT areas are located more 
to the west side, being the majority above 275 m of altitude 
(Fig. 1b and c).

The AF biome is characterized by forest vegetation, 
involving dense and open rain forests, semi-decidual sea-
son forests. The climate is tropical humid but with mixed 
microclimates involving natural and anthropized areas 
(Ribeiro et al. 2009). The CT biome has species composed 
by trees and shrubs with characteristics that allow environ-
mental adaptations, under high air temperatures but at low 
air humidity levels (Santos et al. 2014). Both biomes within 
SEALBA have been experiencing fast replacement of their 
natural vegetation by crops.

The input weather data for the large-scale energy bal-
ance modelling were incident global solar radiation (RG); 
air temperature  (Ta), air relative humidity (RH), and wind 
speed (u); for the calculation of reference evapotranspiration 
 (ET0) (Allen et al. 1998) and the latent heat fluxes – λE, 
applying the SAFER algorithm (Teixeira et al. 2017a, b, 
2021a, b). Through a geographic information system (GIS), 
these data were interpolated using the geostatistical “mov-
ing average” method and layered with the remote sensing 
parameters, contributing to a better spatial characterization 
of the energy balance components at the spatial resolution 
of the MODIS images.

The bands 1 (red) and 2 (infrared) from the MODIS 
sensor (MOD13Q1 reflectance product) were downloaded 
from the site of EARTHDATA Aρρ EEARS (https:// lpdaa 
csvc. cr. usgs. gov/ appee ars/) and used together with the 
weather data from the stations of INMET. The images have 
spatial and temporal resolutions of 250 m and 16 days, 
respectively, giving 23 free-cloud images in a year. The 
MOD13Q1 product provides the NDVI and the Enhanced 
Vegetation Index (EVI). The algorithm chooses the best 
available pixel value from all the acquisitions from the 
16-day period. The criteria used is low clouds, low view 
angle, and the highest NDVI/EVI value. Along with these 
vegetation layers, the HDF file has reflectance bands 1 and 
2, used in the current research.

Considering the long-term period from 2007 to 2021, 
it was possible to quantify anomalies for specific periods 
from 2018 to 2021, in the AF and CT biomes within the 
SEALBA agricultural growing. To retrieve the energy and 
water balance components from all MODIS images and 

http://www.ibge.gov.br
http://www.ibge.gov.br
https://www.gov.br/agricultura/pt-br/assuntos/inmet
https://www.gov.br/agricultura/pt-br/assuntos/inmet
https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
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gridded weather data, the SAFER’s equations were applied 
by using a script built in the Integrated Land and Water 
Information System (ILWIS), version 3.8.6, which is a 
geographic information system (GIS) and remote sens-
ing software for both vector and raster processing (https:// 
52nor th. org/ news/ new- ilwis-3- 8-6- relea se/).

Large‑scale energy balance modelling

Calculations of Normalized difference vegetation index 
(NDVI) and surface albedo (α0)

After clipping the MODIS reflectance images for the 
SEALBA region, the Normalized Difference Vegetation 
Index (NDVI) was calculated and incorporated in the 
modelling steps as a surface cover and root-zone moisture 
remote-sensing indicator:

where ρ1 e ρ2 are respectively the MODIS reflectance from 
bands 1 (red) and 2 (near infra-red).

The pixel values of surface albedo (α0) were acquired as:

where a, b, and c are regression coefficients, which in the 
Northeast of Brazil, were 0.08, 0.41, and 0.14, from simultane-
ous remote sensing and field measurements, involving distinct 
irrigated crops and natural vegetation, under strong contrasting 
hydrological conditions (Teixeira 2010; Teixeira et al. 2013).

Estimation of surface temperature  (T0)

For estimation of the daily surface temperature  (T0) pixel 
values, without the MODIS thermal bands, this was done 

(1)NDVI =
�2 − �1

�2 + �1

(2)�0 = a + b�1 + c�2

Fig. 1  Location of the SEALBA agricultural growing region in Northeast Brazil, involving the states of Sergipe—SE, Alagoas—AL, and Bahia 
– BA (a); the biomes within the region (b); and altitudes together with the weather stations (c)

https://52north.org/news/new-ilwis-3-8-6-release/
https://52north.org/news/new-ilwis-3-8-6-release/
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considering the short and long-wave radiation balance com-
ponents. The remote sensing parameters and weather data 
were combined, through the Stefan-Boltzmann principle for 
the emitted both atmosphere and surface radiations (Silva 
et al. 2019):

where ɛA is the atmospheric emissivity, ɛ0 is the surface 
emissivity, and σ = 5.67  10–8 W  m−2  K−4 is the Stefan-Boltz-
mann constant.

Rn was estimated through the Slob equation (Almeida 
et al. 2023):

where τsw is the short-wave atmospheric transmissivity cal-
culated as the ratio of  RG to the incident solar radiation at 
the top of the atmosphere  (RTOP) calculated by astronomic 
parameters, and  aL is a regression coefficient up scaled 
through  Ta pixel values.

being  aT and  bT for the Northeast Brazil were found as 6.8 
and -40, respectively (Teixeira 2010).

The ɛA and ɛ0 values were calculated according to Safre 
et al. (2022):

where  aA,  bA,  a0, and  b0 are regression coefficients, which 
were reported as 0.94, 0.11, 0.06, and 1.00, respectively, for 
the Northeast Brazil (Teixeira 2010; Teixeira et al. 2013).

Net radiation partition

To estimate the λE, the ratio of the actual (ET) to reference 
 (ET0) evapotranspiration  (ET0), was first modeled for the 
satellite overpass time:

where the regression coefficients  asf and  bsf found for the Bra-
zilian Northeast were 1.90 and -0.008 (Venâncio et al. 2021).

Equation 8 does not work for water bodies or mixture 
of land and water (NDVI < 0); thus, the concept of equilib-
rium evapotranspiration (Raupasch 2006) is introduced in 
the SAFER algorithm for pixels under these conditions, with 

(3)T0 =

4

√

RG

(

1 − �0
)

+ ��AT
4
a
− Rn

��0

(4)Rn =
(

1 − �0
)

RG − aL�sw

(5)aL = aTTa + bT

(6)�A = aA
(

ln �sw
)bA

(7)�0 = a0 lnNDVI + b0

(8)
(

ET

ET0

)

sat

= exp

[

asf + bsf

(

T0

�0NDVI

)]

the equilibrium latent heat fluxes (λEeq), at daily timescale, 
considered as:

where Δ is the inclination of the curve relating the saturation 
vapor pressure  (es) and  Ta, γ is the psychrometric constant, 
and G is estimated according to Teixeira (2010):

being  aG and  bG regression coefficients, found to be 3.98 and 
-25.47, respectively, for the Northeast Brazil.

Considering that the satellite overpass values of the ET/
ET0 fraction does not differ so much from the daily ones 
(Teixeira 2010), throughout conditional functions applied to 
the NDVI values, the daily λE pixel values were estimated 
considering the daily averages of the reference evapotran-
spiration for this timescale ( ET024):

being ET024 calculated by using the gridded daily weather 
data on  RG,  Ta, RH, and u (Allen et al. 1998) and 2.45 a unit 
conversion factor.

To close the simplified energy balance equation, H was 
estimated as a residue, having retrieved all the other energy 
balance components (Teixeira et al. 2017a, 2021a):

To infer the root-zone moisture conditions, the evapora-
tive fraction (Ef) was estimated as:

Standardized index for the energy balance components

Following Teixeira et al. (2021b), Zhang et al. (2019), and 
Zhang et al. (2021), to detect anomalies on the energy bal-
ance components, regarding the 16-day periods of the MODIS 
MOD13Q1 product and for the year, the following equation 
was tested to calculate the standardized index (STD) for the 
energy balance (EB) components from 2018 to 2021:

where  EBSTD is the standardized index for λE, H or Ef for 
the period (16-day or year timescales, from 2018 to 2021); 
EB are their values for the specific year (2018, 2019, 2020, 

(9)�Eeq =

(

Δ
(

Rn − G
)

Δ + �

)

(10)G =
[

aG exp
(

bG�0
)]

Rn

(11)�E = 2.45

(

ET

ET0

)

sat

ET024or�Eeq

(12)H = Rn − �E − G

(13)Ef =
�E

Rn − G

(14)EBSTD =
EB − EBmean

EBSD
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and 2021);  EBmean are their long-term averages (2007–2018, 
2007–2019, 2007–2020, and 2007–2021); and  EBSD are the 
pixel-by-pixel standard deviations (2007–2018, 2007–2019, 
2007–2020, and 2007–2021).

Results

Main weather drivers

As for the energy balance partitions the main weather drivers 
are precipitation (P) and incident global solar radiation  (RG), 
Fig. 2 shows their average pixel values regarding the long-
term period from 2007 to 2021, and standard deviations (SD), 
for AF and CT within SEALBA, at the MOD13Q1 reflectance 
16-day timescale, in terms of Day of the Year (DOY).

From Fig. 2a, it is noticed that rainfalls are concentrated 
in the middle of the year for both biomes, AF and CT, with 
the high amounts for AF. The highest P pixel values occur 
from April to July (DOY 097–208), when the MODIS 
16-day average totals are above 60 mm for AF, and higher 
than 50 mm for CT. The lowest rainfall amounts, with P 
mean totals below 15 mm in both biomes at this timescale, 
are from November to January (DOY 305–016), which limit 
λE, increasing H. Regarding the annual scale, the mean 
total in CT, accounting 780 mm  yr−1, is 83% of that for 
AF (936 mm  yr−1). The largest spatial variations between 
biomes are for AF, where the SD values represent 17% of the 
annual P, while for CT the corresponding percentage is 14%.

As shown in Fig. 2b, the  RG average values have an 
inverse tendency along the year, when compared with those 
for P. The highest  RG levels are from October to March 
(DOY 289–065), with averages above 21.0 MJ  m−2  d−1 for 

both biomes, which together with lower rainfall amounts are 
in favor for warmer conditions. The lowest  RG rates happen 
at the middle of the year in June (DOY 161–176), when the 
average drops to below 14.5 MJ  m−2  d−1 but under the high-
est rainfall amounts. Much lower differences on  RG values 
arise between AF and CT when comparing with P, being the 
average  RG for AF 99% of that for CT. Similar  RG spatial 
variations between biomes are detected in the middle of the 
year, when SD accounts only for 3% of the average pixel 
values, but the highest SD occur in AF outside this moisti-
est period, mainly at the start of the year, when it represents 
4–5% of the average values against 2% for CT.

Long‑term energy and water balances

Figure 3 presents the average pixel values and standard 
deviations (SD) for net radiation –  Rn (Fig. 3a) and its parti-
tion into latent – λE (Fig. 3b), sensible – H (Fig. 3c), and 
ground – G (Fig. 3d) heat fluxes, at the MOD13Q1 16-day 
timescale, for the long-term period from 2007 to 2021, in 
terms of Day of the Year (DOY). Data are classified for the 
Atlantic Forest (AF) and Caatinga (CT) biomes, within the 
SEALBA agricultural growing region.

The long-term  Rn values (Fig. 3a) range from 6.50 to 
11.50 MJ  m−2  d−1, with the highest averages at the start and 
at the end of the year, while the lowest ones are at the mid-
dle of the year, for both AF and CT, however slightly higher 
for CT. At the annual scale, the  Rn rates in AF were 99% of 
those for CT, with the largest spatial variations for AF at 
the start of the year, according to the SD values. Crossing 
Figs. 2b and 3a, the ratio  Rn/RG ranges from 0.44 from May 
to June (DOY 145–160) to 0.52 from August to September 
(DOY 241–256). During this last period occur conditions 

Fig. 2  Average pixel values and standard deviations (SD) for precipi-
tation – P (a) and global solar radiation—RG (b), at the MOD13Q1 
reflectance 16-day timescale, for the Atlantic Forest (AF) and Caat-

inga (CT) biomes, within the SEALBA agricultural growing region, 
for the long-term period from 2007 to 2021, in terms of Day of the 
Year (DOY)
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of higher available energy, at the end of the rainy season, 
when the root-zones are still under good moisture condi-
tions, favorable for λE.

Regarding the  Rn partition into λE, stronger differences 
between the AF and CT biomes arise (Fig. 3b). The largest 
λE rates are for AF at the start and at the end of the year, 
just after the rainy periods (see also Fig. 2a). The average λE 
is between 3.80 and 6.80 MJ  m−2  d−1 for AF and from 2.20 
to 7.20 MJ  m−2  d−1 for CT, with average annual values of 
5.10 MJ  m−2  d−1 and 4.00 MJ  m−2  d−1, respectively, being 
the rates for AF 26% higher than those for CT. However, 
from June (DOY 177) to August (DOY 224), the end the 
rainy season, the CT species present λE rates larger than 
those for AF, period when the root-zone moisture is not 
limited for both biomes. The highest λE spatial variations 
happen from January to March (DOY 001–064) and from 
November to December (DOY 305–352), in both biomes, 

when the SD values surpass 50% of the average pixel values. 
At the annual scale SD represents 33% of the average λE for 
CT, while this percentage is 28% for AF. The annual λE/
Rn values were 0.54 and 0.43 for AF ad CT, respectively, 
however, inside the rainy period this ratio is higher than 
0.80 for both biomes, indicating the best root-zone moisture 
conditions for rainfed agriculture, while outside this period 
this ratio falls to 0.34 and 0.20 for AF and CT, respectively, 
meaning higher water stress conditions for CT and irrigation 
needs for crops.

The highest H values are at the start and at the end of the 
year (Fig. 3c), with averages above 6.00 MJ  m−2  d−1 in AF 
and higher than 8.00 MJ  m−2  d−1 in CT, from January to 
February (DOY 001–048). The lowest H rates, with aver-
age below 1.00 MJ  m−2  d−1 occur from June to July (DOY 
161–208). Although in general CT presents larger H values 
than those for AF, there is a short period when they are 

Fig. 3  Average values and standard deviations (SD), of the energy 
balance components at the 16-day MODIS timescale in terms of Day 
of the Year (DOY), for the long-term period from 2007 to 2021. Data 
are classified for the Atlantic Forest (AF) and Caatinga (CT) biomes, 

within the SEALBA agricultural growing region. a net radiation –  Rn; 
b latent heat flux – λE; c sensible heat flux – H; d ground heat flux – 
G
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slightly lower, from June to August (DOY 177–224). At the 
annual scale CT presents a daily average H of 5.00 MJ  m−2 
 d−1, 32% higher than that for AF (3.80 MJ  m−2  d−1). More 
H spatial variations happen in AF than in CT, with SD rep-
resenting 37 and 26% of the average values, respectively, at 
the annual scale. Inside the rainy period the H/Rn ratio drops 
to below 0.20 in both biomes, indicated good conditions for 
rainfed agriculture, while outside this period, at the start 
and at the end of the year, this ratio is above 0.55 and 0.75 
for AF and CT, respectively, meaning higher warming and 
water stress conditions for CT.

Among the energy balance components in SEALBA, G 
is the lowest one (Fig. 3d). Although its amplitude along 
the year is not large, there are some differences between 
the biomes, being the minimum average values 0.43 and 
0.37 MJ  m−2  d−1 for AF and CT, respectively, from May to 
June (DOY 145–160), while the corresponding maximums 
are 0.57 MJ  m−2  d−1 in AF, from November to December 
(DOY 321–336) and 0.52 MJ  m−2  d−1 in CT, from October 
to November (DOY 289–304). At the annual scale, the daily 
average G in AF is 16% higher than that for CT and the SD 
values for AF represent 33% of the mean pixel value, while 
for CT this percentage is 29%. Regarding the G/Rn ratio, it 
was very small for both biomes, ranging from 0.04 to 0.07, 
with this high end being for AF.

Having the pixel values for λE and the available energy 
 (Rn – G), Ef was calculated classifying the biomes AF and 
CT (Eq.  13) and considered representative of the root-
zone moisture conditions. The long-term annual Ef values 
(2007–2021) were 0.60 for AF and 0.48 for CT, being the 
highest values in 2020, when the average for the SEALBA 
agricultural growing region was 0.62, while the lowest ones 
happened in driest year 2018, when it was 0.48.

Standardized index for the energy balance 
components

To test the monitoring of anomalies on the energy and water 
balance conditions along the years, we used the standard-
ized index (STD) for latent heat fluxes (λESTD), sensible 
heat fluxes  (HSTD), and evaporative fraction  (EfSTD), at the 
16-day MODIS timescale, considering the average pixel 
values of these STDs from 2018 to 2021 in terms of Day 
of the Year (DOY), classifying the AF and CT biomes 
within SEALBA, for the respective long-term periods of 
2007–2018, 2007–2019, 2007–2020, and 2007–2021.

Standardized index for latent heat flux

Figure 4 shows the λESTD values during 2018 (Fig. 4a), 
2019 (Fig. 4b), 2020 (Fig. 4c), and 2021 (Fig. 4d), at the 
MODIS 16-day timescale in terms of Day of the Year 

(DOY), classifying the Atlantic Forest (AF) and Caatinga 
(CT) biomes within SEALBA, regarding the respective 
long-term periods 2007–2018, 2007–2019, 2007–2020, 
and 2007–2021.

The positive λESTD average values for 2018 (Fig. 4a) 
were concentrated from January to July (DOY 001–208) 
for both AF and CT, meaning water fluxes higher than 
those for the long-term conditions 2007–2018, with the 
peaks of 0.77 happening in March (DOY 065–080) for AF 
and 0.45 in January (DOY 001–016) for CT. Regarding 
the negative λESTD values, translating lower water fluxes 
than those for the long-term periods, their concentrations 
were from August to December (DOY 225–352), with the 
lowest ones of -0.69 for AF from November to December 
(DOY 321–336) and -1.04 for CT in September (DOY 
257–272).

Considering 2019 and the long-term period 2007–2019 
(Fig. 4b), the highest positive average λESTD for AF of 
0.56 was from April to May (DOY 113–128), while for 
CT of 0.92 it happened in August (DOY 225–240), periods 
under the highest water fluxes compared to the long-term 
periods. The most negative λESTD values for both biomes 
occurred from February to March (DOY 049–064), aver-
ages of -0.30 and -0.67 for AF and CT, respectively, the 
lowest water fluxes compared to the long-term periods.

Analyzing λESTD for 2020, regarding the long-term 
period 2007–2020 (Fig. 4c), it was detected fewer nega-
tive average values, when comparing with the previous 
analyzed years, for both, AF and CT, occurring only from 
January to March (DOY 001–080) and from October to 
November (DOY 289–320). Thus, during this year, water 
fluxes were, in general, higher than those for the long-term 
period in the whole SEALBA. The highest positive λESTD 
values for both biomes were in April (DOY 097–112), 
averaging 0.49 and 0.85 for AF and CT, respectively. The 
most negative ones, averaging -0,43, happened in October 
for AF (DOY 289–304) and of -0.27 in January for CT 
(DOY 001–016), short periods with lower water fluxes 
comparing with the long-term conditions.

For the year 2021 (Fig. 4d), half of the λESTD values 
for AF (52%) and the majority for CT (61%) were nega-
tive, evidencing several lower water fluxes periods from 
vegetation along the year when comparing with the long-
term periods from 2007 to 2021. However, positive values 
happened at the end of the year, with the highest averages 
of 0.42 and 0.41 for AF and CT, respectively, in December 
(DOY 337–365), with water fluxes above than those for the 
long-term periods. The lowest mean λESTD pixel values 
for both biomes were in March (DOY 065–080), -0.28 
and -0.50 for AF and CT, respectively, indicating lower 
water fluxes around this month, when comparing with the 
long-term periods.
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Standardized index for sensible heat flux

Figure 5 shows the  HSTD values during 2018 (Fig. 5a), 2019 
(Fig. 5b), 2020 (Fig. 5c), and 2021 (Fig. 5d), at the MODIS 
16-day timescale in terms of Day of the Year (DOY), clas-
sifying the Atlantic Forest (AF) and Caatinga (CT) biomes 
within SEALBA, regarding the respective long-term periods 
2007–2018, 2007–2019, 2007–2020, and 2007–2021.

Considering the year 2018 (Fig. 5a), the positive  HSTD 
values for both AF and CT, were concentrated during the 
second half of the year (DOY 209–365). The highest aver-
ages of 0.80 and 1.23 for AF and CT, respectively, occurred 
from September to October (DOY 273–304), period of the 

warmest conditions, when compared to the long-term con-
ditions from 2007 to 2018. The most negative mean pixel 
values were from February to March, reaching to -0.51 and 
-0.26 in AF and CT, respectively, indicating cooling situ-
ations, when the H fluxes were lower than the long-term 
values, mainly in AF.

Regarding 2019 (Fig.  5b), the positive  HSTD values 
occurred in two periods of the year for both biomes, from Jan-
uary to March (DOY 017–080) and from October to Decem-
ber (DOY 289–365), while the most negative ones were from 
March to October (DOY 081–288), with the lowest averages 
for CT. The positive peaks were between January and Febru-
ary (DOY 017–032), outside the rainy season, around 0.79 

Fig. 4  Average values of the standardized index for latent heat fluxes 
(λESTD) during 2018 (a), 2019 (b), 2020 (c), and 2021 (d), at the 
MODIS 16-day timescale in terms of Day of the Year (DOY), clas-

sifying the Atlantic Forest (AF) and Caatinga (CT) biomes within the 
SEALBA agricultural growing region, regarding the respective long-
term periods 2007–2018, 2007–2019, 2007–2020, and 2007–2021
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and 1.14 for AF and CT, respectively, when occurred H fluxes 
above the long-term rates, indicating the warmest conditions. 
The most negative average values were -0.35 for AF from 
April to May (DOY 113–128) and -0.66 for CT in August 
(DOY 225–240), when the fluxes were lower than the long-
term values, evidencing the coolest situations, mainly for CT, 
after the rainy season (see also Fig. 2a).

Analyzing the  HSTD values for 2020 (Fig. 5c), there 
were very fewer positive average values for both AF and 
CT, comparing with the previous analyzed years, happen-
ing only at the start of January (DOY 001–016) and from 
September to October (DOY 273–288). This means that 
most of the H rates were lower than those for the long-term 

conditions, meaning cooling conditions during this year. 
The lowest average  HSTD values for both biomes of -0.71 
and -1.14, for AF and CT, respectively, were from March 
to April (DOY 081–096), period with H fluxes much 
below the long-term values from 2007 to 2020.

For the year 2021 (Fig. 5d), only from February to April 
(DOY 033–096) occurred positive  HSTD values for both 
AF and CT, reaching to respective averages of 0.60 and 
0.90, what means that for this year, most of the H fluxes 
were also below of those for the long-term conditions 
2007–2021, indicating general cooling situations, with 
the lowest averages of -0.74 and -0.93, respectively for 
AF and CT, from November to December (DOY 321–336).

Fig. 5  Average values of the standardized index for sensible heat 
fluxes  (HSTD) during 2018 (a), 2019 (b), 2020 (c), and 2021 (d), at 
the MODIS 16-day timescale in terms of Day of the Year (DOY), 
classifying the Atlantic Forest (AF) and Caatinga (CT) biomes within 

the SEALBA agricultural growing region, regarding the respective 
long-term periods 2007–2018, 2007–2019, 2007–2020, and 2007–
2021
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Standardized index for evaporative fraction

Figure 6 shows the  EfSTD values during 2018 (Fig. 6a), 2019 
(Fig. 6b), 2020 (Fig. 6c), and 2021 (Fig. 6d), at the MODIS 
16-day timescale in terms of Day of the Year (DOY), clas-
sifying the Atlantic Forest (AF) and Caatinga (CT) biomes 
within SEALBA, regarding the respective long-term periods 
2007–2018, 2007–2019, 2007–2020, and 2007–2021.

In 2018 (Fig. 6a), the  EfSTD positive values for both 
biomes were concentrated from January to the end of July 
(DOY 001–208), reaching to peaks of 0.64 and 0.38, for AF 
and CT, respectively, meaning higher root-zone moisture 
conditions than those for the long-term values of 2007–2018, 
favorable for rainfed agriculture. The most negative of 
-0.66 for AF and -1.07 for CT, happened from September 

to October (DOY 257–304), when the root-zone moisture 
levels were much lower than the long-term ones, translated 
into much supplementary irrigation water needs for crops.

Considering the year 2019 (Fig. 6b), the positive  EfSTD 
values were concentrated from March to May (DOY 
081–128), when in AF the average reached to 0.40, and 
from June to September (DOY 177–256), when occurred 
the peak of 0.57 in CT, indicating better root-zone moisture 
conditions for crops than those for the long-term periods 
(2007–2019). The lowest  EfSTD values occurred from Febru-
ary to March (DOY 049–064), with the averages dropping 
to -0.37 and—0.69 in AF and CT, respectively, when the 
root-zone moisture levels were much below than those for 
long-term periods, evidencing more irrigation water require-
ments for agriculture.

Fig. 6  Average values of the standardized index for evaporative frac-
tion  (EfSTD) during 2018 (a), 2019 (b), 2020 (c), and 2021 (d), at the 
MODIS 16-day timescale in terms of Day of the Year (DOY), clas-

sifying the Atlantic Forest (AF) and Caatinga (CT) biomes within the 
SEALBA agricultural growing region, regarding the respective long-
term periods 2007–2018, 2007–2019, 2007–2020, and 2007–2021
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Analyzing the  EfSTD average values for 2020, regarding 
the long-term period from 2007 to 2020 (Fig. 6c), it was 
detected fewer negative ones for both AF and CT, meaning 
good root-zone conditions during this year. The highest aver-
age  EfSTD values of 0.62 and 1.04, for AF and CT, respec-
tively, were from March to May (DOY 081–096), periods 
with the best root-zone moisture levels comparing with the 
long-term conditions, meaning no irrigation needs for crops. 
Regarding the lowest averages, respectively -0.20 and -0.27 
for AF and CT, they were in October (DOY 289–304), pic-
turing slightly lower root-zone moisture levels comparing 
with the long-term conditions.

For the year 2021 (Fig. 6d), the majority of the average 
 EfSTD values for both AF and CT were positive or close 
to zero, but with few occasions in the first half of the year 
when they were negative, mainly for CT, picturing slightly 
water deficits for crops. The highest averages of 0.40 and 
0.48 for AF and CT, respectively, occurred from May to 
August (DOY 129–224), during the rainy season, indicated 
very good root-zone moisture for rainfed agriculture and no 
need of irrigation. The lowest  EfSTD values, for both biomes, 
were February to April (DOY 049–096), before the rainy 
period, when there were some degrees of water scarcity.

Discussion

Effects of the energy and water balances 
on vegetation conditions

Drops on precipitation values together with increasing solar 
radiation levels at the start and at the end of the year reduces 
the partition of  Rn into λE, increasing H, promoting declines 
on vegetation activity (Sun et al. 2015). The  Rn values in 
SEALBA follow those for  RG, independently of the rain-
fall amounts (see Figs. 2 and 3a), with the highest values at 
the start and at the end of the year  (Rn/RG = 0.52) and the 
lowest ones in the middle of the year  (Rn/RG = 0.44), for 
both the Atlantic Forest (AF) and Caatinga (CT) biomes. 
By field energy balance experiments from 2011 to 2012 
in AF, within the Brazilian Southeast region, Funari and 
Filho (2014) found  Rn/RG values from 0.40 to 0.68. Through 
Landsat measurements in CT within Northeast Brazil, Teix-
eira et al. (2017a) reported  Rn/RG ratio ranging from 0.41 to 
0.47. These previous values are inside of our results.

The largest λE rates for both AF and CT, are just after 
the rainy seasons, when λE/Rn is above 0.80, while the 
respective lowest ratios of 0.34 and 0.20 occur during the 
driest conditions, independently of the solar radiation rates 
(Figs. 2b and 3b). From micrometeorological measurements 
in AF, Guauque-Melado et al. (2022) reported higher λE/
Rn values from 0.86 to 0.88, but these authors neglected the 
fraction of  Rn partitioned into G, while Funari and Filho 

(2014), also with micrometeorological measurements in 
this biome, found daily λE/Rn values between 0.47 to 0.65, 
inside our annual value (λE/Rn = 0.54). From energy balance 
techniques in CT, da Silva et al. (2017) reported average λE/
Rn ranging from 0.23 to 0.41 for the dry and rainy periods, 
respectively. With also energy balance methods in CT, Cam-
pos et al. (2019) found an annual λE/Rn value of 0.20, like 
our one during the driest conditions.

The highest H values are at the start and at the end of 
the year at low rainfall amounts, when H/Rn is above 0.55 
and 0.75 for AF and CT, respectively, while the lowest ones 
occur during the rainy season, in the middle of the year, 
when this ratio is below 0.20 for both biomes (Fig. 3c). 
Thus, these warmer conditions outside the rainy seasons lead 
to a reduction of available water resources from November 
to February (Huang et al. 2017; Vicente-Serrano et al. 2018; 
Yang et al. 2016). From field energy balance measurements 
in AF, inside the Brazilian Southeast region, Guauque-Mel-
ado et al. (2022) reported H/Rn ranging from 0.12 to 0.14, 
much lower than our ratios in Northeast Brazil. However, 
also from micrometeorological measurements in AF, Funari 
and Filho (2014) found H/Rn values from 0.25 to 0.42, inside 
our ranges. The H/Rn values for CT in the current study are 
much larger than those reported by Teixeira et al. (2021a) 
from Landsat measurements in irrigated lemon crop inside 
this biome, who found annual averages of 0.30, 0.16, and 
0.01 under drip, micro sprinkler, and pivot irrigation sys-
tems, respectively. These last lower values can be explained 
by the frequent occurrence of heat advection from the hot-
ter areas at the vicinities of irrigated plots, increasing λE 
while reducing H in irrigated plots (Consoli and Papa 2013). 
However, Campos et al. (2019), also from energy balance 
measurements in CT, reported H/Rn annual values of 0.50, 
like our average value of 0.53 for this biome.

Even the amplitude in G values not being large and without 
strong differences between the biomes, the minimum values, 
for both, are at the middle of the year, while the maximums 
are at the end of the year, yielding small annual G/Rn val-
ues of 0.04 to 0.07, for CT and AF, respectively (Fig. 3d). 
From energy balance measurements in AF within the Bra-
zilian Southeast region, Funari and Filho (2014) found G/
Rn values from 0.03 to 0.24. The high end of this range is 
much larger than our ones for AF, but their rates involved 
urban areas of the big São Paulo city. However, da Silva et al. 
(2017) reported a low average G/Rn value of 0.03. Under dry 
and wet conditions in CT, Campos et al. (2019) found G/Rn 
values between -0.04 to 0.04. The negative values, at shorter 
timescales, mean heat advection from the warmer vicinities 
to the wetter measured area (Teixeira et al. 2021a).

After accounting the energy balance components, the root 
zone moisture was evaluated through the evaporative frac-
tion (Ef), using Eq. 13. Larger Ef values for AF than for CT, 
indicates better moisture conditions for rainfed agriculture and 
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less irrigation needs in the first biome, but with magnitudes 
varying along the seasons and years. These long-term assess-
ments are important for environmental policies because they 
picture the patterns of the energy and mass fluxes between 
vegetation and the lower atmosphere. However, it is also 
important to analyse how a specific period along the year is 
being altered regarding the long-term conditions. This was 
done by testing the standardized index for these energy bal-
ance components from 2018 to 2021 (Eq. 14).

Applicability of energy and water balance 
standardized indices for vegetation and agricultural 
monitoring

The energy fluxes used for evapotranspiration can be strongly 
variable along the years, for both, AF and CT biomes, alter-
nating positive and negative λESTD values, without specific 
trends. Reductions on λE (negative λESTD), impact rainfed 
agriculture while increasing λE (positive λESTD), although 
being favorable for biomass production, may means less 
water availability for other water users (Teixeira et al. 2013). 
Among the analyzed years, the most negative λESTD values 
were for CT in 2018 (Fig. 4a), indicating several periods 
of lower water fluxes, regarding the long-term conditions 
(2007–2018), while the most positive λESTD values were 
detected for AF in 2019 (Fig. 4b), evidencing higher water 
fluxes, considering the long-term period 2007–2019. The 
λESTD values around zero during 2021 indicated that λE rates 
in this year was more like those for the long-term conditions 
from 2007 to 2021 (Fig. 4d). According to Guauque-Melado 
et al. (2022), distinct biomes respond differently to water 
availability, depending on the weather conditions, as the case 
of CT, where the species develop physiological adaptations 
to overcome water scarcity (Marques et al. 2020). Detection 
of λE anomalies is appropriate for sustainable environmen-
tal ecosystem monitoring because they represent the altera-
tions on the real water consumptions from vegetated surfaces 
(Huang et al. 2016; Teixeira et al. 2021b; Xu et al. 2013; 
Yang et al. 2018; Zhang et al. 2019; Zhang et al. 2021).

Regarding the sensible heat fluxes (H), it is detected the 
strong warming and cooling variations among surfaces and 
the lower atmosphere for both biomes, AF and CT. The most 
negative average  HSTD was for CT in 2020 (Fig. 5c), indi-
cating several situations below the long-term from 2007 to 
2020, while the most positive one was also for CT in 2018 
(Fig. 5a), translated more warm conditions above those for 
2007–2018. The  HSTD values for the years 2019 and 2021 
around zero (Fig. 5b and d, respectively) indicated similarity 
with the long-term heating/cooling situations (2007–2019 
and 2007–2021). According to Teixeira et al. 2017a, 2021a), 
increasing positive H means warmer conditions, while lower 
H, including the negative values, mean more cooling situa-
tions. These  HSTD values allow to analyze how much, during 

the years 2018, 2019, 2020, and 2021, the air heating/cool-
ing conditions differed from those for the long-term period 
(2007–2018, 2007–2019, 2007–2020, and 2007–2021), as 
in case of other environmental parameters (Teixeira et al. 
2021b; Zhang et al. 2019, 2021). These effects on vegeta-
tion growth are variable according to seasons (Wolf et al. 
2016), with the contribution of H increasing when the sys-
tem changes from energy to water limited along and inside 
the years (Marques et al. 2020).

The dynamics of the  EfSTD values allow to analyze how 
much, during the analyzed years, the root-zone moisture con-
ditions differed from those for the long-term periods (Teixeira 
et al. 2021b; Zhang et al. 2019, 2021). Increasing Ef means 
higher root-zone moisture levels for vegetation (Teixeira et al. 
2021a), while lower Ef values identify water stress (Lu et al. 
2011). The most negative  EfSTD was for CT in 2018 (Fig. 6a), 
with an average value of -0.94, indicating several water scar-
city situations, but the highest positive one was also for CT 
in 2020 (Fig. 6c), with a mean STD of 1.08, translating bet-
ter root-zone moisture levels. In general, higher  EfSTD values 
were observed for AF than for CT, with exception for the year 
2020. According to Zhou and Zhou (2009), air humidity and 
the available energy, were the most important variables for 
the root-zone moisture variations in a reed marsh in Northeast 
China. However,  EfSTD values in plants under non-optimum 
moisture levels, are also influenced by the stomatal regula-
tion (Mata-González et al. 2005; Mateos et al. 2013), mecha-
nism much noticed for the CT species. Therefore,  EfSTD is an 
important water parameter for vegetation activity, as root-zone 
moisture influences crop growth and agricultural production 
(Seddon et al. 2016; Zhang et al. 2021).

Based on the long-term energy balance assessments 
(2007–2021), as well as on their anomalies through the 
standardized indices, from 2018 to 2021, it is concluded 
that latent and sensible fluxes, and then the root-zone mois-
ture conditions, may strongly vary among years and sea-
sons, being noticed a memory effects (De Keersmaecker 
et al. 2015) for both Brazilian biomes inside the SEALBA 
agricultural growing region. However, water availability to 
the root zones, represented by Ef, is higher for AF than that 
for CT, as changes in vegetation canopies vary between their 
species, according to environmental conditions (Zhang et al. 
2016), and canopy changes are higher in CT than in AF dur-
ing water stress events (Aires et al. 2008).

Overall, the energy balance modelling with the 
MOD13Q1 reflectance product, can be used to investigate 
the anomalies on water availability conditions along the 
years in distinct biomes. These assessments are important for 
rational agricultural management as they may show suitable 
periods and places for rainfed crops as well as the irrigation 
needs for irrigated agriculture along specific seasons of a 
year, while helping to minimize competitions among other 
water users. As future research directions it is recommended 
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to test the SAFER’s equations with simultaneous MODIS 
and micrometeorological measurements in other environ-
mental conditions to check the need of calibrations for its 
modelling equations.

Conclusions

Net radiation  (Rn) values follow the solar radiation levels 
in the SEALBA region, however slightly higher for the 
Caatinga (CT) than for the Atlantic (AF) biome. Significant 
differences are detected on  Rn partitions into latent (λE), 
sensible (H), and ground (G) fluxes between AF and CT, 
promoting distinct root-zone moisture conditions, repre-
sented by the evaporative fraction (Ef). The largest λE and 
lowest H values are for AF at the start and at the end of the 
year, outside the rainy seasons.

On one hand, among the analyzed years, the most nega-
tive standardized index (STD) values for λE and Ef and posi-
tive for H, were in CT during the second half of 2018, when 
occurred several periods of lower water fluxes and water avail-
ability for vegetation together with higher warming condi-
tions, unfavorable for rainfed agriculture and requiring more 
irrigation water for irrigated agriculture. On the other hand, 
the most positive STD values for λE and Ef and negative for 
H, were detected also for CT in 2020, occurring higher water 
fluxes and water availability for vegetation, together with 
more cooling situations, favorable for rainfed agriculture and 
requiring less irrigation water for irrigated agriculture.

These long-term energy and water balance assessments 
being carried out year after year, have potential to support 
environmental management as they picture suitable periods 
and places for rainfed agriculture as well as the irrigation 
needs for crops, allowing rational agricultural water manage-
ment while minimizing environmental impacts and water 
competitions among other water users under climate and 
land-use changes conditions. To use this monitoring sys-
tem in other environmental conditions, it is recommended 
to test the SAFER’s equations with simultaneous MODIS 
and micrometeorological measurements to check the need 
of calibrations of the modelling equations.
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