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Otoni, MG, Brazil
b Forest Engineering Department, University of Brasília (UnB), Campus Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
c Forest Science, Forest State Institute (IEF), Teófilo Otoni, 39803-084, MG, Brazil
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A B S T R A C T

The mortality of trees in humid tropical forests plays a fundamental role in understanding forest development,
particularly after disturbances such as those caused by logging and extreme weather events. The aim of this study
was to evaluate estimates of individual tree mortality following Reduced Impact Logging (RIL) in the Eastern
Brazilian Amazon at biennial intervals from 2005 to 2012. RIL is based on operations planning, personnel
training, and investments in forest management, and harvesting through RIL must: (a) minimize environmental
damage, (b) diminish operation cost by increasing work efficiency, and (c) reduce operational waste. A mortality
model was constructed based on the estimation of three distance-independent competition-indices (DII) and five
models for predicting the probability of individual tree mortality. The Kolmogorov-Smirnov statistical test was
used to determine the most representative model, from which a Neural Network Autoregressive (NNAR) model
was constructed to forecast mortality after RIL. Mortality data was correlated with the El Niño–Southern
Oscillation (ENSO) and climate (Rainfall, Maximum, Minimum, and Average air temperature). The tested models
showed similar and accurate estimates with R2 exceeding 0.90, although underestimation and overestimation
trends were observed. The NNAR satisfactorily represented species mortality over the simulated years. The
period from 2012 to 2014 was characterized by a Neutral and Weak El Niño event, and exhibited the highest
mortality value for a 25 cm DBH (diameter at breast height), the smallest DBH class measured in this study. In the
correlation matrix analysis, maximum air temperature showed the highest positive correlation with trees mor-
tality. Despite the challenges in estimating individual tree mortality in tropical forests after selective logging,
accurate estimates were achieved using traditional regression techniques and NNAR. These results can support
technical and silvicultural decisions regarding forest management in the Eastern Amazon region of Brazil.

1. Introduction

Climate change is a complex phenomenon that affects the planet in
various ways, altering average conditions of temperature, rainfall, sea
levels, and the frequency of extreme events (Fell et al., 2022; Gonçalves
et al., 2024; Mano et al., 2023). These variations over the years can

stimulate species development, migration to locations with better con-
ditions, or their extinction. Tree mortality is a fundamental ecological
and demographic process for understanding forest ecosystem dynamics
(Bayat et al., 2019a; Ruiz-Benito et al., 2013; Zhu et al., 2019). It directly
affects species composition, modifies population and community struc-
tures, reduces annual net increments, and alters nutrient cycling
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(Archambeau et al., 2020; Bertini et al., 2019).
In the context of climate change, there is growing concern that tree

mortality may lead to rapid and significant shifts in the diversity,
structure, and functionality of tropical forests (Hill et al., 2017; Reate-
gui-Betancourt et al., 2024). Studies have indicated that the likelihood
of mortality tends to increase due to factors associated with individual
species growth, wood density, and tree size (de Oliveira et al., 2023; Hill
et al., 2017). Understanding these processes is therefore essential to
grasp the impact of climate change on forests and to guide future con-
servation and restoration efforts for these ecosystems (Gonçalves et al.,
2024).

Although predicting tree mortality in humid tropical forests repre-
sents a major challenge (Archambeau et al., 2020) given its complex
(Adame et al., 2010), gradual, and highly variable (Arellano et al., 2019;
Dietze and Moorcroft, 2011a) nature, as well as the different mortality
behaviors among species (Castro et al., 2015; Rossi et al., 2007), it has
significant implications for long-term tree growth estimates (Weiskittel
et al., 2011). Therefore, an accurate representation of mortality in
vegetation models is necessary (Fisher et al., 2018).

One of the challenges in modeling tree mortality is that various
random factors can lead to their death. Regular mortality, also known as
non-catastrophic mortality, is caused by factors such as competition,
age, senescence, normal pest and disease presence, and genetic char-
acteristics of species (Arellano et al., 2019; Esquivel-Muelbert et al.,
2020). On the other hand, irregular or catastrophic mortality is gener-
ally associated with extreme or random events, such as insect attacks,
pest and disease epidemics, and climate events related to the El Niño-
Southern Oscillation (ENSO) (Aleixo et al., 2019; Das et al., 2016; Rossi
et al., 2007; Ruiz-Benito et al., 2013).

Tree mortality can also occur due to damage caused by selective
logging, which can damage roots and bark, favoring pest and disease
attacks, or canopy disturbances which can disadvantage some tree
species (de Oliveira et al., 2023). Therefore, understanding and pre-
dicting tree mortality after natural and anthropogenic disturbances is
essential for understanding the dynamics and diversity of forest eco-
systems (Purves and Pacala, 2008), particularly using individual tree
models which constitute one of the alternatives for managing tropical
forests in aiming for sustainability (Reis et al., 2016).

Modeling individual tree mortality can be primarily accomplished
using regression models (Reis et al., 2018) or artificial intelligence tools
such as Autoregressive Integrated Moving Average (ARIMA) (Arévalo
et al., 2023; Delgado et al., 2022) and Network Autoregressive Model
(NNAR) algorithms (Hasenauer et al., 2001; Reis et al., 2018). These
models generally estimate the probability of a tree dying based on
various factors. These factors may include: diameter at breast height
(DBH), tree height, presence or absence of damage, vigor, competition
for light, species, climatic conditions, biotic and abiotic disturbances,
and management history.

Models for predicting the probability of individual tree mortality
after natural or anthropogenic disturbances are one of the alternatives
for managing tropical forests with the goal of sustainability (Reis et al.,
2018). These models provide information about forest dynamics and are
important for accurately forecasting tree numbers, basal area, diameter
distribution, and forest production (Reis et al., 2016; Reis et al., 2018).
Therefore, accurate estimates of tree mortality are crucial for developing
effective forest management policies (Ma et al., 2013).

Few studies have modeled tree mortality or survival in the Amazon
Rainforest. For example, Reis et al. (2018) used Artificial Neural Net-
works (ANNs) to predict the probability of mortality after selective
logging, while Nascimento et al. (2009) evaluated different growth and
yield models at the diameter class level to estimate tree survival and
mortality.

In the specific context of the Amazon Rainforest, especially in areas
subject to selective logging, such as forest management areas in the
Amazon, which have different growth from unmanaged natural areas
(Reis et al., 2016), there are still no studies that have modeled the

mortality of individual trees following disturbances, such as those
caused by logging and associated with extreme climatic events. It is,
therefore, essential to understand the vegetation dynamics and the
factors influencing tree mortality after selective logging and climatic
phenomena, such as the extremely dry years of the El Niño–Southern
Oscillation (ENSO).

Given this gap, the objective of this study was to model and evaluate
the estimates of individual tree mortality following selective logging,
considering the dynamics of meteorological elements and the influence
of climate change associated with ENSO years. Furthermore, this study
proposes a Neural Network Autoregressive Model (NNAR) for the future
prognosis of mortality, aiming to support technical and silvicultural
decisions in forest management in the eastern region of the Brazilian
Amazon.

2. Materials and methods

2.1. Study area

The study was conducted in the Forest Management Area (FMA) of
the Rio Capim Farm (Fig. 1) belonging to the CKBV Florestal Ltda.
company, located in the municipality of Paragominas in the state of
Pará, Brazil (03◦39′28.16”S and 48◦49′59.73”W). The Rio Capim Farm
has a total area of 140,000 ha, from which 121,000 ha are under forest
management certified by the Forest Stewardship Council (FSC) since
2001 (de Oliveira et al., 2019). The region’s climate is classified as
“Awi” according to the Koppen climate classification: wet tropical, with
a mean annual rainfall around 1800 mm, annual mean temperature of
26.3 ◦C, and relative humidity of 81 % (Alvares et al., 2013). The
characteristic vegetation of the region is Dense Ombrophilous Forest
(Instituto Brasileiro de Geografia e Estatística (IBGE), 2012).

2.2. Data collection - Rio Capim farm

Data were collected at Work Unit No. 14 (WU 14), which occupies
100 ha and is located at Annual Production Unit No. 07 (APU 07) of the
Rio Capim Farm’s forestry management plan. In June 2004, before se-
lective logging, two transects of 9 ha (100 m × 900 m) each were
delimited in this WU (Fig. 2), subdivided into 9 permanent plots of 100
m× 100m (1 ha), in which all trees with DBH≥ 20.0 cmwere measured
(de Oliveira et al., 2019; de Oliveira et al., 2021).

In addition to the DBH (diameter measured at 1.30 m from the
ground), the x and y coordinates of each tree were also determined in
relation to its plot origin and all individual trees were identified to the
species level by parabotanists from Embrapa Eastern Amazon and the
CKBV Florestal Ltda. company. The procedures adopted for installing
plots and collecting continuous forest inventory data in the respective
study area followed the protocol adopted by the Brazilian Agricultural
Research Corporation (Embrapa Eastern Amazon), available in Silva
et al. (2005).

Next, the first selective cutting operation with was carried out in WU
14 in August 2004. The harvest resulted in extracting 21.3 m3 ha of
commercial wood, equivalent to 7 trees ha (Sist and Ferreira, 2007a).
Measurements in the permanent plots after selective logging were con-
ducted on five occasions (2005, 2006, 2008, 2010, and 2012), totaling 8
years of monitoring.

2.3. Competition Indices (CI)

For each tree, in each measurement year, three distance-independent
competition indices (DII) were calculated. In the calculation of the DII,
all other trees within the same permanent plot were considered as
competitors to the target tree (de Oliveira et al., 2021). The CI estimates
were made considering the area of the plots (100 m × 100 m). The
functional relationship of each CI (Eq. (1) to Eq. (3)) is presented in
Table 1.
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2.4. Mortality modeling

The mortality probability (Pm) was obtained from the proportion of
dead trees by diameter class per permanent plot in four distinct mea-
surement intervals (2005–2006, 2006–2008, 2008–2010, and
2010–2012), according to Eq. (4) (de Oliveira et al., 2021).

P(m) =
(
nj1 − nj2

)
− Ij1j2

∑j
i=1nj1

.100 (4)

In which: nj1 = number of living individuals in the jth diameter class
at the beginning of the period; nj2 = number of living individuals in the
jth diameter class at the end of the period, minus the individuals entering
in the period (Ij1j2).

2.5. Probability of Mortality (Pm) models

Five models were tested to model mortality (Table 2). The evaluated
models present non-linear relationships between Pm and their inde-
pendent variables and were fitted using the Levenberg-Marquardt al-
gorithm in the Statistica 10.0 software program (Statsoft, 2010).

2.6. Evaluation of models

The decision rule adopted for classifying trees as dead was the same
as proposed by Pretzsch et al. (2002). First, the Mortality Probability
(Pm) for each tree in each permanent plot was calculated (Eq. (4)).
Subsequently, a random number (Pa) between 0 and 1 was generated for

each tree, which was then compared to the Pm values. The decision rule
for mortality during the projection period was as follows: if Pm> Pa, the
tree is considered dead and must be removed from the database;
otherwise, the tree is deemed alive and its dimensions are projected to
the next period (Castro et al., 2020; de Oliveira et al., 2023; Pretzsch
et al., 2002). Given that this is a random process, this procedure was
repeated 30 times to obtain an average trend of the estimated number of
dead trees for each projection period. The sample that most closely
approximated the mean value of the 30 repetitions for each period was
selected to compose the list of dead trees.

Next, the best model for predicting forest mortality was determined
through graphical analysis of the observed and estimated frequency
diameter distribution and based on the result of the Kolmogorov-
Smirnov test (Sokal and Rohlf, 1969) (Eq. (5)).

dn = Max|Fo(x) − Fe(x) | (5)

In which: dn = calculated value of the K-S statistic; F0(x) = observed
accumulated frequency; and Fe (x) = estimated cumulative frequency.

The null hypothesis (H0: the estimates do not differ from the actual
values) was rejected for the calculated value of dn greater than the
critical value, at a significance level α equal to 5 %.

2.7. Neural network autoregression (mortality)

Neural Network Autoregressive Model (NNAR): We implemented an
NNAR model to forecast future tree mortality rates based on historical
data and projected climate scenarios associated with ENSO events. After

Fig. 1. Location of the study area and experimental design. (a) Map of Brazil (showing Pará state in white). (b) Map of Paragominas municipality. (c) Rio Capim
Farm (Composition of bands 4, 3 and 2) and (d) Work Unit 14 harvested in 2004. T1 and T2: Transect 1 and 2 (black squares).
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choosing the best model, NNAR (Venables and Ripley, 2002) was used to
simulate tree mortality data from 2012 to 2024. The NNAR considers a
feed-forward network architecture with an intermediate layer using the
notation NNAR (p, k) for series without seasonality. For this work, the
methodology described by As’ad et al. (2020) and Maleki et al. (2018)
was adopted. NNAR followed the routine of the forecast (Hyndman
et al., 2019; Hyndman and Khandakar, 2008) and ggplot2 (Wickham,
2016) packages in the R version 4. 3. 1 software program.

The mortality model was calibrated using historical data on observed
tree mortality rates. Neural Networks were used to validate the mor-
tality model by assessing its performance through comparisons between
the predicted mortality rates and observational data collected in the
field during the periods of 2005–2006, 2006–2008, 2008–2010, and

2010–2012. Starting from 2012, Neural Networks were implemented to
simulate mortality rates up to the 2022–2024 interval. This approach
allows for the capture of complex and nonlinear patterns in the data,
enhancing the accuracy of mortality predictions over time.

2.8. Meteorological variables and ENSO phenomenon

Four meteorological variables obtained and validated by Xavier et al.
(2016) were used. A point grid with the same resolution as the reanalysis
data (~30 km) was assembled to characterize these elements during the
period from 2005 to 2012. These data are available in NetCDF format at
the University of Texas at Austin (https://utexas.app.box.com/v/Xavie
r-etal-IJOC-DATA). The variables used were Rainfall (mm), maximum,

Fig. 2. Schematic drawing of transects A and B at Rio Capim Farm. The 18 plots measuring 1 ha (100 m × 100 m) are highlighted. Grey squares represent landings,
bold lines inside the WU 14 - APU 7, secondary roads.
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minimum and average air temperature (tmax, tmin and tavg respec-
tively; ◦C).

Classified ENSO data was used for the observed tree mortality data.
ENSO was used to investigate the relationship between species mortality
during the collection interval from 2005 to 2012. The data were clas-
sified by ENSO events. The observed and simulated years were classified

according to Table 3, based on the classification available at: <https://
www.webberweather.com/ensemble-oceanic-nino-index.html/>.

2.9. Correlation matrix between mortality and weather variables

A correlation matrix was used to verify the influence of climate on
tree mortality. Data observed in the field from 2005 to 2012 and the
meteorological variables maximum, minimum, average air temperature
and rain were used for this analysis. The “spline” method for interpo-
lation was used for matrix correlation and the libraries to run the
package were ggplot2 and GGaly.

3. Results

3.1. Mortality analysis

Considering a harvest intensity of 21.3 m3 ha of commercial wood,
equivalent to 7 trees ha, the average annual mortality rate observed (Pm
% year− 1) after selective logging during the study period (2005 to 2012)
was 2.06 % year− 1 (Fig. 3). The highest percentage of mortality occurred
in the 125 cm diameter at breast height (DBH) class (6.25 %) due to the
low density of these trees (0.83 ind ha), and it was caused by the death of
a single tree during the study period.

3.2. Analysis of tree mortality applying the Pretzsch Rule

The average number of trees classified as dead after selective log-
ging, based on the mean of 30 repetitions, was 435 with a standard
deviation of 17 trees, out of a total of 436 observed dead trees (Fig. 4).

3.3. Estimation and evaluation of mortality probability models

The allometric and Weibull models fitted with the DIIBAL index and
the exponential model fitted with the DII2 index did not converge during
fitting and are therefore not presented (Table 4).

The fitted models exhibited similar patterns among themselves;
however, the mortality estimates did not follow a defined trend con-
cerning the DBH (Diameter at Breast Height) of the trees (Fig. 5).

All five evaluated models overestimated the number of dead trees for
the study period (2005 to 2012), with a smaller range for the DBH
classes of 25, 45, and 55 cm and a larger range for the classes of 65, 85,
95, and 105 cm in diameter. The exception was model 3, fitted with the
DII2 index, which underestimated mortality in the 95 and 105 cm DBH
classes. Models 1 and 2, fitted with the DII1 index, showed the highest
overestimation of mortality for these classes. Meanwhile, model 3 (using
the DII2 index) and model 5 (using the DIIBAL index) were similar to each
other and also came closest to the observed values.

There was a slight tendency to underestimate observed mortality for
DBH classes of 35, 75, and 125 cm in diameter. Model 5 (using the DIIBAL
index) showed slight superiority over the others, demonstrating greater
proximity between the estimates and the observed values, especially for
the 75 and 125 cm DBH classes. On the other hand, model 3, fitted with
the DII2 index, resulted in the largest errors, mainly for the 125 cm
diameter class. There was greater accuracy in the estimates generated by
the five evaluated models in the DBH classes of 115, 135, and 155 cm in
diameter, and although these estimates did not show a defined trend,
they demonstrated similar behavior to the observations.

Overall, all models overestimated mortality in both the larger and
smaller diameter classes. Despite this trend, the K-S test considered
statistical equality among the estimates generated by the five equations
(p > 0.05) (Table 5). However, the number of dead trees estimated by
the Logistic Function model (Model 5) was closer to the respective
observed values. Thus, logistic regression employing the DIIBAL
competition index was the selected model to estimate mortality in the
managed forest of Rio Capim Farm.

Table 1
Functional relationship of competition indices used to estimate the Pm after
reduced impact logging in a Dense Ombrophilous Forest in the Eastern Amazon,
Pará, Brazil.

Distance-independent indices Author Equation

DII1 =
DBH2

i

DBH2 Glover and Hool (1979) (1)

DII2 =
BA2

i

BAq2
Stage (1973) (2)

DIIBAL =
∑

BAm Stage (1973) (3)

In which: DBHi = Diameter with bark of the object-tree, measured at 1.30 m
height (cm); DBH= arithmetic mean of the tree diameters of the sample unit
(cm); BAi = basal area of the object-tree, measured at 1.30 m height (m2); BAq =

basal area corresponding to themean diameter (q) of the neighboring trees in the
sample unit (m2); BAL = sum of the basal areas (BAm) of the neighboring trees
larger than the object-tree (m2 ha− 1).

Table 2
Models tested to estimate the probability of mortality in a Dense Ombrophilous
Forest in the Eastern Amazon, Pará, Brazil.

Number Model Author

1 P(m) = β0⋅ICβ1⋅ε
Allometric (West,
1981)

2
P(m) = 1 −
⎡

⎣β0 −

⎛

⎝ 1
(
1+ exp(β1+β2 ⋅ICβ3 )

)

⎞

⎠

⎤

⎦⋅ε
Buchman et al. (1983)
modified

3
P(m) =
(

γ
β

)

⋅
[(

IC
β

)](γ− 1)
⋅exp

{

−

[((
IC
β

))γ ]}

⋅ε

Weibull (Glover and
Hool, 1979)

4 P(m) = β0 + exp(β1+β2 ⋅IC)⋅ε
Exponential (
Payandeh, 1983)

5 P(m) =
(
1+ exp(β0+β1 ⋅IC) )− 1ε

Logistic (Hamilton,
1986)

In which: Pm = probability of mortality of each tree; exp. = exponential; CI =
competition index; βi = model parameters, with i ranging from 1 to 3; β = scale
parameter; γ = shape parameter; α = location parameter; ε = random error.

Table 3
ENSO classification for observed (2005–2012) and forecast data (2012–2024).

Data collection
and NNAR

Years Acronym Classification

Observed 2005–2006 WL Weak La Niña
2006–2008 WE/SL/

WL
Weak El Niño/Strong La Niña/
Weak La Niña

2008–2010 WL/ME/
SL

Weak La Niña/Moderate El
Niño/Strong La Niña

2010–2012 SL/ML/NE Strong La Niña/Moderate La
Niña/Neutrality

Forecast 2012–2014 NE/WE Neutrality/Weak El Niño
2014–2016 WE/VSE Weak El Niño/Very Strong El

Niño
2016–2018 VSE/WL/

WE
Very Strong El Niño/Weak La
Niña/Weak El Niño

2018–2020 WE/NE/
ML

Weak El Niño/Neutrality/
Moderate La Niña

2020–2022 ML/WL Moderate La Niña/Weak La
Niña

2022–2024 ML/WL/
WE

Moderate La Niña/Weak La
Niña/Weak El Niño

E.K.B. de Oliveira et al. Ecological Informatics 84 (2024) 102880 

5 

https://www.webberweather.com/ensemble-oceanic-nino-index.html/
https://www.webberweather.com/ensemble-oceanic-nino-index.html/


3.4. Estimated mortality by logistic function (Model 5)

The annual mortality rate over time after RIL was tracked by the
selected model (Fig. 6). However, there was a tendency for underesti-
mation between 2005 and 2006, transitioning to overestimation in the
periods from 2006 to 2008 and 2008 to 2010. Mortality increased again
between 2010 and 2012. During this period, the mortality values esti-
mated by the Logistic Function model were the closest to the observed
values, although there was still a slight underestimation of actual
mortality.

3.5. Neural network autoregressive model (mortality)

Higher mortality values were observed between 2005 and 2006,
followed by a slowdown in the two subsequent periods (2006 to 2008
and 2008 to 2010). Mortality increased again in the last period analyzed
(2010 to 2012) about 8 years after Reduced Impact Logging. The fore-
casts generated by the NNAR model for the years 2012 to 2024 followed
the trend of observed mortality values. The period from 2012 to 2014,
characterized by Neutral andWeak El Niño events, exhibited the highest
mortality value for trees with up to 25 cm DBH (Fig. 7).

Fig. 3. Annual mortality (Pm % year− 1) and number of dead trees for the period from 2005 to 2012 after selective logging in the Eastern Amazon, Pará, Brazil.

Fig. 4. Estimated number of dead trees from applying the Pretzsch rule to the observed data in a Dense Ombrophilous Forest in the Eastern Amazon, Pará, Brazil.
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3.6. Meteorological variables - Reanalysis data

In the Boxplot analysis (Fig. 8), it is observed the years 2005 and
2010 showed the highest average air temperatures, with values
exceeding 33 ◦C. The year 2008 presented the highest maximum air
temperature with a value exceeding 34 ◦C in October, and the lowest
minimum air temperature with a value below 21 ◦C in July. The average
air temperatures followed the same seasonal pattern for the study area.
Rainfall was mainly concentrated at maximum values in the year 2009,
in which the total annual value was the highest with values exceeding
2500 mm. The highest monthly rainfall in the same year was found for
the month of April with a value exceeding 550 mm. The lowest average
rainfall values were concentrated in the years 2010 and 2012, with the
year 2012 being the least rainy with monthly average values of the series
below 120 mm.

The correlation analysis conducted for the period from 2005 to 2012

showed that the maximum air temperature (tmax) had the highest
correlation (0.394) with species mortality, while the minimum tem-
perature (tmin) was the least correlated variable, as illustrated in Fig. 9.

4. Discussion

4.1. Mortality analysis

Our study demonstrated that smaller trees (25 cm DBH) had a higher
probability of mortality compared to those with larger diameters. Thus,
the observed tree mortality probability was directly influenced by tree
size. This coincides with the findings of de Oliveira et al. (2021), who
also assessed mortality after selective logging in the Amazon and found
that tree diameter classes had a significant effect on mortality rates.
Similar behavior was found by Nascimento et al. (2009), who observed a
higher probability of mortality in the smaller size classes (12.5 and 22.5

Table 4
Estimated coefficients of the mortality probability models after Reduced Impact Logging in a Dense Ombrophilous Forest in the Eastern Amazon, Pará, Brazil.

CI Models β0γ β1β β2 β3

DII1 P(m) = β0⋅DII1β1 ⋅ε 0.0236366 0.0855750 – –

DII1 P(m) = 1 −

⎡

⎣β0 −

⎛

⎝ 1
(
1+ exp(β1+β2 ⋅DII

1β3 )
)

⎞

⎠

⎤

⎦⋅ε 1.2954531 3.8446590 − 3.0871276 0.0033716

DII1 P(m) =

(
γ
β

)

.

[(
DII1

β

)](γ− 1)
⋅exp

{

−

[((
DII1

β

))γ ]}

⋅ε 1.1397362 29.0136847 – –

DII1 P(m) = β0 + exp(β1+β2 ⋅DII1)⋅ε − 0.0194321 − 3.1600995 0.0077974
DII1 P(m) =

(
1+ exp(β0+β1 ⋅DII1)

)− 1ε 3.7481910 − 0.0133423 – –
DII2 P(m) = β0⋅DII2β1 ⋅ε 0.0239855 0.0415002 – –

DII2 P(m) = 1 −

⎡

⎣β0 −

⎛

⎝ 1
(
1+ exp(β1+β2 ⋅DII2β3 )

)

⎞

⎠

⎤

⎦⋅ε 1.0862765 0.8558459 1.2310335 − 0.0091192

DII2 P(m) =

(
γ
β

)

.

[(
DII2

β

)](γ− 1)
⋅exp

{

−

[((
DII2

β

))γ ]}

⋅ε 1.0997858 30.1340931 – –

DII2 P(m) =
(
1+ exp(β0+β1 ⋅DII2 )

)− 1
+ ε 3.7313153 0.0003222 – –

DIIBAL P(m) = 1 −

⎡

⎣β0 −

⎛

⎝ 1
(
1+ exp(β1+β2 ⋅DIIBALβ3 )

)

⎞

⎠

⎤

⎦⋅ε 1.2514283 0.9610706 0.0000005 3.6248846

DIIBAL P(m) = β0 + exp(β1+β2 .DIIBAL )⋅ε − 0.0137742 − 3.1918575 − 0.0077243 –
DIIBAL P(m) =

(
1+ exp(β0+β1 .DIIBAL )

)− 1ε 3.5715717 0.0123606 – –

Fig. 5. Observed and estimated mortality for the period from 2005 to 2012 in a Dense Ombrophilous Forest in the Eastern Amazon, Pará, Brazil.
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cm DBH) while studying the dynamics of a managed forest in south-
western Amazon.

According to de Oliveira et al. (2023), smaller trees tend to show
higher mortality after selective logging due to various ecological and
environmental factors, which are amplified by the removal of larger
trees. These changes include modifications in the microclimate, alter-
ations in soil characteristics, physical damage, increased competition,
and impacts on symbiotic relationships (de Oliveira et al., 2021; Reis
et al., 2018).

Some research has shown that tree size is one of the important
intrinsic attributes that strongly influences mortality rates (Wu et al.,
2017), and this process does not occur randomly in relation to diameter
classes (Ganey and Vojta, 2011). Mortality is inversely proportional to
tree size (de Souza and Soares, 2013). However, other studies have
noted no relationship between mortality and tree size. Therefore, there
is still no consensus on the relationship between tree diameter and
mortality after selective logging.

The unanimous finding among studies evaluating tree dynamics after
selective logging is that the mortality of remaining trees tends to in-
crease following logging activities, especially in the first years after
management. In this context, adapting forest management to climate
change is another significant challenge to ensure forest sustainability,
timber production, and the provision of ecosystem services.

4.2. Analysis of tree mortality applying the Pretzsch Rule

This study showed that the decision rule proposed by Pretzsch
(Pretzsch et al., 2002) is an efficient methodology for assessing the
mortality of trees after RIL (see Fig. 4). Castro et al. (2020) also showed
good performance of the methodology developed by Pretzsch et al.
(2002) when validating an individual-tree model for a tropical forest in
Southeastern Brazil. The same was reported by de Oliveira et al. (2023)
in modeling the mortality of individual trees in a Dense Ombrophilous
Forest in the Brazilian Amazon and Figueiredo et al. (2020) in modeling
the mortality of individual trees in a Seasonal Semi-deciduous Forest in
Brazil.

4.3. Probability of mortality (Pm) models

Estimates generated by the five mortality models tested were
consistent with field-observed values (K-S test; p > 0.05), although they
showed overestimation of observed data for both smaller trees (smaller
DBH) and those with larger diameter. This observed bias likely occurred
because mortality is an extremely variable event and, therefore, difficult
to predict (de Oliveira et al., 2023; Reis et al., 2018; Rossi et al., 2007).
According to de Carvalho (1997), mortality can be caused by various
factors, such as attacks by pathogens, parasites, and herbivores, storms,
rays, damage from heavy rains, particularly in emergent trees, damage
during logging, and age-related death (Dionísio et al., 2027).

Reis et al. (2018) found higher errors associated with smaller
diameter classes in modeling individual tree mortality in a managed
forest in FLONA Tapajós, Pará State, which was also a pattern found by
da Rocha et al. (2018) in modeling mortality and survival in an Atlantic
Forest area in Brazil. The authors also noted the absence of a defined
pattern in mortality estimates in relation to diameter classes.

Different studies have already reported the difficulty in estimating

Table 5
Kolmogorov-Smirnov (KS) Goodness-of-Fit Test between observed and esti-
mated diameter distributions in a Dense Ombrophilous Forest in the Eastern
Amazon, Pará, Brazil.

Competition Index Model D max p-value

DII1 1 0.05866 0.08958 ns

DII1 2 0.05928 0.08957 ns

DII1 3 0.06060 0.08955 ns

DII1 4 0.05696 0.08961 ns

DII1 5 0.05725 0.08962 ns

DII2 1 0.05837 0.08959 ns

DII2 2 0.05834 0.08961 ns

DII2 3 0.06677 0.08984 ns

DII2 4 – –
DII2 5 0.06243 0.08964 ns

DIIBAL 1 – –
DIIBAL 2 0.05789 0.08961 ns

DIIBAL 3 – –
DIIBAL 4 0.05774 0.08960 ns

DIIBAL 5 0.05739 0.08962 ns

In which: DII1 = competition index by Glover and Hool (1979); DII2 = compe-
tition index by Stage (1973); DIIBAL (Basal Area Larger Trees) = competition
index by Stage (1973); ns: not significant at 5 % by the K-S test.

Fig. 6. Observed and estimated mortality by logistic function (Model 5) fitted with the DIIBAL competition index in a Dense Ombrophilous Forest in the Eastern
Amazon, Pará, Brazil.
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the mortality probability of individual trees (Bayat et al., 2019a; Bravo
et al., 2019; Zhu et al., 2019), especially for natural and heterogeneous
forests such as those in the Amazon region; these forests have great di-
versity of species and high structural complexity (de Solar et al., 2016),
making tree mortality an even more complex phenomenon (Bugmann
et al., 2019), and making it difficult for probability models to obtain
accurate estimates (Monserud and Sterba, 1999).

Additionally, Eid and Tuhus (2001) highlight another significant
challenge in modeling tree-level mortality in managed rainforests which
is associated with alterations in the natural dynamics of the remaining
forest after selective harvesting. These changes lead to higher mortality
rates in the subsequent years and also contribute to shifts in species
composition. Various studies have demonstrated that implementing RIL
techniques can reduce the likelihood of forest degradation by up to 50 %

Fig. 7. Observed mortality (2005 to 2012) and forecast (2012 to 2024) with ENSO classifications for a tropical forest after Reduced Impact Logging in a Dense
Ombrophilous Forest in the Eastern Amazon, Pará, Brazil.

Fig. 8. Boxplot analysis during the years of observed collections for the meteorological variables Rainfall (mm), tmax, tmin, and tavg (maximum, minimum, and
average air temperature; ◦C) after Reduced Impact Logging in a Dense Ombrophilous Forest in the Eastern Amazon, Pará, Brazil.
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(Sist and Ferreira, 2007b). Nevertheless, even in well-managed areas, an
increase in tree mortality following logging is anticipated (D’Oliveira
et al., 2017). The effects of RIL on mortality persist for a period ranging
from seven to eleven years after the intervention (de Oliveira et al.,
2023).

Among the tested models, the Logistic Function (Hamilton, 1986)
fitted with the DIIBAL competition index (Stage, 1973) resulted in the
most accurate estimates (R2 > 0.90). de Oliveira et al. (2023) also
employed the DIIBAL index in developing an individual tree model based
on the Logistic Function for managed forests in the Brazilian Amazon.

The DIIBAL index has been widely used in various studies to evaluate
competition in individual tree models (de Oliveira et al., 2021). This
index is recognized for its simplicity in calculation and interpretation, as
well as for providing individual metrics for each tree based on its basal
area (Yang et al., 2009). Basal area is a population density parameter
that indicates the degree of area occupation (Campos and Leite, 2017).
This variable alone already highlights the competitive status of each
tree, eliminating the need to incorporate other variables (Martins et al.,
2011).

Yang and Huang (2013) used the Logistic Function model fitted with
the DIIBAL index to model the mortality and survival of mixed stands in a
boreal forest in Canada. These authors concluded that the model satis-
factorily estimated stand mortality. Nguyen et al. (2012) obtained good
statistical performance when using the Logistic Function model to build
a growth and yield model for dipterocarp forests in Vietnam. Logistic
regression was also successfully used by Hülsmann et al. (2016) to model
the mortality of 18 tree species in forest reserves in Switzerland and
Germany.

The Logistic Function model fitted to individual tree data may be the
best way to model the probability of mortality in tropical forests
(Crecente-Campo et al., 2009; Rossi et al., 2007). The superiority of this
method over others lies in its relative ease of fitting and the quality of the
results generated.

4.4. Neural network autoregressive model (mortality)

The forecasts generated by the NNAR model (from 2012 to 2024)
followed the trend of observed mortality (from 2005 to 2012). The in-
crease in mortality immediately following logging activities may occur
as a result of the damage caused by logging and log skidding activities,
as noted by de Oliveira et al. (2023) in their assessment of the dynamics
of the Amazon tropical rainforest following selective extraction.

Selective logging typically damages approximately 24.5 % of the
remaining trees (Martins et al., 1997), and these impacts can remain
visible for decades. Trees located near logging clearings, log storage
yards, and roads are at greater risk of dying. This behavior has also been
corroborated by previous studies, such as those by Reis et al. (2015) in
the Tapajós National Forest, in the state of Pará, Brazil; Locks and
Matricardi (2019) in concession areas in the Jamari and Jacundá Na-
tional Forests in Rondônia, southwestern Amazon, and in the Saracá-
Taquera National Forest in Pará; as well as studies by de Oliveira et al.
(2019) and Sist and Ferreira (2007a) in the same region as the present
study. These studies suggest a direct association between logging prac-
tices and increased tree mortality.

On the other hand, the decrease in mortality rate in the periods from
2006 to 2008 and 2008 to 2010 can be explained by the forest canopy
opening caused by logging, which provided greater light incidence on
the remaining individuals, thus reducing competition, as observed by de
Oliveira et al. (2023). However, as the forest canopy gradually closes,
the light incidence inside the forest decreases, resulting in increased
competition for increasingly limited resources. This may reduce tree
growth (de Avila et al., 2017; Vatraz and Alder, 2018), which in turn
may influence the increase in mortality rate, especially of species that
require light for their growth (de Oliveira et al., 2019).

Another possible explanation for the increase in mortality about 8
years after management interventions (2010− 2012), as recorded in this
study, may be related to changes in precipitation regimes in the year
2010, characterized by strong, moderate, and neutral La Niña events.
Studies such as those by D’Oliveira et al. (2017), Allen et al. (2015),

Fig. 9. Correlation between mortality and meteorological variables (rainfall, maximum (tmax), minimum (tmin), and average (tavg) air temperature) in tropical
forest after Reduced Impact Logging in the Eastern Amazon Pará, Brazil.
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Shenkin et al. (2018), Aleixo et al. (2019), Fell et al. (2022), Bennett
et al. (2023) and Leisenheimer et al. (2024), have shown that high
temperatures and years of extreme drought increase tree mortality for at
least two years after the climatic event.

The increase in post-harvest mortality rates found in this study is in
line with observations in other managed tropical forests (Darrigo et al.,
2016; Reis et al., 2015; Toyama et al., 2015; Van der Werf et al., 2019).
Studies have shown that the effect of logging on mortality rates persists
between 7 and 11 years after silvicultural interventions (Darrigo et al.,
2016).

Tree mortality is an important component of forest dynamics pro-
cesses, and at the same time, one of the least understood. However,
consistent estimates have been observed with the use of mortality
probability models, especially with Logistic Function using the DIIBAL
competition index for a forest with a large diversity of species and tree
sizes.

This information is relevant from the perspective of forest manage-
ment, as understanding the factors governing post-harvest tree mortality
can provide insights to increase survival and indicate possibilities for
utilizing dead trees or those at high risk of death (Barros et al., 2024).

4.5. Climate influence on vegetation health

Although Reduced Impact Logging performed in 2004 may have
played a significant role in tree mortality over the years assessed in this
study (2005–2012), it is crucial to consider that drought and extreme
rainfall events, along with temperature changes associated with the
ENSO phenomenon occurring during the same period, may have influ-
enced tree mortality patterns in this region (Aleixo et al., 2019; Bennett
et al., 2023; Vilanova et al., 2020).

Studies on forest dynamics conducted in the Southwestern Amazon
region have shown that extreme climatic events result in biomass losses
greater than those estimated for Reduced Impact Logging (D’Oliveira
et al., 2017). Furthermore, an increase in average tree mortality from 2
% to 5 % was observed over 20 years of research due to water deficit
caused by these phenomena. For example, the severe drought recorded
in 2005 (Jiménez-Muñoz et al., 2016; Vilanova et al., 2020; Vilanova
et al., 2021), combined with high temperatures (exceeding 33 ◦C) in that
same year (Fig. 8), may have contributed to the increased tree mortality
between 2005 and 2006 (Fig. 6).

The rise in temperatures, coupled with severe drought anomalies
caused by the El Niño phenomenon, results in decreased precipitation,
making forests more susceptible to fires (Alencar et al., 2015; Delgado,
2024; Melo et al., 2024; Vilanova et al., 2020), promoting reduced
carbon storage, sensitivity of younger tree yield, and plant mortality
(Bennett et al., 2023; Giardina et al., 2018). These studies corroborate
the results obtained herein, in which a correlation between maximum
temperature and tree mortality was observed (Fig. 9).

5. Conclusions

The use of traditional regression models and the decision rule pro-
posed by Pretzsch et al. (2002) enabled precise estimation of individual
tree mortality following Reduced Impact Logging (RIL) and climate
events related to the El Niño-Southern Oscillation (ENSO) in the Eastern
Amazon.

The Logistic Function model proposed by Hamilton (1986) was
demonstrated to be the most accurate in estimating the probability of
individual tree mortality (R2 > 0.90), based on a total of 436 observed
dead trees from 2005 to 2012 in the studied forest.

The Neural Network Autoregressive (NNAR) model successfully
predicted future species mortality over the simulated years (2012 to
2024).

Significant climate events with implications for atmospheric condi-
tions were observed during the years 2005 and 2012. A severe drought
alongside a Weak La Niña event occurred in 2005, while a Strong La

Niña event took place in 2010. The highest maximum temperatures
(exceeding 33 ◦C) of the period from 2005 to 2012 were recorded during
these times.

The correlation between maximum air temperature and tree mor-
tality suggests the importance of adopting new management practices
which favor the resilience of tropical forests versus climate change.
Studies of this nature are essential for deepening understanding of the
causes of tree mortality, especially following Reduced Impact Logging
(RIL) and extreme climate events associated with ENSO in the Amazon.
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exploração florestal à vegetação remanescente, em florestas naturais. Cerne 3,
14–24.

Martins, F.B., Soares, C.P.B., Leite, H.G., de Souza, A.L., Castro, R.V.O., 2011. Índices de
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