
1Scientific Data |          (2024) 11:585  | https://doi.org/10.1038/s41597-024-03357-2

www.nature.com/scientificdata

a global dataset for assessing 
nitrogen-related plant traits using 
drone imagery in major field crop 
species
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Enhancing rapid phenotyping for key plant traits, such as biomass and nitrogen content, is critical 
for effectively monitoring crop growth and maximizing yield. Studies have explored the relationship 
between vegetation indices (VIs) and plant traits using drone imagery. However, there is a gap in 
the literature regarding data availability, accessible datasets. Based on this context, we conducted 
a systematic review to retrieve relevant data worldwide on the state of the art in drone-based plant 
trait assessment. The final dataset consists of 41 peer-reviewed papers with 11,189 observations for 11 
major crop species distributed across 13 countries. It focuses on the association of plant traits with VIs at 
different growth/phenological stages. This dataset provides foundational knowledge on the key VIs to 
focus for phenotyping key plant traits. In addition, future updates to this dataset may include new open 
datasets. Our goal is to continually update this dataset, encourage collaboration and data inclusion, 
and thereby facilitate a more rapid advance of phenotyping for critical plant traits to increase yield gains 
over time.

Background & Summary
Agriculture is an important industry, serving as the foundation of food security and of the global economy1. 
The complexity of biological systems is reflected in the spatial temporal variability of the soil and crop N status 
within a field2. To ensure optimal use of outputs, fertilizers should be provided at the right time, place, with an 
adequate source and at the right rate, only when necessary3. Therefore, a variable nitrogen (N) management 
strategy must be implemented to optimize fertilizer N rates, economic benefits, and maintaining or increasing 
both yield and quality4.

N is a critical element for crop growth and one of the most important nutrients in agriculture to improve crop 
yield and for protein formation5. Furthermore, the utilization of the right fertilizer N rate is crucial not only to 
increase yields but to reduce the environmental footprint of this practice3,6. Traditional methods for detecting 
crop N status involve time-consuming field sampling and costly laboratory analysis7. Monitoring crop N status 
efficiently and effectively remains an urgent problem to be solved8,9.

In recent years, technological innovations based on the utilization of multispectral and hyperspectral sensors 
mounted in different platforms help to provide critical imagery data for phenotyping and developing new tools 
for precision agriculture10. The emergence of unmanned aerial vehicles (UAV, or commonly known as drone) 
has advanced remote sensing applications at fine scales. UAV have gained significant scientific and public inter-
est, due to their flexibility, easiness to use, and affordability11,12. The aerial platform and sensor cost with a rapid 
image availability make this equipment valuable for assessing critical plant traits for advancing yield gains13,14.

Characterization of key plant traits can vary depending on the crop and growth stage. Many efforts have 
been dedicated to identifying VIs that best correlates to plant traits15–18. The most relevant linked to crop N 
status include leaf N content, leaf N concentration (LNC), plant N concentration (PNC), N nutrition index 
(NNI), and N concentration (NC) for different plant fractions19–24. Several crops have been investigated using 
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drone technology to assess plant traits, including but not limited to wheat (Triticum aestivum L.)15, corn (Zea 
mays L.)16, rice (Oryza sativa L.)17, and barley (Hordeum vulgare)18. Different crops may require species-specific 
VIs to better characterize crop N status, as differences in leaf structure, canopy architecture, N allocation, and 
phenological stage should be taken into account when comparing across them4,25,26. In addition, other factors 
such as soil exposure, crop residues, and N application levels can also affect the stability of an index27, provide 
restrictions to use a more universal index for accurately estimate similar plant traits across crop species11. For 
example, NDVI has been found to be a reliable index for N estimation in corn but less effective for rice28–31. 
Therefore, it is important to identify and evaluate the most effective VIs more directly targeting specific plant 
traits across major field crops.

A critical challenge as technology is evolving and the number of published studies on this topic grows expo-
nentially with time is to keep up with the current progress and identify research knowledge gaps. Furthermore, 
as the analysis is based on a single experiment with N treatments and small plots, further research is needed 
to translate current findings to real-world scenarios32. Most studies using UAV assess nutrient content using a 
simple regression model, typically linear models14, and usually focused on a few plant traits. To date, the existing 
academic literature on the merger of studies utilizing the same VIs and plant traits is limited. Therefore, devel-
oping a more organized and structured review can help identify promising VIs and plant traits while developing 
an open dataset to assist future progress on this topic.

It is acknowledged that variances in plant traits accuracies exist between studies33,34. These discrepancies 
often arise from differences such as geographical location, types of drones and camera sensors, and the applica-
tion of signal processing techniques (multivariate linear methods, (e.g., partial least squares regression, stepwise 
multiple linear regression, and multiple linear regression), multivariate non-linear methods (e.g., random forest 
and support vector machine), and univariate methods (e.g. linear regression). As most studies using UAV assess 
nutrient content using univariate methods14, typically linear or non-linear regressions, we focused our study on 
gathering information on studies that used VIs to predict any N-related trait and/or yield.

Following this rationale, a systematic review process focusing on retrieving datasets on the state of the art 
in drone-based plant traits assessment was executed. Our global dataset focuses on major field crop species, 
11 total, retrieved from studies published during the last two decades (2000 to 2023) in 13 countries. The final 
dataset contains 41 peer-reviewed scientific manuscripts focusing on the relationship between VIs and plant 
traits for characterizing crop N status and identifying knowledge gaps to guide future research on drone-based 
plant traits assessments.

Methods
A literature search was conducted, involving identification, screening, eligibility, and inclusion of relevant 
records (Fig. 1a). The Scopus and Web of Science search engines were the main data sources. The keywords 
“multispectral airborne images” or “drone” or “UAV” or “UAS” or “unmanned aerial vehicle” or “remotely 
piloted aircraft system”, AND “nitrogen” AND “yield” were included in the search criteria, restricting the dura-
tion from 2000 to March 2023 to identify the most promising modern technologies.

After retrieving all relevant records (number of studies, n = 372), a first screening process was performed 
to remove duplicates (n = 264) for further processing. As a next step, an intensive analysis/full text reading was 
executed. Studies presenting the following criteria were excluded of the final dataset: 1) languages other than 
English, 2) unavailability of full-text publication, 3) lack of focus on field experiments (other setting greenhouse, 
growth chamber, pots, etc.), 4) articles that did not use drones to collect RGB, multi- or hyperspectral images, 5) 
used more than one crop/plant mixed (not focus on a single cropping specie), 6) study not focused on plant N/
yield association, 7) lack of observed N determinations (excluding indirect N measurements such as chlorophyll 

Fig. 1 (a) Sankey diagram illustrating the studies search, collection, filtering, and selection. (b) Number of 
studies selected per year.
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meters, handheld sensors), and lastly, 8) those studies only benchmarking UAV derived imagery data with hand-
held sensors.

In the next step, full-text screening was performed to exclude studies that did not report data on VIs and 
plant trait, removing 222 papers. An additional 23 papers were identified and reviewed by examining citations 
from the remaining manuscripts, resulting in the inclusion of 22 additional studies. These studies were checked 
for duplicates. As a result, a final database comprises 41 articles published between 2010 to 2023 (Fig. 1b).

A total of 41 records were identified fulfilling the main criterion of crop N estimation using different crops 
with RGB, multispectral, and hyperspectral data derived from the utilization of drones. The data retrieved from 
each paper included: i) geographic location of the experiments, ii) crop species, iii) plant traits (N content/
concentration, N nutrition index (NNI), N uptake, leaf/plant N accumulation, canopy N content, N rate, and 
biomass), iv) VIs/bands, v) applied N rates, and vi) timing of UAV flights/phenological stages (further details 
presented in Table 1).

For each article presented in Table 1, all available information on VIs and plant traits from figures, tables, 
text, and supplementary material for figshare repository was extracted using the ‘juicr’ R package35. Also, the 
data were visually inspected to ensure the information was associated with plant development stage.

Among the 14 plant traits identified during data extraction, only two plant traits (i.e., relative yield and N 
uptake) could be combined, considering crop type (i.e., wheat and cotton), VIs (i.e., NDVI and NDRE), and 
phenological stage3,15,33,34,36,37.

Data collection for meta-analysis. To explore the predictive abilities of drones in estimating agricultural 
traits, we undertook a meta-analysis encompassing 41 selected studies. This meta-analysis aimed to evaluate the 
potential of UAVs in estimating yield and nitrogen-related plant traits, with an approach that does not prioritize 
any VI. N-related traits (plant N density, plant N content, plant N concentration, plant N accumulation, NNI, N 
uptake, leaf N density, leaf N content, leaf N concentration, leaf N accumulation, canopy N content) were merged 
into a single category labeled “nitrogen” for simplification. This preprocessing step ensured consistency and clar-
ity in trait categorization.

For each trait of interest (nitrogen and yield), we created individual plots. Within each plot, we iterated over 
growth stages and crops to calculate Fisher’s Z transformation effect sizes along with their 95% confidence inter-
vals. This transformation converts the R² values into a metric that approximates a normal distribution, thereby 
making it more suitable for our analytic model. Fisher’s Z transformation was computed using Eq. (1):
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where r represents the Pearson correlation coefficient, which was derived from the R² values provided in the 
dataset (supplementary material for figshare repository). The mean Fisher’s Z value and standard error were 
calculated for each group, and the error bars were plotted accordingly. Analysis was conducted separately for 
each growth stage and crop, facilitating comparative evaluations. When assessing the accuracy of plant trait 
estimations, we prioritize R² as our main metric due to its broad acceptance, straightforward interpretation, and 
most used metric compared to others.

Two types of regression analyses were performed to explore moderator effects: crop moderator analysis and 
growth stage moderator analysis. Ordinary Least Squares regression models were fitted to assess the influence of 
crop type and growth stage on R² values. One-hot encoding was applied to categorical crop variables and growth 
stages, with coefficients, standard errors, and p-values extracted to quantify the impact of individual crops and 
the role of different growth stages in trait prediction.

ANOVA was conducted to evaluate the significance of moderator effects, both for crop type and growth 
stage, on trait variability. F-values were computed for the entire sets of crops and growth stages, providing 
insights into the overall impact of these moderators on model fit. Data preprocessing, analysis, and visualiza-
tion were performed using the Python programming language, leveraging libraries such as “Pandas”, “NumPy”, 
“Matplotlib”, and “Statsmodels”. These tools facilitated efficient data manipulation, statistical modeling, and 
graphical representation of results.

To standardize the data monitoring period across all studies, we converted the reported growth stages to the 
BBCH scale38, a very known scale for phenological staging. We categorized the growth stages as follows: early 
(BBCH 0–30), mid (BBCH 31–60), and late stage (BBCH 61–90). We also considered the entire growth period 
– all (BBCH 0–90) as a separate category. These categorizations were employed to assess the impact of different 
growth stages on the accuracy of N-related traits and yield prediction in major crops.

Data records
The data are accessible on the figshare repository39, available at https://doi.org/10.6084/m9.figshare.22938797, 
and includes the following files:

 1. “Dataset.xlsx” includes the data. It contains three tabs: “UAV_dataset”, “Sensor and processing info”, and 
“Quantitatively analysis”.

 2. “Summary of the dataset.docx”, includes a summary of the dataset excel file (UAV_dataset tab), defining 
each column, data extracted from the studies, the units for each variable when pertinent, and a definition 
for each variable.

 3. “Figure2_N_Uptake.r”, includes the code to reproduce Fig. 2.
 4. “Figure3_effect_size.ipynb”, includes the code to build Fig. 3.
 5. “Figure4_RelativeYield_NDVI.r”, includes the code to run Fig. 4.
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ID Country Crop Growth Stage/Time1 Plant Traits Vegetation Index2 Ref

01 Spain Wheat Stem Elongation, Flowering Yield NDVI 15

02 Switzerland Winter Wheat Tillering, Stem Elongation, 
Heading PNC, NNI, N uptake MCARI/MTVI2, NDRE 40

03 Australia Cotton First Flower, First Cracked Boll, 
Maturity PNC, N uptake SCCCI, TCARI/OSAVI, TGI, 

VARI, NDRE, NDVI
41

04 Italy Winter Wheat Stem Elongation, Heading Yield NDVI 3

05 USA Corn VT, R3, R4, R5, R6 Yield, LNC CIg 16

06 Italy Bermudagrass, Tall fescue Mature LNC DGCI 46

07 China Winter Wheat Stem Elongation NNI, Relative Yield — 47

08 Brazil Soybean R3 Leaf N Content CVI, GRVI, RECI, SCCCI 48

09 Italy Corn V7 Yield NDRE 49

10 China Winter Wheat Stem Elongation, Heading, 
Flowering

PNC, LNC, LND, 
PND CIVE, ExR, GLI 34

11 China Wheat Stem Elongation - Heading - 
Flowering - Ripening LNC NDRE 50

12 Germany Winter Wheat Stem Elongation, Heading, 
Flowering, Ripening PNC, Yield REIP 32

13 Germany Wheat Stem Elongation, Heading, 
Flowering N uptake REIP 51

14 China Winter Wheat Tillering, Heading NNI, Yield — 52

15 Spain Barley 150 DAP3 Yield NDVI, OSAVI, RDVI, SAVI, 
WBI

18

16 Reunion Island Sugarcane Grand Growth CNC, Leaf N Content NDVI, GNDVI, SRPI 12

18 China Winter Wheat Tillering - Heading PNC NDI (365, 410), SR (787/765) 53

19 China Rice Filling LNC DGCI 17

17 USA Sorghum 120 DAP3 Biomass RDVI 54

20 China Oilseed Rape Vegetative NNI CIRE, VARI 55

21 China Rice Booting, Heading Yield SAVI, WDRVI 56

22 Spain Corn V12 N rate NDVI, GRVI, WDRVI 57

23 USA Miscanthus × giganteus Mid-summer growing season Biomass NDRE 58

24 Brazil Corn V12 LNC GNDVI, NDRE, NDVI, NIR, 
Red, SAVI

59

25 Thailand Corn Vegetative, Reproductive Yield, Biomass NDRE, NDVI 42

26 USA Corn R1 LNC VEG 60

27 Zimbabwe Corn R1 LNC NDVI 61

28 Finland Grass Swards 06, 15, 19, 28/June Biomass MSAVI 62

29 USA Spring Wheat Tillering, Heading PNC CIg, CIRE, EVI2, MTCI, 
NDRE, NDVI

36

30 USA Wheat Stem Elongation, Heading Yield NDVI 37

31 USA Wheat Stem Elongation, Heading Yield, N uptake NDVI 43

32 Denmark Grass GDD4 432 - 861 PNC, Biomass — 63

33 China Rice Tillering, Jointing, Booting LNC CIRE 64

34 China Rice Jointing, Booting, Heading LNC CIRE, CIREg, SAVI 65

35 USA Switchgrass (Panicum virgatum) End of season PNC NDRE 66

36 China Rice Jointing, Heading, Filling Biomass GOSAVI 67

37 China Winter Wheat Flowering - Ripening NUE - Plant N 
Content GNDVI, NDRE, RNDVI 68

38 China Wheat Stem Elongation, Heading, 
Flowering

Yield, N uptake, 
Biomass DATT, RESAVI 2

39 China Rice Jointing, Booting, Heading, 
Filling PNC CIg, CIRE, NDVI, OSAVI, 

Viopt
7

40 China Rice Tillering, Jointing, Booting LNA, PNA CIRE, DATT, ENDVI, ExG, 
GNDVI, NGRDI

69

41 China Rice Jointing - Booting - Heading - 
Filling

PNC, LNC, LNA, 
PNA NDRE 70

Table 1. Study identification (ID), country, crop, phenological stage/time, plant traits and vegetation index. 
1Stages followed by a comma or dashes represent studies that assessed plant traits in each or across phenological 
stages, respectively. 2A missing vegetation index value indicates that only plant traits were assessed. Information 
regarding the full plant traits and VIs specifications are available on the figshare repository39. 3DAP: Days After 
Planting. 4GDD: Growing Degrees Days.
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The “Dataset.xlsx” file (UAV_dataset tab) contains all the information collected on this systematic analysis. 
The “Summary of the dataset.docx” presents a description for each column of the “UAV_dataset” tab with the 
information separated into three categories:

Category I, general specification of the study, containing information for author and publication year, and 
paper identification for each study included in the dataset.

Category II, experiment information, describing species, VI used, VI value, coefficient of determination (R²), 
root mean square error (RMSE), and phenological stage sampling moment or dates.

Category III, key for the dataset related to plant traits used. All plant traits information is reported with their 
units, as expressed in the data collected from those respective studies. This category shows the amount of N rate 
applied, plant/leaf N concentration/content, N nutrition index, yield, relative yield, N uptake, leaf/plant N den-
sity, leaf/plant N accumulation, canopy N content, and the aboveground biomass values.

The “Dataset.xlsx” file (“Sensor and processing info” tab) describes topics related to sensor and processing 
information, including sensor band, spatial resolution, UAV flight height, plot size, VIs procedure, calibration 
of the sensor, weather/field condition, soil texture, latitude/longitude, and year of experiment for each of the 41 
selected studies.

The “Dataset.xlsx” file (“Quantitatively analysis” tab) describes the study number, plant traits, R² met-
ric, sample size for each trait (N), growth stage (BBCH scale), and field crop extracted. This tab was used for 
meta-analysis process.

Table 1 describes the main topics of the 41 selected studies, including species, country for the study location, 
author, and year of publication, phenological stage sampling moment, plant traits and VIs utilized for each study, 
and relevant keyword for the study.

Fig. 2 Relationship between nitrogen (N) uptake (kg ha−1) and two VIs (NDRE, NDVI) for cotton and wheat 
crops. Colors refer to different studies, and type of symbols represent the different field crop.

Fig. 3 Observed Fisher’s Z effect sizes with their 95% confidence interval for nitrogen (a) and yield (b). Analysis 
across growth stages (red line) and crop varieties (black line).

https://doi.org/10.1038/s41597-024-03357-2


6Scientific Data |          (2024) 11:585  | https://doi.org/10.1038/s41597-024-03357-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Table 2 describes the regression models with one moderator (crop or growth stage) for nitrogen and yield 
plant traits. This table investigates the predictive capabilities of drones in estimating agricultural traits without 
focusing on specific VI.

Fig. 4 Relationship between relative yield and NDVI for wheat comprising all stages and individual ones 
(tillering, stem elongation and heading) combined. Colors represent different studies, and the type of symbols 
refer to the crop growth stage (time).

Moderator

Regression Model Statistics Anova Regression Model Statistics Anova

Nitrogen

F

Yield

FEsti. SE p-value Esti. SE p-value

Crop 4.8 0.9

Barley — — — 0.660 0.005 0.000**

Corn 0.487 0.096 0.015* 0.754 0.064 0.000**

Cotton 0.461 0.036 0.000** — — —

Grass 0.514 0.033 0.000** — — —

Oilseed Rape 0.605 0.036 0.000** — — —

Rice 0.501 0.018 0.000** 0.615 0.015 0.015*

Soybean 0.802 0.012 0.000** — — —

Sugarcane 0.630 0.025 0.000** — — —

Winter Wheat 0.637 0.029 0.000** 0.626 0.061 0.000**

Growth Stage 16.98 1.83

Early — — — 0.754 0.064 0.000**

Mid 0.568 0.014 0.000** 0.613 0.034 0.000**

Late 0.585 0.030 0.000** 0.717 0.166 0.023*

All 0.344 0.047 0.000** — — —

N° of studies: 25 N° of studies: 11

Table 2. Regression models with one moderator (Crop, Growth Stage) for Nitrogen and Yield plant traits. Esti.: 
Estimated Coefficient; SE: Standard Error; p-value; F: F-statistic; - No data available for some crops and growth 
stage depending on the trait assessed. Significance levels: **p < 0.001, *p < 0.05.
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Technical Validation
To demonstrate the value of the dataset, the relationship between VIs and plant traits was investigated. After 
constructing the dataset, we checked for potential outliers and carefully summarized the information to analyze 
the interaction of multiple studies with the goal of merging them.

Data of N uptake and two VIs (NDRE and NDVI) are presented in Fig. 2 for three studies across stages and 
crops (cotton and wheat). These three studies were conducted in Switzerland, Australia, and the United States for 
wheat crop at three stages (tillering, stem elongation, and heading) and then for cotton crop at three stages (first 
flower, first cracked boll, and maturity). The N uptake (kg N ha−1) was calculated by multiplying the dry matter 
biomass (kg ha−1) with the corresponding N concentration (%) of the plant sample40. Although these two crops 
are managed differently with respect to crop management such as time of nutrient application, the overall trend 
was similar between VIs and the key plant N trait identified for these crop species.

In contrast to NDRE, NDVI saturated shortly after stem elongation before decreasing rapidly during the 
senescence phase1 when studies were combined (saturation point when NDVI ≥ 0.5). The NDVI seems to be 
a viable N status indicator for a first N application, when the crop leaf canopy has not closed yet. The NDRE 
progress was linear until the stage of spike emergence, which takes place after the fertilizer application in winter 
wheat. Thus, it is plausible that NDRE is a better VI for the creation of fertilizer prescription maps and N uptake 
assessment than NDVI. Moreover, the correlation value for NDRE (R2 = 0.80 and 0.67 for wheat and cotton, 
respectively) confirmed the assumption that NDRE can be used to monitor the N status of the wheat and cotton 
crops. Lastly, these studies provide initial evidence of the potential superiority of red-edge-NIR based spectral 
indices over NDVI (R2 between 0.11–0.65 across crops)40,41. In addition, this dataset helps to demonstrate the 
need of expanding the exploration of other spectral bands to target specific plant N traits more directly.

Data collected can also be used to predict N-related traits and yield for the given field crop and growth stage, 
merging all the VIs used in each paper. For N-related traits, the F-value for the entire crop set and growth stage 
was 4.91 and 16.79, respectively (Table 2). The F-values for the entire growth stage set are notably higher than 
those for the entire crop set, suggesting that growth stage may have a stronger influence on these traits compared 
to crop type. However, for yield, both the F-values for entire crop sets and entire growth stage sets are relatively 
low, indicating that neither crop type nor growth stage may have a significant impact on yield in this dataset.

The coefficients and associated p-values indicate that different crops have significant effects on N content and 
yield. For instance, crops like cotton, grass, oilseed rape, rice, soybean, and winter wheat show significant effects 
on N-related traits, with p-values indicating a positive relationship between these crops and higher R² values for 
N-related vegetation indices. Similarly, barley, corn, rice, and winter wheat show significant positive coefficients 
(p < 0.05), indicating their positive influence on R² values for yield-related vegetation indices, highlighting their 
suitability for accurate yield prediction using remote sensing data.

Notably, the mid and late growth stages further enhanced the model predictive capability for the N trait 
estimation, indicating their positive influence on R² values for N-related vegetation indices derived dur-
ing these stages. Compared with all growth stage (Estimate = 0.344, SE = 0.047, p < 0.001), both mid stage 
(Estimate = 0.568, SE = 0.014, p < 0.001) and late stage (Estimate = 0.585, SE = 0.030, p < 0.001) showed a more 
significant influence, reflecting the relevance of aiming for a specific growth stage to estimate N during the plant 
development (Table 2). While our dataset lacked early growth stage data based on the BBCH scale, the absence 
of this information underscores the importance of early-stage data. This indicates that the initial assimilation of 
N strongly influences subsequent plant productivity2,37,42. In the context of yield, it was unexpected to observe 
that the early stage showed a high estimate accuracy (Estimate = 0.754, SE = 0.064, p < 0.001), followed by the 
late stage (Estimate = 0.717, SE = 0.166, p < 0.001) with a higher standard error. The higher estimation accuracy 
for yield at the early growth stages may be attributed to the distinct spectral signatures captured by VIs where 
unique phenological signatures are assessed, indicating rapid vegetative growth or early stressors, leading to 
higher accuracy in yield estimation.

Results also reveal the uncertainty (reflected as the length of the 95% credibility interval) is higher for the late 
growth stage yield prediction (Fig. 3). The level of uncertainty depends on the number of observations within a 
study and on the total number of studies for a growth stage. We found only three studies that used the late stage 
to estimate yield2,15,32. When the number of data is small, the determination of yield can produce estimates with 
large uncertainty (wide credibility intervals).

Usage Notes
This dataset can also be used in studies to diagnose N status and various plant traits in different crop species 
using UAV imagery. For example, recent studies have used NDVI as a yield predictor for wheat3,15,37,43. However, 
when combining data from these studies conducted across different environments, it is not possible to gain 
insights about the relationship between relative yield and NDVI (Fig. 4). It is noteworthy to understand that dif-
ferent growth stages will present varying conditions, which indicates the need to properly report crop phenology 
(growth stage) and environmental conditions (rainfed vs. irrigated) when correlating yield with any VI44. For 
instance, some studies have highlighted the importance of obtaining an estimation of crop biomass in reducing 
variability/noise when exploring crop N status45. This approach could lead to more reliable models and the 
development of more universal N management guidelines.

Despite considerable progress, there are still many relevant research knowledge gaps in drone-based crop 
research. Many studies do not use the same VIs to analyze a specific plant trait and/or phenological stage. In 
addition, numerous studies provided metrics (R² and/or RMSE) of the relationship between plant trait and VI, 
but often omitted the corresponding data, restricting the future use of those studies.

Additionally, the dataset could be expanded to include other plant traits such as other nutrient deficiencies (e.g., 
potassium), drought status, and pest and disease detection. Drone-based imagery data can help detect changes in 
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crop N status early in the season, permitting to adjust via interventions. Improving the ability to more precisely 
and dynamically correct crop N deficiencies will help farmers focus on a more sustainable approach to monitor 
large areas in a short period of time, improving farming profitability and reducing the environmental footprint.

Code availability
Scripts using R and python programming languages are provided to produce figures. Additional code and related 
files are available at figshare repository39.
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