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Pachycrepoideus vindemiae (Rondani) is a solitary generalist pupal ectoparasitoid that parasitizes dipterans 
of various families and genera. This study aimed to evaluate Anastrepha fraterculus (Wiedemann), Ceratitis 
capitata (Wiedemann), and Drosophila suzukii (Matsumura) to determine the best host for the development 
and mass production of parasitoid P. vindemiae in the laboratory. The experiments were performed in air-
conditioned rooms at a temperature of 25 ± 2 °C, relative humidity of 70% ± 10%, and photophase of 12 h. 
Moreover, 24-h-old pupae of A. fraterculus, C. capitata, and D. suzukii were provided daily to 25 pairs of the 
parasitoid. The following parameters were determined: percentage of parasitism, percentage of emergence, 
hind tibia size, sex ratio, and longevity. A fertility life table was established using biological data. Notably, 
P. vindemiae parasitized the pupae of all 3 hosts but did not affect the sex ratio of the offspring. Parental 
parasitoids from the pupae of A. fraterculus and C. capitata lived longer than those from the pupae of D. 
suzukii. However, for all other parameters, parasitoids from D. suzukii showed better performance than those 
from other hosts, with shorter intervals between generations (T) and a higher net reproduction rate (Ro), in-
trinsic rate of increase (rm), and finite rate of increase (λ).
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Introduction

Pachycrepoideus vindemiae (Rondani) is a generalist pupal 
ectoparasitoid parasitizing many species of Diptera in 60 coun-
tries worldwide (Wang and Messing 2004). Its hosts include species 
of great economic importance, especially those in Tephritidae and 
Drosophilidae families (Marchiori et al. 2013, Marchiori and Borges 
2017, Rasool et al. 2017, Funes et al. 2019, Zhang et al. 2021).

Among the hosts of P. vindemiae, fruit flies are the most af-
fected pests impacting the global fruit market (Dias et al. 2018a). In 
South America, Anastrepha fraterculus (Wiedemann) and Ceratitis 
capitata (Wiedemann) are the most economically important pests 
of the tephritid group (Uchôa 2012). In addition to causing direct 
and indirect damage (Nava and Botton 2010), these pests necessitate 
the use of phytosanitary barriers, leading to fruit export restrictions 
(Dias and Moreira, 2023).

In addition to tephritids, Drosophila suzukii (Matsumura), the 
spotted-wing drosophila native to Southeast Asia and distributed 
in several countries across Europe, North America, South America, 
and Africa, is the most important pest of small fruits worldwide 
(Asplen et al. 2015, Andreazza et al. 2017a, Tait et al. 2021), es-
pecially blackberry [Morus sp. (Urticales: Moraceae)], cherry 
[Prunus sp. (Rosales: Rosaceae)], raspberry [Rubus idaeus Linnaeu 
(Rosales: Rosaceae)], strawberry [Fragaria × pineapple Duch 
(Rosales: Rosaceae)], and blueberry [Vaccinium myrtillus Linnaeu 
(Ericales: Ericaceae)] (Lee et al. 2011, Klick et al. 2016, Bernardi 
et al. 2017). Drosophila suzukii has received attention owing to its 
high harmful capacity (Cini et al. 2012, Ioriatti et al. 2015), fecun-
dity, rapid cycle (Emiljanowicz et al. 2014), global transmission 
rate (Asplen et al. 2015), and host diversity (Lee et al. 2015, Poyet 
et al. 2015).
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Despite being a facultative hyperparasitoid, P. vindemiae has 
attracted considerable interest for the biological control of fruit flies 
(Garcez et al. 2023). Recently, several studies have assessed the bio-
logical control potential of tephritids (Ovruski et al. 1999, Yang et 
al. 2020). It is also worth noting that although generalist parasitoids 
are often not preferable in biological control programs, their great 
plasticity can favor adaptation to environmental variations (Thibert-
Plante and Hendry 2011, Kingsolver and Buckley 2018) and ex-
change of host when a preferred host is not available (Jaworski et 
al. 2013).

Parasitoids exhibit great potential to control D. suzukii (Bezerra 
da Silva et al. 2019, Bonneau et al. 2019), but their use remains 
controversial. Augmentative release of P. vindemiae to control D. 
suzukii in caneberry hoop house crops in Minnesota, Oregon, and 
California in the USA resulted in a high parasitism rate only in 
Oregon (Hogg et al. 2022). The authors revealed that the release of 
a high quantity of P. vindemiae increases the parasitism of D. suzukii 
in areas with large populations of D. suzukii with conditions unsuit-
able for dispersal.

Improving P. vindemiae rearing techniques is essential to 
enhancing its production in the laboratory. The host for multiplica-
tion should be selected considering the production cost and ability to 
host parasitoids with high reproductive capacity and long life, similar 
to wild insects (Parra et al. 2021). Several hosts, such as Drosophila 
melanogaster (Meigen) (Diptera: Drosophilidae) (Hogg et al. 2022), 
D. suzukii (Mariano-Macedo et al. 2020, Missere et al. 2023), and 
Musca domestica Linnaeus (Diptera: Muscidae) (Peterssen et al. 
1992), have been used for parasitoid rearing. In Brazil, A. fraterculus, 
C. capitata, and D. suzukii are produced in several laboratories for 
the research and development of control methods. This study aimed 
to determine the best host among A. fraterculus, C. capitata, and D. 
suzukii for the development of P. vindemiae parasitoid and its mass 
production in the laboratory.

Materials and Methods

Insect Rearing
The insects used in this study were obtained from the mainte-
nance rearings of the Entomology Laboratory of Embrapa Clima 
Temperado, Pelotas, Rio Grande do Sul, Brazil. Colonies of A. 
fraterculus and C. capitata were reared during the larval stage on 
an artificial diet based on wheat germ following the methodology 
adapted from Nunes et al. (2013) and Gonçalves et al. (2013), re-
spectively. Drosophila suzukii colony was maintained in test tubes 
(2.5 cm × 8.5 cm) on an artificial diet based on corn flour according 
to the methodology proposed by Andreazza et al. (2017b).

Parasitoid P. vindemiae was obtained from fruit collections 
infested with fruit flies from peach orchards in the Municipality 
of Pelotas, RS, Brazil. In the laboratory, after emergence, the 
parasitoids were kept in plastic cages (26.2 cm × 17.7 cm × 14.7 cm) 
and fed pure honey solution (Bezerra da Silva et al. 2019). For the 
experiments, parasitoids reared for 15 generations in the 3 hosts (D. 
suzukii, A. fraterculus, and C. capitata) were used. All populations 
were kept in an air-conditioned room at a temperature of 25 ± 2 °C, 
relative humidity of 60% ± 10%, and photophase of 12 h.

Biology of P. vindemiae
To study the biology of P. vindemiae, 25 pairs of 5-day-old parasitoids 
were obtained from each host (A. fraterculus, C. capitata, and D. 
suzukii). The pairs were individualized and kept in cages consisting 
of plastic cups (200 ml) inverted in the respective lids and closed 

at the top with voile fabric. Pure honey, as a source of food, and 
water soaked in cotton were provided separately on plastic plates 
(2.2 cm diameter × 0.7 cm height). The food was replaced every 48 h 
to avoid fermentation and contamination by microorganisms, and 
water was replenished daily.

From the day of the formation of pairs of each population until 
the death of the females, 10–24-h old puparia from each host (A. 
fraterculus, C. capitata, and D. suzukii) were offered to each female 
parasitoid species. The puparia were placed on cotton moistened 
with distilled water on plastic plates (2.2 cm diameter × 0.7 cm 
height). After 24 h of exposure, the puparia were removed and 
placed in acrylic tubes (2.5 cm diameter × 4.5 cm height) closed at 
the top with cotton wool to prevent the adults from escaping during 
emergencies. In the case of no emergence, pupal dissection was 
performed to verify the presence of parasitoids/flies.

Based on the emergence data, parasitism of P. vindemiae was de-
termined in each host as well as the sex ratio of the offspring popu-
lation and number of parasitized pupae. To determine the longevity 
of the parents, the insects were fed honey and evaluated daily until 
death. After determining the biological parameters, a fertility life 
table was constructed, estimating the interval between generations 
(T), net reproduction rate (Ro), intrinsic rate of increase (rm), and 
finite rate of increase (λ), as described by Southwood (1995). The 
algorithms used to estimate these parameters are described below.

Net reproduction rate (Ro), indicating the sum for the entire 
oviposition period, was determined by multiplying the average 
number of eggs produced per female per day by the corresponding 
accumulated survival at each date:

Ro =
∑

Lx . Mx

Approximate estimate of the interval between generations (T) 
corresponds to the average of the oviposition age (x) weighted by 
the net number of descendants (Lx.Mx) produced at that date:

T =
∑ Mx . Lx . X

Lx . Mx

Intrinsic growth rate (rm) was determined as described by Silveira 
Neto et al. (1976) using the net reproduction rate (Ro) as follows:

rm =
logRo

T x 0, 4343

Finite growth rate (λ) was calculated using the following equation:

λ = erm

After the emergence of the first offspring of each host, 50 individuals 
of each sex were sacrificed to measure the size of hind tibia, which 
were subsequently arranged on slides. A stereoscopic microscope 
(Zeiss, Jena, Germany) was used at 4 × magnification, and the tibiae 
were captured using a camera (Leica Biosystems). Offspring lon-
gevity was verified by sampling 15 pairs from each host, which were 
kept under similar conditions as their parents but without pupae.

Statistical Analyses
The experiments were conducted using an entirely randomized de-
sign with 3 treatments (parasitoids from A. fraterculus, C. capitata, 
and D. suzukii) and 25 replicates (pairs of parasitoids). All data 
were checked for normality and homoscedasticity of residuals using 
the Shapiro–Wilk and Bartlett tests, respectively. Data on the per-
centage of parasitism, number of parasitized pupae, percentage of 
emergence, tibia length, and sex ratio did not meet the assumptions 
of normality and homoscedasticity; therefore, they were analyzed 
via the Kruskal–Wallis test (P ≤ 0.05). When statistical significance 
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was confirmed, the data were compared using Dunn’s test (P ≤ 0.05). 
Longevity data of males and females and their offspring in different 
treatments were analyzed via survival curves using the Kaplan–Meier 
estimator and compared using the log-rank test (P ≤ 0.05). Statistical 
analyses were conducted using the R software version 4.0.3 (R Core 
Team 2020). Parameters of the fertility life table were determined 
using the jackknife technique applying the “lifetable.sas” procedure 
developed by Maia et al. (2000) with SAS 9.1 (SAS Institute 2011).

Results

Effects of Host Species on P. vindemiae
Parasitism (H = 16.20; df = 2; P = 0.0003), number of parasitized 
pupae (H = 16.20; df = 2; P = 0.0003), emergence (H = 5.99; 
df = 2; P = 0.0500), and tibia lengths in males (H = 67.11; df = 2; 
P < 0.0001) and females (H = 101.87; df = 2; P < 0.0001) were 
significantly affected by the host species. Females of P. vindemiae 
on D. suzukii parasitized an average of 47.91% of the pupae, 
which was much higher than the average pupae parasitized in A. 
fraterculus (24.78%) and C. capitata (11.76%). The number of 
pupae parasitized per day was 2.39 ± 0.35 in D. suzukii, 1.24 ± 0.19 
in A. fraterculus, and 0.59 ± 0.13 in C. capitata. Similarly, higher 
emergence was observed in D. suzukii (96.43%) and A. fraterculus 
(81.22%) than in C. capitata (62.82%). Males and females of A. 
fraterculus exhibited the longest tibia length (416.25 ± 2.51 and 
428.39 ± 1.33 μm, respectively) compared to those of C. capitata 
(397.94 ± 4.23 and 421.86 ± 1.56 μm, respectively) and D. suzukii 
(386.40 ± 1.64 and 385.55 ± 1.33 μm, respectively). Notably, sex 
ratio was not significantly affected by the host species (H = 4.49; 
df = 2; P = 0.1061; Table 1).

Longevity of parental females (χ2: 27.6; P < 0.001) and males (χ2: 
15.6; P < 0.001) was significantly affected by the host species, with 
A. fraterculus and C. capitata exhibiting the longest-living insects 
superior to those of D. suzukii (Fig. 1). However, in the descendants 
(F1), the log-rank test showed that the longevity of males (χ2: 5.6; 
P = 0.06) and females (χ2: 0.3; P = 0.90) was not significantly af-
fected by the host species (Fig. 2).

Fertility Life Table
Fertility life table parameters of P. vindemiae were significantly af-
fected by the host species. The shortest interval between generations 
(T) was observed for P. vindemiae on D. suzukii (T = 29.65 days) 
compared to that for P. vindemiae on A. fraterculus (T = 35.03 days) 
and C. capitata (T = 36.16 days). The net reproduction rate (Ro), in-
trinsic rate of increase (rm), and finite rate of increase (λ) were high for 
P. vindemiae on D. suzukii (Ro = 31.85; rm = 0.12; λ = 1.12; Table 2).

Discussion

In this study, P. vindemiae development was observed in all 3 host 
species, but to varying degrees, with D. suzukii providing the best 
conditions for its multiplication. This growth capacity of parasitoids 
can be attributed to their highly adaptive evolution (Jones et al. 2015, 
Woltering et al. 2019). Generalist species, such as P. vindemiae, ex-
hibit phenotypic plasticity, allowing individuals to adapt to different 
hosts (Zepeda‐Paulo et al. 2013, Wang et al. 2021). Therefore, devel-
opment of P. vindemiae can change over several generations in the 
host (Jones et al. 2015).

In addition to a higher percentage of parasitism, higher number 
of parasitized pupae was obtained with D. suzukii than with A. 
fraterculus and C. capitata for P. vindemiae, with approximately 
2- and 4-times more parasitized pupae, respectively. However, 
adult females from D. suzukii were smaller (385.55 ± 1.33 µm) 
than those from C. capitata (421.86 ± 1.56 µm) and A. fraterculus 
(428.39 ± 1.33 µm). The size of the parasitoid is possibly related to 
the size of the host puparia, which is large in tephritids. According 
to Jervis (2005), large parasitoids exhibit high fertility and fecun-
dity; however, further studies should assess the associations between 
the size and reproductive parameters of parasitoids. Development 
of D. suzukii in the laboratory is easier than that of tephridids, es-
pecially A. fraterculus, which require high labor costs to obtain the 
ingredients for the larval diet.

Here, longevity of parasitoids from D. suzukii was short. 
Lampson et al. (1996) suggested that large parasitoids exhibit a long 
lifespan and high competitiveness. Mariano-Macedo et al. (2020) 
reported longer mean longevity in female parasitoids (32.2 ± 1.83 
days) than in male parasitoids (28.2 ± 1.06 days), in contrast to our 
study, where females exhibited shorter longevity (TMS = 14.1 days) 
than the males (18.6 days). However, analysis of F1 generation with 
no parasitism yielded results similar to those of Mariano-Macedo 
et al. (2020), with the average survival time being 37.1 days for 
females and 34.1 days for males. The short longevity of parasitoids 
from D. suzukii is possibly due to the energy spent by females under 
parasitism.

High number of females increases the population growth and 
parasitism rates, as observed in this study, where the sex ratio was 
high. Percentages of P. vindemiae females for the hosts evaluated in 
this study did not differ from those previously reported for other 
host species (Cancino et al. 2004, Wang and Messing 2004, Zhao 
et al. 2013). However, further studies are needed to determine the 
proportions of males and females suitable for mass rearing and as-
sess the reproductive characteristics, such as age and size, affecting 
the sex ratio. Sun et al. (2013) indicated that mating with virgin 
males results in the low emergence of male offspring; however, 

Table 1. Percentage of parasitism, number of pupae parasitized per day, percentage of emergence, tibia length (males and females), and 
sex ratio (average ± standard error) of P. vindemiae reared on pupae from three hosts. Temperature 25 ± 2 °C, relative humidity 60% ± 10% 
and photophase 12 h

Hosts
Parasitism 

(%)α

Parasitized 
pupaeα

Emergence 
(%)α

Hind tíbia length (µm)

Sex ratioβMale α Female α

A. fraterculus 24.78 ± 3.86b 1.24 ± 0.19b 81.22 ± 6.99ab 416.25 ± 2.51a 428.39 ± 1.33a 0.78 ± 0.08
C. capitata 11.76 ± 2.65c 0.59 ± 0.13c 62.82 ± 11.93b 397.94 ± 4.23b 421.86 ± 1.56b 0.98 ± 0.01
D. suzukii 47.91 ± 7.09a 2.39 ± 0.35a 96.43 ± 3.45a 386.40 ± 1.64c 385.55 ± 1.33c 0.94 ± 0.04

αMeans followed by same letter within the column do not differ according to Dunn test (P ≤ 0.05).
βns, not significant.
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increase in the mating time and duration of oviposition of females 
decreases the sex ratio.

Of the hosts evaluated in this study, D. suzukii exhibits the 
shortest life cycle, remaining in the pupal stage for approximately 6 
days (Emiljanowicz et al. 2014), whereas the tephritids exhibit longer 
life cycles, with approximately 11 days for A. fraterculus (Nunes et 
al. 2013, Dias et al. 2018b) and 10 days for C. capitata (Nestel and 
Nemny‐Lavy 2008, Ricalde et al. 2012). Evolutionary studies have 
indicated that parasitoid populations are highly adaptive to their 
hosts (Stireman et al. 2006, Henry et al. 2008, Forbes et al. 2009). 
Studies on larval parasitoids have indicated that they can slow down 

their maturation rate (Beckage 1993), remaining in a specific instar 
stage until the host reaches a stage meeting their nutritional needs 
using hormonal stimuli (Pennacchio et al. 1993, Kadono‐Okuda et 
al. 1995, Hu et al. 2002). Therefore, short interval between genera-
tions (T) of P. vindemiae in this study is possibly related to the syn-
chronization of the parasitoid life cycle with that of its host. Wang 
and Messing (2004) also demonstrated that P. vindemiae shows 
rapid development in D. melanogaster but slow development in C. 
capitata.

Net reproduction rate (Ro) of P. vindemiae parasitoid in D. 
suzukii host was high with 31.85 females generated per female per 

Fig. 1. Longevity (days) of the parental females A) and males B) de P. vindemiae reared on different hosts. TMS represents the mean time of survival. Lowercase 
letters represent the significant difference according to log-rank test (P ≤ 0.05).
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Fig. 2. Longevity (days) of the descendant females A) and males B) of P. vindemiae reared on different hosts. TMS represents the mean time of survival.

Table 2. Parameters of fertility life table of P. vindemiae reared on pupae from 3 hosts. Temperature 25 ± 2 °C, relative humidity 60% ± 10%, 
and photophase 12 h

Hosts T (days) Ro (♀/♀) rm (♀/♀*day) λ

A. fraterculus 35.03 ± 0.46b 13.90 ± 0.68b 0.07 ± 0.001b 1.08 ± 0.002b
C. capitata 36.16 ± 0.35b 9.53 ± 1.28b 0.06 ± 0.004c 1.06 ± 0.004c
D. suzukii 29.65 ± 0.45a 31.85 ± 3.99a 0.12 ± 0.003a 1.12 ± 0.004a

T = interval between generations; Ro = net reproductive rate, rm = intrinsec growth rate, and λ = finite rate of increase. Values represent means ± SE 
obtained using Jackknife method in SAS program. For each evaluated parameter, values followed by the same letter are not statistically different 
(P > 0.05).
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generation, which is more than double that of A. fraterculus (13.90) 
and triple that of C. capitata (9.53). Similarly, the innate capacity 
for population growth (rm), which determines whether the species 
can thrive in a given environment (Dias et al. 2010), and finite rate 
of increase (λ), which represents the number of females added to the 
population per female, were high in insects on D. suzukii (rm = 0.12; 
λ = 1.12) and low in insects on C. capitata (rm = 0.06; λ = 1.06).

Overall, this study showed that P. vindemiae on D. suzukii 
exhibited performance superior to that of A. fraterculus and C. 
capitata. Therefore, among those evaluated, D. suzukii was the 
most suitable for parasitoid rearing in biological control programs. 
However, further studies should investigate the implications of using 
P. vindemiae for biological control. Furthermore, development of D. 
suzukii in the laboratory is easier than that of tephritids, requiring 
simpler ingredients for the artificial diet, which is economical and 
easily accessible in the market. However, owing to the constant im-
provement in rearing techniques, future studies should optimize the 
different phases of development for both P. vindemiae and its host.
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