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Wine metabolome and sensory analyses
demonstrate the oenological potential of
novel grapevine genotypes for sustainable
viticulture in warm climates
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Abstract

BACKGROUND: Genetic breeding is essential to develop grapevine genotypes adapted to warm climates and resistant to path-
ogens. Traditionally cultivated Vitis vinifera is susceptible to biotic and abiotic stresses. Winemakers and consumers, however,
perceive wines from non-vinifera or hybrid cultivars as inferior. In this study, sensory analyses and comprehensive metabolite
profiling by targeted and untargeted approaches were used to investigate the oenological potential of wines from grapes of
genotypes developed throughout four breeding cycles to improve climate adaptation, sugar contents and berry color.

RESULTS: Novel genotypes had higher yields and the wines exhibited increased contents of polyphenols, including anthocya-
nins. Volatile monoterpenes in the wines decreased throughout breeding cycles in the absence of selective pressure. Polyphe-
nol contents were higher in intermediate wines, with hydroxytyrosol contents reaching up to three times reported values.
Mouthfeel attributes astringency, leafy taste, flavor and body, and persistency showed significant correlation with untargeted
features. Supervised model-based analyses of the metabolome effectively discriminate wines from distinct genetic origins.

CONCLUSION: Taken together, the results demonstrate the potential of novel grapevine genotypes to a more sustainable viti-
culture and quality wine production in warm climates. Comprehensive metabolite profiling of the wines reveals that genotype
clustering is dependent on the chemical class and that traits not submitted to selective pressure are also altered by breeding.
Supervised multivariate models were effective to predict the genetic origin of the wines based on the metabolic profile, indi-
cating the potential of the technique to identify biomarkers for wines from sustainable genotypes.

© 2024 Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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ABBREVIATIONS

ANOVA analyses of variance

ANT total anthocyanins

CIELab Commission Internationale de I'Eclairage L*a*b color
space

DAD diode array detector

ESI electrospray ionization

EM expectation—-maximization

GC-MS gas chromatography-mass spectrometry

LTPRI linear-temperature-programmed retention index

MFA multiple factor analysis

MS mass spectrometry

PC principal component

PCA principal component analysis

pH potential of hydrogen

PLS partial least square

PTFE polytetrafluoroethylene

SPME solid-phase microextraction

sPLS- sparse partial least square discriminant analysis

DA

TSS total soluble solids

TA titratable acidity

TPI total polyphenols

TQD triple quadrupole

UHPLC ultrahigh-performance liquid chromatography

INTRODUCTION

Viticulture worldwide is challenged with requirements for
increased sustainability.’? Adaptation to biotic and abiotic condi-
tions is crucial to crop resilience."? Agrochemical use is extensive
in grape production, due to Vitis vinifera susceptibility to phyto-
pathogens, berry color, and size exigences.>* High temperatures
during the winter negatively affect differentiation of uncommit-
ted meristems and reduce grape yield.* They also reduce anthocy-
anin accumulation during ripening and hinder flower bud
development in non-adapted genotypes.® Although these
effects are drastic in warm climates, extreme conditions caused
by climate changes also affect grapevine development in temper-
ate regions, reinforcing the need for adapted cultivars
worldwide."?

Genetic breeding has contributed to grapevine adaptation and
disease tolerance for many years, and controlled crosses and
selection in different environments allowed the development of
improved genotypes.>>® Wines from recent hybrid genotypes
are indistinguishable from those of traditional Vitis vinifera
cultivars,®® however preconceptions on wine quality remain.>®
Metabolite profiling, coupled with physicochemical properties,
chromatic characterization, and sensory analyses, were used to
discriminate wines by geographic location and vintage,” " wine-
making processes'*'* and agronomical condition.'*'® Associa-
tion between high-throughput metabolic fingerprinting and
genetics also contributes to elucidate the heritability of com-
pounds underlying complex traits, as mouthfeel or ‘bouquet’.'®"®

This study aimed at determining the oenological potential of
novel grapevine genotypes, developed for sustainable viticul-
ture, by integrating physicochemical characterization, metabo-
lite profiling, and sensory analyses of young red wines.
Genotypes were developed by mutant selection and conven-
tional breeding. Profiles of polyphenols and volatiles were

determined by ultrahigh-performance liquid chromatography
(UHPLC) and gas chromatography-mass spectrometry (GC-
MS), respectively, and associated with UHPLC-MS fingerprinting.
Genetic origin and oenological features were investigated by
multivariate models and hierarchical clustering. Correlation ana-
lyses were used to associate metabolite contents with sensory
grades. Complete metabolomes were used to construct sparse
partial least square discriminant analysis (sPLS-DA) models and
their performance to classify the wines according to genetic ori-
gin were assessed. The results may contribute to identifying bio-
markers of sustainable grapevine genotypes.

MATERIAL AND METHODS

Plant material

Winemaking grapes were harvested from experimental vineyards
in Bento Gongalves (29.1650° S, 51.5264° W), Brazil. Scion geno-
types were grafted onto Paulsen 1103, trained in a pergola sys-
tem, using 2.5 m X 1.5 m spacing, on east-west orientation on
slopes inferior to 5%. Local climate and soil are humid mesother-
mic (Cfb, Kbppen-Geiger) (Supporting Information, Tables S1 and
S2), and haplic cambisol. Vineyards were not irrigated and
received the recommended phytosanitary and soil management
practices.'® Yield was determined by mass weighting and repre-
sents 10-year averages from vineyards older than 5 years. Geno-
type information is summarized in Supporting Information,
Tables S3, S4, and Fig. S1. ‘Bordo’ wines were used as standard
for color, phenolics and untargeted metabolomic analyses.
Selected traits were adaptation to warm climates, fruitfulness, sol-
uble solids contents, and berry color.”

Wine making

Small-scale vinifications were conducted at Embrapa Uva e Vinho,
from 2016 to 2020. Berries were manually harvested and selected
to eliminate the unripe, rotten, and fungus infected. Thus, 50 kg of
berries from each genotype were mechanically destemmed and
crushed. Musts were incubated in a tank at 25 + 2 °C where they
received potassium metabisulfite (K,5,05) to a final concentration
of 50 mg L™" and were inoculated with 0.2 g L™' of yeast, Saccha-
romyces cerevisiae (Maurivin PMD). Musts were macerated for
4 days and then liquid was separated from the solid phase. Alco-
hol contents of 11.5% (v/v) were reached by correcting sugar
levels up to 3% (w/v) (Table S5). Samples underwent malolactic
fermentation for 60 days and were stabilized at 0 °C for 20 days,
with K,5,0s correction until 30 mg L™" of free sulfur dioxide
(SO,). Finished wines were bottled and analyzed within a
2-month period. Metabolic profiling was carried out using three
replicates from independent bottles.

Sensory evaluations

Wines from two vintages (2017 and 2018) were submitted to
quantitative descriptive analyses by a panel of eight trained mem-
bers, in three independent tastings. Attributes in classes of
mouthfeel (acidity, astringency, bitterness, sweetness, leafy, per-
sistency, sharpness and frankness, body of the flavor, pungency
and alcoholic power, tannins and structure, unpleasant taste,
and jam or jelly characteristics), odor (fruity, leafy, unpleasant,
and foxy), and color (intensity and violet hue) were evaluated
from the lowest (0) to the highest perceivable intensity (5). Global
appreciation was scored using a 0 to 100 scale. Analyses were con-
ducted in a dedicated laboratory, with temperature at 20 + 2 °C,
in individual booths with white lights. Samples were prepared in

wileyonlinelibrary.com/jsfa

© 2024 Society of Chemical Industry.

J Sci Food Agric 2025; 105: 329-341

85US017 SUOLULLIOD BAIERID 3o [dde au3 Aq pauRA0B 818 S3 e VO ‘SN 40 S3|NI 0} ARIq1T 3UIIUO 43I UO (SUORIPUOD-PUR-SWRYL0D A8 | 1M ARe1q | U1 |UO//:SHNY) SUORIPUOD PUe SWwid | 8U) &3S *[7202/2T4#0] Uo A%iqi8ulluo A81IM ‘S3d VO Ad Ze8ET 8ISI/200T 0T/10p/LI0D A8 | Im AReIq U1 IUO'S FPUINO 105 //:S0NY W14 papeo|umoq ‘T ‘SZ0C ‘0T00L60T


http://wileyonlinelibrary.com/jsfa

Metabolic profiling and sensory evaluation of wines from sustainable grapevines

@)
SClL

where science
meets business

WWW.S0Ci.org

a separate area. The study purpose and treatments were not dis-
closed, and panelists were anonymized. Participants were pre-
sented with 30 mL of each wine identified by numeric codes.
Panelists were instructed to evaluate samples independently
and analyses were performed according to ABNT NBR ISO
1113.%° Experiments were approved by the local ethical commit-
tee (CAAE number 79807924.4.0000.5305).

Physicochemical and color analyses

Physicochemical parameters were determined for berries and
wines from five vintages (2016-2020), and consisted of total solu-
ble solids (TSS, °Brix) determined by refractometry (Atago RX5000;
Atago Co. Ltd, Tokyo, Japan), titratable acidity (TA) by sodium
hydroxide titration, and total phenolics (TPs) by the Folin- Ciocal-
teau assay, all according to OIV guidelines.?' Total monomeric
anthocyanins contents were determined by differential pH,*
using buffer solutions at pH 1.0 (potassium chloride) and pH 4.5
(sodium chloride) and spectrophotometric absorbance at
510 nm and 700 nm (Ultrospec-2000; Amersham-Pharmacia Bio-
tech, Amersham, UK), shown as mg L' of malvidin-3,-
5-diglucoside. The CIELab parameters lightness (L*), red-green
(a*), yellow-blue (b*), chroma (C¥), and tonality angle or hue (h°)
at 450, 520, 570 and 630 nm were employed to determine wine
color, with a colorimeter (CR-400; Minolta, Tokyo, Japan), as
described in the literature.®

Target and non-target metabolome analyses

Phenolic compounds

Wine phenolic profiling was done by UHPLC,** using an Ultimate
3000 BioRS Dionex (Thermo Fisher Scientific Inc, Waltham, MA,
USA) system, with columns Acclaim TM RSLC 120 C18 (Thermo
Fisher Scientific Inc.) (2.2 pm, 2.1 mm X 50 mm) and a diode array
detector (DAD), operating at 280 nm, 320 nm, 360 nm, and
520 nm. Prior to injection, samples were filtered through polytetra-
fluoroethylene (PTFE) 0.45 um (Millipore, Bedford, MA, USA) and
20 pL were used. Ultrapure water with phosphoric acid 0.85%
(A) and acetonitrile (B) were used as mobile phase. Compounds were
eluted by a gradient of solvents A and B, starting at 100% of A,
decreasing from 96% in 2.5 min, 92% 7.5 min, 88% in 15 min, 85%
in 18 min, 80% in 20 min, 35% in 24 min, up to 25 min, with a final
increase to 100% of A at 28 min, with a flow rate of 0.8 mL min™".
Metabolite identification and quantification were performed by
comparison with commercial standards and external standard
method using calibration curves. Standards were from Sigma-
Aldrich (St Louis, MO, USA) and consisted of gallic acid, catechin,
trans-cinnamic acid, caffeic acid, chlorogenic acid, p-coumaric acid,
trans-ferulic acid, trans-resveratrol, rutin, quercetin, luteolin, hydroxy-
tyrosol, 3-O-methyl-quercetin, kaempferol, cyanidin-3,5-diglucoside,
delfinidin-3-O-glucoside, cyanidin-3-O-glucoside, pelargonidin-3-O-
glucoside, malvidin-3,5-diglucoside, peonidin-3-O-glucoside, and
malvidin-3-O-glucoside.

Volatile organic compounds

Solid-phase microextraction (SPME) was used to capture wine vol-
atiles that were analyzed with a QP-5000 (Shimadzu Corporation,
Kyoto, Japan) gas chromatograph/mass spectrometer with elec-
tron impact (El) ionization (70 eV).

An aliquot of 10 mL received 3 g of sodium chloride in a 35 mL glass
flask with screw top and septum and the mixture was incubated
under constant agitation at 30 °C for 30 min. The fiber [carboxen/divi-
nylbenzene/polydimethylsiloxane CAR/DVB/PDMS, Supelco, Inc., Bel-
lefonte, PA, USA] was exposed inside the vial (headspace) for 8 min,

retracted and exposed inside the injector. Injector and detector tem-
peratures were at 220 °Cand 240 °C, respectively, using helium as car-
rier,at 1 mL min™" flow. Samples were injected in the split 1/20 mode,
and compounds separated using a DB-5 column (30 m x 0.25
mm X 0.25 pm) with a temperature program from 35 °C to 240 °C,
with 3 °C min™" stepwise increases. Retention indices were calculated
by Van den Dool and Kratz equation® using a homologous series of
Cg—Cyo n-alkanes run under the same chromatographic conditions.
Area normalization was employed for relative quantification and vola-
tiles were identified by mass spectra and retention indices compari-
sons against the equipment library (Wiley 139, NIST 62) and
literature data.*®

Untargeted metabolite profiling

Untargeted metabolome was carried out by UHPLC (Acquity
Chromatograph, Waters Corporation, Milford, MA, USA) with triple
quadrupole (TQD) MS (Acquity; Waters Corporation). Wine bottles
were opened under controlled conditions and 1.5 mL samples, fil-
tered through 0.45 pm PTFE into MS-certified amber vials, before
injection of 5 pL. Detection was done by electrospray ionization in
negative ion (ESI-) and positive ion (ESI+) modes with capillary at
+3.5 kV, £30 V cone, capillary temperature of 150 °C and desolva-
tion temperature of 300 °C. Gradient elution was conducted using
purified water with 0.1% formic acid as solvent A and acetonitrile
as solvent B, with C18 BEH Acquity Waters (column
1,7 pm X 2,1 mm x 50 mm; Waters Corporation), at a flow rate
of 0.2 mL min~" and an oven temperature of 40 °C. Gradient pro-
gram was initiated with 5% of solvent B, ramped to 50% in 8 min,
and reached 95% of B in 9 min, with conditions held for 10 min,
and returned to the initial conditions at 10.1 min. Column was
kept equilibrated until 12 min. Raw data from ESI— and ESI+ were
converted to mzXML, using Proteowizard?” and pre-processed
with XCMS.28 Package IPO?” was used to optimize XCMS parame-

ter data and mass features were analyzed with ‘MetaboAnalyst’.>

Data analysis

Extractions, metabolite profiling, and sensory analyses were per-
formed in triplicate and are represented as mean + standard
deviation. Physicochemical and yield parameters were obtained
from 5-year evaluations. Statistical analyses used R version
4.2.0.3° Data normality was tested by Shapiro-Wilk’s before anal-
ysis of variance (ANOVA) and multiple mean comparisons, by
Tukey Honestly Significant Difference (HSD) t-test at P < 0.05.
Data were scaled, centered, and normalized. Heatmaps were built
using z-score normalized data, hierarchically clustered and plot-
ted with ‘pheatmap’?' Correlation analyses were done with
‘Hmisc*? and ‘corrplot’.>® Principal component analysis (PCA),
multiple factor analysis (MFA), and sPLS-DA were done using
‘FactoMineR’,>* “factoextra”® and ‘mixOmics’>® Breeding cycle
was used as discriminant in sPLS-DA and relevance networks were
constructed using similarity matrices from the sum of correlations
between the original variables and their corresponding latent
component in the model. Tuning threshold for relevant associa-
tions in the network corresponds to cut-off values. Optimal
models were determined by overall and balanced classification
error rates, using maximum, centroids and Mahalanobis distances.

RESULTS

Agronomical performance of the cultivars
Berry yield increased more than 85% with breeding (Fig. 1(A)),
whereas contents of soluble solids was 1.2 times higher in grapes
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Figure 1. Genetic breeding effects on agricultural and oenological properties. Berry yield and total soluble solids (A), contents of wine volatile classes
(B) per cycle. Boxplots of berry total soluble solids (C), wine total anthocyanins (D) and total phenolics (E) per genotype. Error bars represent standard

deviation. Significant differences at P < 0.05 are shown by distinct letters.

from later cultivars (Fig. 1(A)). Monoterpene contents were
reduced, decreasing more than three times (Fig. 1(B)), although
olfactory berry and wine characteristics were not selective criteria.
Ester and alcohol levels were not significantly modified (Fig. 1(B)).
Mutants exhibited uneven maturation, in comparison with later
genotypes, and low contents of polyphenols (Fig. 1(C)-(E)). Breed-
ing promoted a four-fold increase in total anthocyanins (Fig. 1(D))
and doubled polyphenols (Figs 1(E) and S3 (B)). Wine tonality also
improved (Fig. S3 (Q)), although not reaching ‘Bordo’ standard.
Phenotypes under selection, as yield, berry TSS, and TPs, were
the most affected (Fig. 1).

Sensory analyses

Most sensory variation of the wines was explained by the first
two components (Fig. 2(A)). Color attributes and mouthfeel
characteristics had good representation on the principal dimen-
sion (Fig. 2(B)). ‘BRS Cora’, ‘BRS Carmem’, and ‘BRS Rubea’ wines
associated with higher overall grades and positive features
(Fig. 2(C)), whereas those from ‘BRS Carmem’ were associated
with ‘leafy’ and ‘bitter’ mouthfeel (Fig. 2(B)). Wines from mutant
genotypes were considered with ‘foxy odor’, contrasting the
‘fruity odor’ of wines from cultivars with greater Vitis vinifera
representation (Figs 2(D) and S4). ‘BRS Lis’ wines associated with
‘leafy odor’ and ‘tannins/structure’ (Fig. 2(D)).

Wines chemical profile

Phenolic compounds

Twenty-one phenolic compounds were analyzed in wines from
eight genotypes and one control (Table 1). Polyphenol total con-
tents ranged from 430 to 450 mg L™ in ‘Isabel Precoce’ and
‘BRS Carmem’ to 1080-1180 mg L™ in ‘BRS Lis’ and ‘BRS Violeta’

wines, representing up to 13% higher polyphenol levels as ‘Bordo’
(Table 1). Wines from ‘BRS Violeta’ had approximately twice (1.78)
the contents of anthocyanins as ‘Bordo’ (Table 1). Anthocyanin
contents in wines from ‘BRS Lis' were equivalent to ‘Bordo’
(Table 1). Contents of flavan-3-ols (cathechin and hydroxytyrosol)
were higher in wines from all cultivars in comparison to ‘Bordo’,
except for ‘BRS Carmem’ (Table 1).

‘Bordo’ wines had the most divergent polyphenol profile (Figs 3
(A) and S5 (A)). ‘Isabel Precoce’ and ‘Concord Clone 30" wines had
higher contents of 3,5-anthocyanidin diglucosides (Fig. 3). Wines
from the second breeding cycle onward did not associate with
anthocyanin 3,5-diglucosides (Fig. 3). Hydroxytyrosol contents
were significant in ‘BRS Rubea’, ‘BRS Violeta’, and especially ‘BRS
Magna’ wines (Figs 3(A) and S5 (A)). Contents of monomeric
anthocyanins correlated with color intensity and violet hue
(Fig. 3(B)). Total and monomeric anthocyanins, and flavonoids
were negatively correlated with b* (Fig. 3(B)).

Volatile organic compounds

Twenty-two volatiles were identified by GC-MS (Table 2). Profiles
changed throughout breeding cycles (Fig. 1(E) and Table 2). Most
variation in the wines' volatiles (56.5%) was explained by the first
two components (Fig. 3(C)). Volatiles from controlled cross wines
were distinct from those of labrusca mutants (Fig. 3(C),(D)). ‘BRS
Carmem’, ‘BRS Violeta’, and ‘BRS Magna' volatile profiles were sim-
ilar, whereas wines from earlier and later genotypes resembled
those from Vitis labrusca mutants (Fig. 3(C),(D)). Distinct wine
groups were formed based on polyphenol and volatile profiles
(Fig. 3(A),(C)). Wines from recent genotypes were significantly
associated with a hydroxylated derivate of ethyl propanoate,
whereas those from ‘Concord Clone 30’, ‘BRS Rubea’, ‘BRS Cora’,
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and ‘BRS Violeta’ were correlated with ethyl-hexanoate (Fig. 3(C),
(D)). A position derivative of ethyl-2-hexanoate was also relevant
in ‘BRS Rubea’ wines (Fig. 3(C),(D)), considered to have ‘fruity’ odor
(Fig. S5 (B)).

Untargeted metabolome

Ninety-six UHPLC-MS features, 63 from negative (ESI-) and 33 in
positive ionization modes (ESI+), were detected in the wines
(Figs 4(A) and S6). ESI— produced approximately twice (1.91) the
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5 number of features as ESI+. Intra-group correlation analyses of the g
% 3 y 2 | S modes are shown (Fig. S7). Wines were grouped in two clusters, g
&5 2 3 3 ﬁ A c . . . g
319 9~ e 8w S| one consisting of mutants and early cultivars, and another with 2
O AR R 4o w| D J y 3
E ‘§ § § E @ recent genotypes (Fig. 4(A)). Untargeted profiles of ‘BRS Cora’ ES
g and ‘BRS Carmem’ wines were divergent, the first similar to ‘Isabel i
N 9 =
. = Precoce’ and ‘Concord Clone 30" and the later, to recent cultivars £
218% % R R= (Figs 4(A) and S6). The sPLS model, using genetic information as 3
a2l 8 s S ¢ o ;| ® 9 99 &
S|+ Hyg° AT LR discriminant, provided a clear distinction of the groups and accu- s
8 e o H g g H|E pre . . . @ group 5
s 3 & e E: 5 rate representation of their genetic relationships (Fig. 4(C)). Rele- g
2 vance networks associated chemical features to genetic origins §
2y 5’; . -~ o |8 (Fig. S8 (C)). Mouthfeel grades for astringency, leafy taste, flavor 3
2| S S = S = | & and body, and persistency exhibited positive correlation with g
2 H o1 o N N & N ™ =} ’ g
Slg=c " grg” % UHPLC-MS features (Fig. 4(B)). g
2 :
. D % 'g Integrated metabolome and genetic origin prediction =
| v e @ 5 % | & ; ; B
s | 8 2 3 Al a Genotype clusters based on wine polyphenol and volatile pro-
< c o H n n 5 1] g
E hong X E, 9 f 5 files, and untargeted metabolome features were distinct z
o ~ o~
s 2= = = o (Figs 2 and 3). A comprehensive model, based on targeted 2
g p 9 z
5 (21 polyphenols, 22 volatiles) and untargeted (96 features) »
§l . v - - | B metabolomes, produced two large groups, one with mutant cul- £
el 8 = 3 N O et . . . 2
5| s s % N N ] tivars and early genotypes, and another with wines from recent 8
g HoH & T, & © £ . . . R . N =
2 g g o g g TG materials (Figs 4(C) and S8 (A)). Wines from sibling cultivars ‘BRS el
S N ~ ~ . . =
N E. Cora’ and ‘BRS Carmem’ did not cluster together, despite the g
N shared parentage (Figs S8 (A) and S2 (D)). Optimized sPLS-DA El
glg2 3 o ow | ! model exhibited sensitivity greater than 95.0% and specificit g
o1l s s S @ sl E y 9 P Y g
2 B SN 29% | s of 99.5% to discriminate wines from breeding cycles (Fig. 4(C)). 8
0 : o ] =
St B 8 g = Error rates were lower than 0.1 for more than two components p
= P %
g (Fig. S8 (B)), demonstrating the absence of overfitting and effec- 3
sl . - % 2 3 - tive cross-validation. Relevance network analyses associated g
slgg 3 % 3 § wines from recent breeding cycle with luteolin, gallic acid, and g
i é\ : é g g E g 3-O-methyl-quercetin (Fig. 4(D)). g
S < ~ n H %
4] @
g 3z
. x| 3 DISCUSSION
S @ s N N A ™ c . . s . ™ 5
g ¢ S s o T ° g Novel grapevine genotypes are crucial for viticulture sustainability g
o — . ars . . . . 3
SOl HFHrE Y B p 3 in traditional and new wine-producing regions worldwide, z
2R 3 s 5 |8 P 9 reg g
s -« 0 ® o although, acceptance of hybrid cultivars remains restricted due 2
8 9 p y z
Y B to preconceptions on wine quality."*>® This study takes advan- s
Sl &% S v %2 tage of a long running grapevine breeding program and high- ]
SS9y “fl 9 &;I g % g throughput metabolite profiling to investigate the oenological g
HERER 2 g < characteristics of cultivars developed for sustainable viticulture. E
3 ? £ p g
£ S
o ]
= 8 T = Breeding affects selected and unintended oenological g
o 8 8 < oW | &8 . 2
s 3 3 + EN 21 & traits S
° HOoH X N m o ] . . . . .
“l g gr a = M| E The cultivars are genetically close, with distances ranging from :
g 85 8 % £ g y ging 3
S 0.13 (‘Bordo’ to ‘BRS Rubea’) to 0.45 (‘Isabel Precoce’ to ‘BRS 8
v =3
: g l\/lagna’).37 However, wine chemical and sensory properties were l
2 o v distinct. Mutant genotypes were selected for their shorter berr 5
g 2 o 9 Yy y 3
g= < E ripening cycle, which expands the productive and processing g
T3 cycles in sub-tropical conditions.® Yield and soluble solid con- 8
— . . . . =3
. tents were increased in recent cultivars. In an F, population 5
5 o g e from wild Vitis riparia and hybrid ‘Seyval’, soluble solids and acid 9
= =] — - .
s E S | contents were closely associated and controlled by a narrow 2
o j=X
= - 29 region in chromosome 6.'” These traits were similar in wines 4
- ;‘%f’/ of genotypes from controlled crosses also suggesting co- f-;
g o a localization. Physicochemical properties of wines from breeding 3
= <9 enotypes were closer to those reported for Vitis vinifera than g
= (%) g yp p
- :| 5% for hybrids.®° z
o 2 el §> or hybrids. a
o g R i i
. = = 2 g £ Color in young red wines depends on grape contents of antho-
- ] 5 § ¢ g gles young p grap
9 Slesgr 38 22|97 cyanins and other co-pigment polyphenols.®® Polyphenol biosyn-
S sl 88 ¢s ¢ % 25| 22 . 2 R .
S |55 § 3 S S3 thesis and accumulation in berries is highly influenced by the
environment,>**3 a5 observed for wines. Juices from ‘BRS Cora’
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Figure 3. Phenolic and volatile profiles of the wines. PCA biplot of phenolic compounds (A) and correlation between class contents, visual sensory
grades, and color parameters (B). PCA biplot (C) and hierarchical cluster (D) of volatile compounds.

and ‘BRS Carmem’ had high contents of polyphenols,®’*° as their

wines. These results support the contribution of genetics to
increase polyphenol contents. Although not selected, monoter-
pene levels in the wines decreased linearly throughout breeding
cycles. In grapes, monoterpenes are associated with muscat
flavor," and wines from mutant cultivars ranked as ‘intensely fla-
vored muscats’ (4.4 mg L™") and from other genotypes, as ‘aro-
matic, non-muscat’ (2.96 to 1.31 mg L™"). Contents of ester and
alcohol were not significantly modified as these volatiles are pre-
dominantly of yeast origin.*?**

Chemical signatures of the wines from new genotypes
Phenolic compounds

Phenolics profile in grapes is extensively controlled by genet-
ics.>1* In disease-resistant hybrids, genetic background deter-
mines the contents of most polyphenols, except for epicatechin
and caftaric acid.®#** Young red wines are considered good repre-
sentatives of grape contents of most phenolics, except for gallic
acid.®** ‘Bordo’ wines had the most divergent profile, reflecting
its genealogy with extensive Vitis labrusca parentage. ‘Isabel Pre-
coce’ and ‘Concord Clone 30" gave rise to wines with higher

1 ——
wileyonlinelibrary.com/jsfa © 2024 Society of Chemical Industry. J Sci Food Agric 2025; 105: 329-341
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( A) z-score (B)
UHPLC-MS
feature Mouthfeel attributes

: : : : 2 pungency
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Figure 4. Untargeted metabolome by UHPLC-MS and integrated model. Hierarchical cluster of ESI+ and ESI— features (A). Correlation between features
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class boundaries calculated using maximum distance. Model tuning by repeated cross-validation (10 x 10-fold). Relevance network (D) of the associations
between metabolites/features and wines genetic origins (cut-off = 0.75).

contents of 3,5-anthocyanidin diglucoside derivatives. Although  anthocyanin 3,5-diglucosides, demonstrating their vinifera-like
diglucoside anthocyanins are considered markers of non-vinifera  profile.

cultivars in winemaking,®** recent hybrid cultivars exhibit levels ‘BRS Rubea’, ‘BRS Violeta’, and especially ‘BRS Magna’ wines
of diglucoside anthocyanins like those in Vitis vinifera wines®**  exhibited high contents of hydroxytyrosol, considered to have
Wines from the second breeding cycle did not associate with  higher antioxidant activity than other polyphenols due to the
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ortho-dihydroxy conformation of its aromatic ring.** Studies dem-
onstrated strong anti-inflammatory activity of hydroxytyrosol by
inhibiting cytokines, and neuroprotective role by modulating
microgial cells activity, which reduces neuroinflammation and
inhibits a-synuclein and p-amyloid fibrils formation.*> However,
the compound is only present in olives, virgin olive oils, and
wine.*> ‘BRS Rubea’, ‘BRS Violeta’, and ‘BRS Magna’ wines had
more than three times the average reported concentration of
hydroxytyrosol.

Wine color intensity and violet hue positively correlated with
levels of monomeric anthocyanins. Contents of all classes of phe-
nolic compounds were intercorrelated due to their shared meta-
bolic pathways.”® Wine color is influenced by the flavylium
cation of malvidin-3-glucoside and its interaction with quercetin
3-0-p-glucopyranoside.*” ‘BRS Violeta’ and ‘BRS Magna’ wines
received higher color grades than ‘BRS Lis’, with greater
malvidin-3-glucoside and quercetin contents. Discrepancies of
the CIE L*a*b* color space were demonstrated for highly satu-
rated red regions, where it does not faithfully represent eye per-
ception.”® Despite these divergences, b* coordinate is the
closest approximation to perceived hue in red wines,*® agreeing
with the negative correlation between anthocyanins, flavonoids,
and b* in our results.

Volatile compounds

Clustering analyses based on polyphenol and volatile profiles
generated distinct groups, suggesting different effects on meta-
bolic pathways submitted to or free of selective pressure by
breeding. In highbush blueberry (Vaccinium corymbosum), flower
volatiles were influenced by environment, genomic context, and
metabolite.'® Wines' polyphenol profile became more divergent,
whereas the blend of volatiles turned more similar along breeding
cycles. Despite the absence of selection, monoterpene contents
decreased in wines from recent cultivars. Although volatiles of
vinifera and hybrid genotype wines are generally considered dif-
ferent, intragroup variation is high.>'® Moreover, winemaking
technologies and microorganisms exert great influence on vola-
tiles.*® Thus, no clear association between volatiles and hybrid
grapes is known. Wines from French disease-resistance hybrids
had ethyl propanoate, whereas ethyl-hexanoate was predomi-
nant in wines from Vitis vinifera cultivars.®'° In our study, a hydrox-
ylated derivate of ethyl propanoate was detected in association
with wines from recent genotypes and ethyl-hexanoate, in those
from ‘Concord Clone 30’, ‘BRS Rubea’, ‘BRS Cora’, and ‘BRS Violeta'.
In vinifera wines, the compound is associated with green apple,
strawberry, and pineapple aromas,'® agreeing with the ‘fruity’
odor of ‘BRS Rubea’ and ‘BRS Cora’ wines. However, the associa-
tion between volatile profiles and sensory analyses were inconclu-
sive, as in other studies.***?

Sensory ratings and volatile profiles of ‘BRS Rubea’, ‘BRS Cora’,
and ‘BRS Carmem’ wines were distinct from previously
reported.’*'® These differences are likely due to distinct vineyard
environments and winemaking techniques. In contrast, the ‘lea-
fy'/'vegetal’ trait of ‘BRS Violeta’ wines, observed previously'?
was replicated in our study. The ‘leafy odor’ of ‘BRS Lis’ wines is
likely due to interaction between pulp polyphenols and volatiles.

Untargeted metabolome

Ninety-six features were detected in the wines, with a higher
number from ESI—. Similar studies of red wines, using UHPLC
and liquid chromatography/ion mobility with quadrupole time-
of-flight mass spectrometry (LC-IM-QTOF-MS), detected 2145

and 2384 features in ‘Cabernet Sauvignon’ wines from three
regions of China and in 114 commercial wines from different vin-
tages and regions, respectively."° Both ionization modes exhib-
ited similar chemical fingerprints.'"*° Here the differences could
be due to higher contents of phenolic acids, flavanols, and
flavan-3-ols that generate stronger signals in ESI—, in comparison
to anthocyanins, that tend to ionize in ESI+. These observations
agree with HPLC results, where polyphenol/monomeric anthocy-
anin ratios were greater than or close to 1.0 for seven out nine
genotypes.

Prediction of wine quality from chemical analyses is desirable
for the industry®'°2 and breeding programs. In young red wines,
sensory features originate from the berry (varietal or primary
traits), winemaking processes (secondary traits), and alcoholic
and malolactic fermentations (fermentation traits).®>> Wine
ethanol and polyphenol contents and their interactions create
oral-tactile stimulation during tasting, inducing salivary film mod-
ifications.>® Studies demonstrated that integrative approaches,
combining sensory and instrumental analyses, are required to
investigate mouthfeel perception.>*** Our results show signifi-
cant correlation between UHPLC-MS features and sensory traits.

Metabolite identification remains challenging in untargeted
metabolomics due to requirements for accurate molecular
weight, retention time, and ion fragments that are specially diffi-
cult for plant specialized metabolites with high structural variabil-
ity.>> Discriminant compounds in untargeted wine analyses
include flavonoids, organic acids, amino acids, terpenes, and fatty
alcohols.®''°%%3 We tentatively identified quercetin (N301/5.46),
3-O-methyl-quercetin (P3017/4.559), chlorogenic (N353/4.187),
and trans-ferulic (N193/0718) acids but most compounds remain
to be characterized.

Integrated metabolome and genetic origin prediction

Genotype clustering was different for each metabolite set, as in
grape juice.*? Groups formed from sensory data and chemical
profiles were also distinct. An integrative model discriminated
wines from early and later genotypes and predicted genetic ori-
gin. Minor discrepancies are likely due to yeast influence on wines
chemical signature® and high heterozygosity of grapevine.'*>°

CONCLUSIONS

Genetic breeding improved grapevine adaptation and yield. Wine
phenolic contents almost doubled in four breeding cycles. Breed-
ing reduced monoterpene levels without selection. Wines exhibit
distinct sensory properties with great contribution of color and
mouthfeel attributes. The profile of phenolic metabolites was
divergent for wines from recent genotypes. Wines from ‘BRS
Rubea’, ‘BRS Violeta’, and especially ‘BRS Magna’ had elevated
contents of hydroxytyrosol, a powerful natural antioxidant. Mono-
meric anthocyanin contents correlated with wine color intensity
and violet hue, whereas phenolic acids and flavonoids contents
were negatively associated with saturation and tonality. The pro-
file of volatiles also allowed discriminating genotypes from differ-
ent breeding cycles. Wines from recent genotypes had lower
contents of monoterpenes. Untargeted metabolome was less
effective to discriminate the wines, but unveiled significant corre-
lation between features and sensory attributes. Integrative
modeling of chemical profiles allowed accurate representation
and prediction of genetic origin, suggesting that further studies
may permit identification of wine biomarkers for sustainable
viticulture.
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