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ASSESSMENT OF SUGARCANE PRODUCTION USING REGRESSION MODELS 

AND RGB VEGETATION INDICES DATA 

Abstract 

Productivity estimates play a crucial role for sugarcane producers and sugar mills in planning 

production, aligning it with demand forecasts. Manual estimations demand considerable effort 

and time, prompting exploration into alternative productivity estimation methods such as 

aerial imaging using drones. Within imaging techniques, productivity estimation occurs 

indirectly through the analysis of vegetation indices. The widely recognized vegetation index, 

NDVI, necessitates costly near-infrared (NIR) cameras, making it inaccessible to many 

producers. Our approach utilized drone imagery captured by more affordable RGB cameras, 

which are feasible for a larger number of producers. We applied six regression models 

alongside a stacking model that amalgamated these six models for estimating sugarcane 

production using the eight RGB vegetation indices. Initial tests revealed a Mean Absolute 

Percentage Error (MAPE) of less than 13%. This level of accuracy is considered favorable 

when benchmarked against similar studies and presents encouraging prospects for future 

research. 
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1 Introduction 
Productivity estimates play a critical role in assisting sugarcane producers and sugar mills to 

plan their sugar, ethanol, and related product output. These estimates are pivotal for adjusting 

production according to demand forecasts (Mawandha et al., 2022). Furthermore, they aid in 

forecasting profitability, influencing investment projections in sugarcane fields, harvesting, 

transportation processes on farms, and industrial plant operations within the sugar and alcohol 

sector. Therefore, these estimates are indispensable for professional management in this 

industry. 

There are various methods for estimating productivity. Manual estimation involves using a 

mobile application, offering benefits such as backup options and utilizing artificial 

intelligence to assist in recording plant counts per hectare (Mawandha et al., 2022). Satellite 

imagery is another method, especially useful for covering vast areas. However, this approach 

has limitations due to the Normalized Difference Vegetation Index (NDVI) association with 

biomass, leading to challenges with low spatial and temporal resolution (Singla et al., 2015). 

In contrast to labor-intensive manual data collection and the spatial-temporal limitations of 

satellite imagery, unmanned aerial vehicles (UAVs) offer an alternative for yield estimation 

through imagery. UAV imagery provides superior spatial resolution, and the imaging process 

can be repeated as needed, offering flexibility and accuracy (Poudyal et al., 2022). 

Yield estimation often relies on vegetation indices such as NDVI, which effectively indicate 

plant health. However, calculating NDVI requires the use of Near-Infrared (NIR) wavelengths 

(Stamford et al., 2023). These wavelengths are accessible only through multispectral and 

hyperspectral cameras, which tend to be costly and out of reach for many producers. 

Consequently, several studies have turned to RGB vegetation indices as alternatives to gauge 

plant health and biomass production (Bakacsy et al., 2023; Sanches et al., 2018). RGB 

cameras are more affordable compared to multispectral ones, making them accessible to a 

larger number of farmers. Additionally, they are lighter, enabling longer drone flight times 

(Yano et al., 2017). 

The aim of this study is to assess and choose machine learning regression models and 

ensemble techniques for estimating sugarcane yield using eight RGB vegetation indices. The 

resulting models will serve as effective tools for sugarcane producers, empowering them to 

make informed decisions, particularly regarding cash flow management and investment 

planning. 

 

2 Methodology 

As outlined in the preceding section, this study aimed to generate models for estimating 

sugarcane production using RGB vegetation indices. To accomplish this, we applied six 

regression models that utilized a combination of eight RGB vegetation indices to determine 

the most effective model. This section delineates the imaging environment, vegetation index 

computation for dataset creation, and the generation of regression models for estimating 

sugarcane production. 

Figure 1 illustrates the flowchart depicting the model generation process. Initially, images 

were captured from the field using a drone, and subsequently, an orthomosaic was generated. 

The AgroAzul Company facilitated image capture and orthomosaic generation for this study. 



 

From the received orthomosaic, crops within the experimental field plots were delineated and 

utilized for computing the vegetation indices. 

Sugarcane harvesting occurred some days after the drone imagery. During this process, the 

weights of each plot within the experimental field were recorded in a spreadsheet (Table 1). 

These weights signify the biomass produced in the experimental field and were matched with 

the previously calculated vegetation indices to establish the dataset reflecting field production 

for each plot. 

For generating the regression models, six algorithms were employed using the field 

production dataset, resulting in seven regression models for predicting sugarcane production. 

Each algorithm produced one model, and an additional stacking model, an ensemble 

combining the six models, aimed to improve individual model outcomes (Abdallah et al., 

2022). The selected metric for result comparison was the Mean Absolute Percentage Error 

(MAPE), as it offers a more understandable outcome, facilitating comparison between 

predicted and real values to determine the magnitude of differences. This metric was preferred 

over Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE) due to its 

interpretability in assessing error comparisons with original (real) values. 

 

Figure 1 – Regressive models generation flowchart 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors 

 

2.1 Environment 

The experiment site was on a farm located at -22.682012, -47.837749 in the municipality of 

Piracicaba (Figure 2). The experimental field has 40 plots (Figure 3). Each plot is a rectangle 

with a length of 10 m and width of 7.5 m, with an area of 75 m
2
. Sugarcane was planted 

throughout the experimental field. At the time of harvest, the production of each plot was 

harvested and weighed separately to construct Table 1. Before the harvest, the AgroAzul 

Company takes the RGB Imagery and generated an orthomosaic of the experimental field. 



 

Figure 2 – Experimental Field 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors 

 

Figure 3 – Experimental field divided into 40 plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors 



 

Table 1 – Plot number, weigh in kg and weigh in Ton per hectare 

Plot Weight (kg) Ton per Hectare 

1 790,06 105,34 

2 823,71 109,83 

3 814,86 108,65 

4 752,86 100,38 

5 713,89 95,18 

6 635,94 84,79 

7 637,71 85,03 

8 797,14 106,29 

9 742,23 98,96 

10 953,03 127,07 

11 940,63 125,42 

12 882,17 117,62 

13 958,34 127,78 

14 1006,17 134,16 

15 823,71 109,83 

16 940,63 125,42 

17 901,66 120,22 

18 921,14 122,82 

19 869,77 115,97 

20 846,74 112,90 

21 898,11 119,75 

22 850,29 113,37 

23 733,37 97,78 

24 747,54 99,67 

25 930,00 124,00 

26 914,06 121,87 

27 956,57 127,54 

28 782,97 104,40 

29 772,34 102,98 

30 738,69 98,49 

31 901,66 120,22 

32 956,57 127,54 

33 682,00 90,93 

34 802,46 106,99 

35 779,43 103,92 

36 806,00 107,47 

37 657,20 87,63 

38 988,46 131,79 

39 637,71 85,03 

40 481,83 64,24 

Source: Authors 

 

 



 

2.2 Vegetation indices Calculation 

A Python program calculated the eight RGB Vegetation indices used in this work. The 

formula of each vegetation index is listed below and uses the letters R, G, and B, which 

represent the colors red, green, and blue, respectively: 

a) Excess of Green (ExG) described by Woebbecke et al. (1995): 

ExG = 2G − R − B                                    (1) 

 

b) Excess of Red (ExR) proposed by Meyer et al. (1998): 

 

ExR = 1,4R – B                                          (2) 

 

c) Excess Green minus Excess Red (ExG−ExR) (Meyer & Neto, 2008): 

 

ExG–ExR = ExG – ExR                             (3) 

 

d) Normalized Difference Vegetation Index (NDI) (Perez et al., 2000): 

 

NDI = (G – R)/(G + R)                             (4) 

 

 

e) Visible Atmospherically Resistant Index (VARI) (Cen et al., 2019): 

 

VARI = (G – R)/(G + R – B)                     (5) 

 

 

f) Green Leaf Index (GLI) (Eng et al., 2019): 

 

GLI = (2G – R - B)/(2G + R + B)             (6) 

 

 

g) Red Green Blue Vegetation Index (RGBVI) (Bendig et al., 2015): 

 

RGBVI = (GG -RB)/(GG + RB)                (7) 

 

 

h) Green Red Ratio Vegetation Index (GRRI) (Lu et al., 2021): 

 

GRRI = G/R                                               (8) 

 

 

2.3 Dataset Creation 

After the harvest of the sugarcane crop, each plot of the experimental field had its biomass 

measured. The dataset for the regressive models has the plot identification, and the biomass 

weights joined with the vegetation index calculated for the sub-images extracted from the 

orthomosaic. The eight vegetation indices are ExG, ExR, ExG-ExR, NDI, VARI, GLI, 

RGBVI, and GRRI. 



 

2.4 Models Generation 

For Models Generation, a specific Python program using Sklearn Library applies six 

regressive algorithms, which makes the stacking ensemble generate seven models, where the 

results can be seen in a boxplot graph for result comparison. This program also applies the 

cross-validation technique because it makes the full use of the data to provide more precise 

error estimates (Bergmeir et al., 2014). In the cross-validation, the training and validation sets 

of data are never the same, preventing overfitting (Berrar, 2019). The algorithms and their 

hyperparameters are listed in Table 2 below. 

 

Table 2 – List of algorithms used for sugarcane production estimation 

Algorithm Acronym Hyperparameters 

KNeighborsRegressor knn 
n_neighbors=8 

DecisionTreeRegressor cart 
max_depth= 8,max_features= 'auto', 

min_samples_leaf= 10, min_samples_split=0.01, 

criterion='absolute_error' 
SVR svm kernel='rbf',C=0.1, epsilon=0.1 

RandomForestRegressor rf 

criterion='absolute_error',max_depth=8, 

max_features='auto', 

min_samples_leaf=10,min_samples_split=0.01, 

n_estimators=200 

HistGradientBoostingRegressor 
xgb 

learning_rate =0.1, max_iter=100, max_depth=2, 

min_samples_leaf=20, max_leaf_nodes=25 

LinearRegression lr 
 

Stacking 
stacking  

Source: Authors 

 

 

 

3 Results 

The results were divided into two parts. The first part is the linear regression metrics of the 

eight vegetation indices, just for comparison and to know which one had a better correlation 

to the biomass measured in the harvest procedure. The second part is the result of the 

regression using the six regression algorithms and the result of the stacking ensemble to select 

the better model for sugarcane production estimation. 

3.1 Linear Regression metrics of the eight vegetation indices 

The linear regression metrics of the eight vegetation indices are listed in Table 3.  

Table 3 – Linear regression metrics of the eight vegetation indices 

Metric ExG ExR ExG-ExR NDI VARI GLI RGBVI GRRI 

MAPE 0.1146 0.1233 0.1203 0.1204 0.1195 0.1176 0.1154 0.1219 

MAE 87.65 93.76 91.48 91.46 90.84 89.70 88.08 92.91 

MAE TCH 11.69 12.5 12.20 12.19 12.11 11.96 11.74 12.39 



 

Source: Authors 

 

Observing Table 3, the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error 

(MAPE) indicate that the difference between the original value measured and the predicted 

value was around 12%. The Excess of Green presented the best results, followed closely by 

RGBVI. Figure 4 shows the graphs of the eight vegetation indices.  

 

Figure 4 – Linear regression graph of the eight vegetation indices 

Source: Authors 

 

3.2 Apply six regression algorithms and stacking ensemble to vegetation index dataset 

 

The results of six regression algorithms and stacking ensemble applied to the eight vegetation 

indices are listed in Table 4.  

Table 4 – Metrics of the six regression algorithms and stacking ensemble applied to the eight 

vegetation indices 

Metric knn cart svm rf xgb lr stacking 

MAPE 0.1273 0.1396 0.1285 0.1302 0.1268 0.1438 0.1437 

MAE 95.05 105,79 97.98 98.04 96.67 109.82 106,55 

MAE TCH 12.67 14.11 13.06 13.07 12.89 14.64 14.21 

Source: Authors 

 

Table 4 shows that XGBoost (XGB) was the best algorithm for a MAPE, followed by K 

Nearest Neighbor(kNN). For MAE, kNN achieved the best results, followed by XGB. The 

Support Vector Machine (SVM) algorithm takes the third position in these two metrics. The 

MAE values in ton per hectare (TCH) for kNN, XGB, SVM, and Random Forest (RF) are 

better than those presented by Caetano (2017). For this dataset, the stacking algorithm did not 

work well, taking the second worst position better only the linear regression algorithm. The 

kNN algorithm achieved these results by using seven neighbors. The XGB had almost the 



 

same results, even changing the value of the hyperparameters. XGB and kNN overcame the 

other regressive models. 

Figure 5 – Boxplot of the six regression algorithms and stacking ensemble applied to the eight 

vegetation indices 

 
 

Source: Authors 

 

 

4 Conclusion 

This work presented regressive models that predict sugarcane production based on RGB 

Imagery taken from drones. This model's prediction can estimate sugarcane biomass 

production with less than 13% of errors. Unfortunately, the stacking ensemble did not work 

well for the dataset generated in this experiment. But, the XGB regressive model, which is a 

kind of ensemble, had the best results together with the kNN regressive model. 

In future works, we intend to construct a larger dataset to improve the results because the 

kNN regressive model had better results with seven neighbors. We also start capturing images 

two or three months before the harvesting to enforce the prediction aids in sugarcane 

commercialization. 
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