

AVALIAÇÃO DA DIVERSIDADE DE FUNGOS MA EM RAÍZES DE PUPUNHA ATRAVÉS DE MINI BIBLIOTECA DE AMPLICONS DE REGIÃO DO rDNA 18S

José Pereira da Silva-Jr.¹; Daniele Takahashi²; Márcio Rodrigues Lambais ²; Elke Jurandy Bran Nogueira Cardoso ²

¹Pesquisador, Embrapa Amazônia Ocidental, Rodovia AM 10, km 29, CP 319, 69011-970, Manaus-AM. ipereira@cpaa.embrapa.br; ²Pós Doutoranda , Professores Adjunto e Titular, respectivamente, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo, bolsistas do CNPq. Projeto financiado pela FAPESP

Micorriza arbuscular, ecologia molecular, sequenciamento

Introdução

A avaliação da diversidade de fungos micorrízicos arbusculares por meio de técnicas moleculares tem sido preconizada como uma alternativa vantajosa à avaliação baseada em taxonomia clássica devido à possibilidade de reduzir a subjetividade envolvida na caracterização morfológica de esporos, base da taxonomia clássica , e de identificar espécies colonizando as raízes, impossível de ser realizada de outra forma. Para estimar a diversidade de fungos MA associada às raízes de pupunha cultivada em SAF, duas bibliotecas de região do rDNA 18S foram construídas e seqüenciadas a partir de duas amostras simples de raízes coletadas em duas plantas diferentes.

Material e Métodos

Amostras de raízes de pupunha, previamente lavadas e congeladas a – 80°C, foram moídas em almofariz na presença de nitrogênio líquido. Depois de homogeneizados foi retirada uma alíquota de cerca de 500 mg. O DNA total da amostra foi extraído com o uso do kit FastDNA Spin (Bio 101, Vista, Califórnia), de acordo com as instruções do fabricante. O material foi armazenado a -20°C, até ser usado. Para a reação de PCR selecionaram-se os "primers" para amplificação da região 18S dos fungos MA, AM1 (5'- GTT TCC CGT AAG GCG CCG AA- 3'), descrito por Helgason et al. (1998), e o NS31 (5'- TTG GAG GGC AAG TCT GGT GCC -3') descrito por Simon et al. (1992). A reação foi feita em 50μL de volume final, contendo 0.2 mM de cada dNTP, 1,5 mM de MgCl₂, 10 pmol de cada "primer", 1 U de *Taq* DNA Polimerase (Invitrogen), 5 μL de tampão para PCR 10x e 2 μL do DNA. A amplificação foi realizada nas seguintes condições: 94° C por 2 min; 35 x (92 °C por 30 s, 60 °C por 60 s e 68 °C por 45 s + 1 s por ciclo); 68 °C por 5 min. Uma alíquota dos produtos da PCR (amplicons) foi analisada através de eletroforese em gel de agarose a 1,0% em TBE 0,5X. Como padrão de quantidade e tamanho do DNA foi utilizado o marcador de massa DNA Mass Ladder (Gibco).

Os produtos da PCR foram purificados utilizando-se o Kit GFX Purification System (Amersham) antes da ligação em vetores de clonagem. A clonagem foi feita com Kit pGem ®- Easy

Vector (Promega) de acordo com as recomendações do fabricante. O produto da reação de ligação foi utilizado para transformar células competentes de *E. coli*. A introdução do vetor contendo o inserto nas células competentes de *E. coli* DH5α foi feita através de choque térmico (Sambrook et al., 1989). As células competentes foram então plaqueadas em meio LB sólido contendo Ampicilina e X-GAL, ambos em concentrações finais de 100 μg.mL⁻¹ de meio. As placas foram incubadas por cerca de 14 horas a 37°C. Foram selecionadas 96 colônias transformadas (brancas) e transferidas para crescer em miniplacas contendo 5 ml de meio LB líquido e 2 μL de ampicilina (0,05g.mL⁻¹), sendo cultivadas por cerca de 14 h a 37°C sob 200 rpm de agitação.

O plasmídeo foi extraído por lise alcalina e alguns clones foram selecionados para análise em gel de agarose 1% em TBE 0,5X para quantificação. A amplificação dos insertos foi realizada por PCR com a enzima Thermo Sequence II DNA polymerase e "DYEnamic Terminator" (Amersham) conforme recomendações do fabricante, utilizando-se o "primer" M13F. O sequenciamento foi feito em sequenciador capilar Applied Biosystems (model 3100), de acordo com as recomendações do fabricante.

Resultados e Discussão

De cada amostra foram obtidas 96 seqüências e, após a análise da qualidade, no programa Phrep/Phrap (Ewing et al., 1998), foram selecionadas 79 e 80 seqüências válidas das amostras um e dois, respectivamente. As seqüências obtidas foram agrupadas em unidades taxonômicas operacionais (UTO), com base na sua similaridade através do programa CAP3 (Huang & Madan, 1999). Na amostra um e dois (Tabela 1 e 2) foram obtidas seqüências com similaridade a fungos MA e a outros fungos não micorrízicos. Entre aquelas que apresentaram similaridade com fungos MA, os maiores valores de similaridade ocorreram apenas com espécies dos gêneros *Glomus* e *Acaulospora*. Na amostra um, 13,92% das seqüências válidas apresentaram similaridade a espécies de *Acaulospora*, enquanto que 73,42% foram similares a espécies de *Glomus*. Na amostra dois, esses valores foram de 25,00% e 71,25% para *Acaulospora* e *Glomus*, respectivamente.

Nesse estudo, apenas uma UTO em cada biblioteca analisada apresentou índice elevado de similaridade (> 97%) com seqüências de espécies de fungos MA previamente isoladas. Na amostra um, a UTO F03 11 apresentou similaridade de 98% com *Glomus manihotis*, já na amostra dois, a UTO Contig 3 apresentou similaridade de 97% com *Glomus sinuosum*. As demais UTO apresentaram índices baixos de similaridade com seqüências anteriormente depositadas ou índices elevados com seqüências de espécies não isoladas (originadas de amostras ambientais). É necessário ressaltar que a identificação de fungos MA a partir de regiões do rDNA 18S ainda necessita do estabelecimento de parâmetros próprios, visto que o caráter heterocariótico desses fungos confere-lhes grande variabilidade genética intraespecífica.

Considerando que há muito erro de identificação de seqüências depositadas nos bancos de dados e que essa UTO apresentou os maiores valores com uma espécie ainda não isolada, é possível que todos do grupo pertençam a um grupo de espécies de *Glomus*, constatado na análise filogenética das seqüências obtidas (Dados não apresentados).

A partir da análise de rarefação (Figura 1), pode-se verificar o número máximo de UTOs e a quantidade de clones que necessitariam ser seqüenciados para a representação da diversidade de fungos MA presentes nas raizes de pupunha. Pela análise de rarefação na amostra um o número máximo de UTOs seriam de sete, sendo necessário o sequenciamento de 70 clones. Na amostra dois, esses valores foram de 13 e 80, respectivamente. Nesse estudo foram seqüenciados 96 clones, portanto acima do número de clones necessário a representação da diversidade existente, concluindo-se que o número de clones seqüenciados se mostrou suficiente para o objetivo proposto.

Verificou-se que o "primer" AM1 (Helgason et al., 1998) foi capaz de amplificar regiões do rDNA 18S de outros fungos não micorrízicos associados às raizes. Sendo assim, o uso desse "primer" para avaliação da diversidade de fungos MA, em amostras ambientais, deve ser cercada de certo cuidado. Nessas condições, o uso do "primer" AM1 deve ser acompanhado, obrigatoriamente, do sequenciamento, com o objetivo de confirmar se os amplicons obtidos são de fungos MA. Do contrário, há risco de superestimativa da diversidade avaliada.

Referências Bibliográficas

EWING, B; HILLER, L.; WENDL, M.; GREEN, P. Base-calling of automated sequencer traces using Phred/Phrap. I. Accuracy assessment. **Genome Research**, v. 8, n. 3, p. 175-185, 1998.

HELGASON, T.; DANIELL, T.; HUSBAND, J.R.; FITTER, A.H.; YOUNG, J.P.W. Ploughing up the wood-wide web?. **Nature**, v. 394, n. 6692, p. 431, 1998.

HUANG, X.; MADAN, A. CAP3: a DNA sequence assembly program. **Genome Research**, v. 9, n. 9, p. 868-877, 1999.

SAMBROOK, J.; FRITSCH, E. F.; MANIATIS, T. **Molecular cloning**: a laboratory manual. 2.ed. Cold Harbor: Cold Spring Harbor Laboratory Press, 1989.

SIMON, L.; LALONDE, M.; BRUNS, T.D. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. **Applied and Environmental Microbiology**, v. 58, n. 1, p. 291-295, 1992.

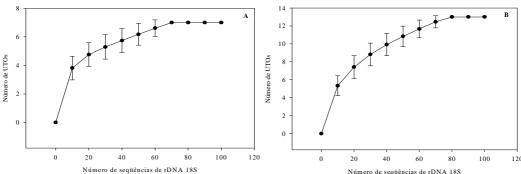


Figura 1 – Análise de rarefação de seqüências de rDNA 18S de fungos MA colonizando raízes de pupunha cultivada em SAF. A - amostra um e B – amostra dois

Tabela 1. Números de sequências obtidas e similaridade com sequências depositadas no GenBank de cada unidade taxonômica operacional (UTO) da mini biblioteca de amplicons de 18S das raízes de pupunha cultivada em SAF, amostra um

Código	Organismo mais Próximo	Similarida	Nº
UTO		de (%)	Seq.
Contig 1	Glomus sp. não isolado, simbionte da espécie vegetal Voyria corymbosa	98	7
Contig 2	Acaulospora sp não isolada, simbionte da espécie vegetal Graffenrieda emarginata (Melastomataceae) em floresta tropical úmida	98	11
Contig 3	Glomus sp. não isolado	97	11
Contig 6	Glomus sinuosum	96	37
A05 01	Glomus sinuosum	92	1
F03 11	Glomus manihotis	98	1
G03 13	Glomus sinuosum	95	1
Contig 4	<i>Hyponectria buxi</i> (Ascomycota; Pezizomycotina; Sordariomycetes; Xylariomycetidae; Xylariales; Hyponectriaceae)	99	7
Contig 5	Coniosporium sp., Ascomicota mitospórico isolado do solo	96	2
C03	Ascomiceto de rizosfera não cultivado	99	1

Contig refere-se a sequências consenso formadas a partir de grupo de sequências que apresentaram similaridade maior que 97%.

Tabela 2. Números de sequências obtidas e similaridade com sequências depositadas no GenBank de cada unidade taxonômica operacional (UTO) da mini biblioteca de amplicons de 18S das raízes de pupunha cultivada em SAF, amostra dois

Código UTO	Organismo mais próximo	Similarida de (%)	N° Seq
Contig 1	Acaulospora sp. não isolada, simbionte da espécie vegetal	98	4
Coming 1	Graffenrieda emarginata (Melastomataceae)	70	•
Contig 2	Glomus sinuosum	96	23
_	Acaulospora sp. não isolada, simbionte da espécie vegetal	98	11
_	Graffenrieda emarginata (Melastomataceae)		
Contig 4	Glomus sp não isolado, simbionte da espécie vegetal Voyria	98	20
	corymbosa		
Contig 5	Glomus sp. não isolado	97	5
Contig 6	Glomus sinuosum	97	5
Contig 7	Acaulospora sp. não isolada, simbionte da espécie vegetal	94	3
	Graffenrieda emarginata (Melastomataceae)		
A11 01	Acaulospora sp.	92	1
C04 6	Acaulospora sp. não isolada, simbionte da espécie vegetal	99	1
	Graffenrieda emarginata (Melastomataceae)		
D11 07	Glomus sp. não isolado	95	1
E06 10	Glomus sinuosum	94	1
G07 13	Glomus sp. não isolado, simbionte da espécie vegetal	95	1
	Chasmanthium sessiliforum		
H01 15	Glomus sp. não isolado	92	1
B08 04	Fusarium merismoides	99	1
E01 09	Gibberella pulicaris	98	1
F07 11	Colletotrichum lindemuthianum	99	1

Contig refere-se a sequências consenso formadas a partir de grupo de sequências que apresentaram similaridade maior que 97%.