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Abstract: This research investigates how to estimate sugarcane (Saccharum officinarum L.) yield
at harvest by using an average satellite image time-series collected during the growth phase.
This study aims to evaluate the effectiveness of various modeling approaches, including a
heteroskedastic gamma regression model, Random Forest, and Artificial Neural Networks,
in predicting sugarcane yield based on satellite-derived vegetation indices and environ-
mental variables. Key covariates analyzed include sugarcane varieties, production cycles,
accumulated precipitation during the growth phase, and the mean GNDVI vegetation
index. The analysis was conducted in two locations over two consecutive growing seasons.
The research emphasizes the integration of satellite data with advanced statistical and ma-
chine learning techniques to enhance yield prediction in agricultural systems, specifically
focusing on sugarcane cultivation. The results indicate that the heteroskedastic gamma re-
gression model outperformed the other methods in explaining yield variability, particularly
in commercial sugarcane fields, achieving a Coefficient Determination (R2) of 0.89. These
findings highlight the potential of these models to support informed decision-making and
optimize agricultural practices, providing valuable insights for precision farming. Overall,
the results of this study represent an initial step toward developing more robust models for
predicting sugarcane yield. Future work will involve incorporating additional variables to
better assess the impacts of environmental stresses, such as high temperatures and water
deficits, on the crop’s agronomic performance.

Keywords: digital agriculture; Saccharum spp.; precision farming; crop yield; statistical
model; machine learning

1. Introduction
Brazil is a global leader in sugarcane production, consistently ranking as the world’s

largest producer. In 2022, around 724 million tons of sugarcane were produced in the
country, remaining ahead of India (439 million tons) and China (103 million tons) [1]. This
strategic crop is a cornerstone of the Brazilian agricultural sector, contributing significantly
to ethanol and sugar production. The continuous adoption of advanced technologies
by Brazilian farmers and industries of the sugar and alcohol sector has played a crucial
role in maintaining this leadership position, even in the face of recent climatic challenge
scenarios [2].
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Among these technologies, images obtained from remote sensing have been gaining
prominence in recent years, mainly due to the increasing availability of multispectral
images with high temporal and spatial resolution. Therefore, obtaining recurrent maps
of vegetation indices throughout all crop phenological stages contributes substantially to
developing increasingly accurate yield estimation models [3].

On the other hand, it is essential to recognize that data collected in field experiments
are often conditioned to external factors that can impact sugarcane yield. Examples in-
clude agricultural management, water availability, climatic conditions, and the incidence
of pests and diseases. Due to these influences, such data often exhibit heteroskedastic
behavior, i.e., non-constant variance, necessitating the application of appropriate statistical
techniques. For instance, Prataviera et al. [4] proposed a log-Weibull regression model for
interval-censored data, incorporating a regression structure for the location (µ) and scale
(σ) parameters, enabling the modeling of non-proportional hazards and heteroskedasticity.
One application of this model involved analyzing the effects of different treatments in
dairy cows, where significant differences among treatments were observed. Similarly,
Santos et al. [5] evaluated the impact of Bacillus inoculants on sugarcane using a het-
eroskedastic semiparametric GA regression model. The model predicted significant yield
increases and confirmed the efficacy of the inoculant in reducing the use of phosphate
fertilizers. Vasconcelos et al. [6] proposed a heteroskedastic regression model to analyze
the effects of temperature and wood species on shrinkage volume.

Furthermore, when vegetation indices from satellite images are used in addition to
field data, a significant increase in the dimensionality of the dataset is commonly observed,
given the number of indices available in the literature that can be potential indicators
of biomass accumulation and physiological development. In this context, supervised
machine learning (ML) techniques, capable of performing multivariate analyses with
high precision, have been widely used in the literature to support the development of
yield estimation models [7,8]. While Artificial Neural Networks (ANNs) were the first
computational models that introduced the ML concepts and were inspired by the biological
neural networks of the human brain [9], the Multi-Layer Perceptrons (MLPs) are a type
of ANN with one or more hidden layers that allow them to learn complex patterns in the
data. MLPs are widely used for various tasks (including regression) due to their ability to
fit any continuous function [10]. Another widely used type of ML algorithm is decision
trees [11]. However, with the increasing complexity of the data used to generate regression
models, isolated trees have become insufficient, leading to more robust techniques, such as
Random Forest (RF) [12], which operates by building many decision trees during training.
This process involves randomly selecting subsets of data and features to train each tree,
reducing overfitting and improving generalization.

This study aimed to assess the feasibility of using time-series analysis of satellite
images to monitor the development of two experimental sugarcane fields over two growth
cycles. The objective was to evaluate the efficiency and accuracy of yield estimations gener-
ated by various models using this dataset. This study employed the Multilayer Perceptron
(MLP) approach, a machine learning technique based on ANNs widely discussed in the
literature, particularly about estimating sugarcane yield and other crops using remote
sensing images. For instance, ref. [13] developed a model to estimate sugarcane yield at
the municipal level by using vegetation indices derived from MODIS sensor time-series
and MLP ensembles. More recently, ref. [14] implemented a deep learning-based MLP
approach to estimate soil health and parameters related to wheat crop yield at the field
level, using images from the Sentinel-1 and Sentinel-2 satellites.

The Random Forest (RF) approach was chosen for this study due to its moderate
complexity in modeling and interpretation, low risk of overfitting, simplified hyperpa-
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rameter adjustments, and effective performance with reduced datasets. These advantages
are not present in Multi-Layer Perceptrons (MLPs). Furthermore, using RF to estimate
sugarcane yield is a relatively recent topic in the literature. For instance, ref. [15] employed
RF models to estimate the regional yield of sugarcane-growing areas in Australia, using
various climatic variables as predictors, including different measures of precipitation and
temperature. Similarly, ref. [7] analyzed four years of yield data from approximately
5400 sugarcane plots (with an average area of 9 ha each) located in the western region of
São Paulo, Brazil. They generated RF-based models incorporating vegetation indices from
Landsat satellite imagery and meteorological and agronomic data such as soil type and pro-
duction environments. Ref. [16] investigated the sugarcane yield of a study area covering
10,000 hectares in Ethiopia. They worked with three distinct sets of predictors: multi-
temporal attributes (time-series of vegetation indices), phenological metrics extracted from
these time-series, and other spatiotemporal variables. Among the regression models tested,
RF showed the highest performance, achieving R2 scores of up to 0.84 for sugarcane yield.
Lastly, ref. [17] conducted a systematic review of nearly 1400 papers on estimating sugar-
cane yield using remote sensing data. Their findings indicated that RF is the predominant
choice among various regression-based models. Although both Multi-Layer Perceptron
(MLP) and Random Forest (RF) are considered machine learning techniques, they exhibit
distinct biases toward ANNs and decision trees, respectively. Therefore, this study em-
ployed them to represent a range of machine learning approaches for comparing their
performance against a statistical regression model. The existing literature presents various
methods for estimating sugarcane yield through data modeling, with some approaches
proving more accurate than others.

This study highlights that heteroskedastic gamma regression (HGR) offers an inno-
vative and superior alternative to traditional machine learning techniques for estimating
sugarcane yield. The improved performance of the HGR model was supported by experi-
mental data collected in a controlled environment, which effectively captured the crop’s
behavior throughout its growth stages. These data accounted for crucial factors such as
the genetic and phenotypic variability of the sugarcane varieties used and the differences
observed across growing seasons and geographic locations. Additionally, the findings were
validated in commercial fields, demonstrating the practical potential of this approach for
real-world sugarcane cultivation.

2. Materials and Methods
2.1. Experimental and Commercial Fields
2.1.1. Field Experiment Methodology

This study was conducted with four sugarcane varieties cultivated in two distinct
locations during the 2020/2021 and 2021/2022 growth seasons (cycles). The sugarcane
varieties were selected based on the maturity timing (see Table 1). Each experimental
field consisted of 112 plots with six rows of sugarcane measuring 1.5 m between furrows
and 10 m in length (Figure 1). For each sugarcane variety, there were 28 replicates per
experimental field, totaling 448 experimental plots. The random block design with four
blocks per experimental field was adopted in this study to enable the measurement of
random environmental variation.
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Table 1. Sugarcane varieties identification and the respective maturity timing.

Sugarcane Varieties Maturity Timing

CTC1007 (V1) Normal
RB966928 (V2) Short
CV0618 (V3) Medium
CV7870 (V4) Normal

Both experiments had two production cycles, one for the cane plant cycle (2020/2021)
and the other for the first ratoon cycle (2021/2022).

The experimental field in the rural area of Piracicaba, São Paulo, Brazil (−22.773005,
−47.580135) utilized two-month-old pre-sprouted seedlings (PSSs) cultivated in a green-
house for each variety. A drip irrigation system was implemented during the first three
months after transplanting the plantlets into the field to promote robust root develop-
ment. In contrast, the experimental field in the rural area of Tambaú, São Paulo, Brazil
(−21.708543, −47.246643) employed sugarcane stalks with an average length of 1.5 m as
plantlets for direct field planting. Both experimental fields followed management practices
aligned with standard commercial sugarcane cultivation in Brazil, ensuring consistent
agronomic standards across all varieties.

(a) (b)

Figure 1. Aerial perspective of experimental fields (a,b), highlighting the 112 plots in each field. (a) is
the experimental field located in Piracicaba, Sao Paulo, Brazil; (b) is the experimental field located in
Tambau, Sao Paulo, Brazil.

Sugarcane plots were harvested and measured in tons of cane per hectare (TCH,
t ha−1) at the end of their growth cycle, once the stalks reached peak maturity. This maturity
was determined by measuring the concentration of Total Recoverable Sugars (TRS). Yield
was assessed based on the average stalk weight obtained from experimental replicates for
each treatment across all locations (Piracicaba and Tambaú) over two consecutive harvest
cycles: 2020/2021 and 2021/2022.
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The data collected from the experimental fields were used for both training and testing
the models. A stratified split of 70% for training and 30% for testing was applied, ensuring
that the distribution of sugarcane varieties and growth cycles was preserved in both subsets.
This approach guarantees that the model was tested using information obtained from field
experiments rather than commercial data.

2.1.2. Data for Commercial Areas

To evaluate the effectiveness of the models in the real environment of sugarcane
production, 12 commercial sugarcane plots cultivated in the state of São Paulo, Brazil,
were analyzed during the 2022 growing season. These plots had known observed yield
data, which were used to compare with the results generated by the models. It is impor-
tant to note that this evaluation was not part of the model’s training or testing process;
instead, it aimed to assess the model’s ability to generalize to new, independent data
that reflects actual production conditions. Detailed yield metrics, sugarcane cycle, vari-
eties, and geographic coordinates of the commercial plots are provided in Table S2 in the
Supplementary Materials.

2.2. Dataset Description

PlanetScope’s multispectral imagery was used to validate sugarcane yield prediction
models in commercial fields located at locations A and B. The delineated plots, represented
as polygons, show their corresponding areas in hectares. These plots serve as the spatial
units for model validation and accuracy assessment (Figures 2 and 3).

Figure 2. Location A at the Schiavon Farm with five production plots indicated as A-1 (4.46 ha), A-2
(8.03 ha), A-3 (7.22 ha), A-4 (8.58 ha), A-6 (11.07 ha), and A-7 (5.75 ha) during the growth season of
2022. São Paulo, Brazil.
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Figure 3. Location B at the Aurora Farm with five production plots indicated as B-1 (12.66 ha),
B-2 (8.64 ha), B-3 (17.1 ha), B-4 (8.78 ha), and B-5 (8.29 ha) during the growth season of 2022. São
Paulo, Brazil.

2.2.1. Vegetation Indices

A vegetation index is an algebraic combination of various spectral bands designed to
highlight the vigor and properties of vegetation [18]. It translates information contained in
multispectral or RGB images through transformations of reflectance factors by employing
operations such as addition, subtraction, and ratio between spectral bands to emphasize
the spectral response of vegetation as a function of canopy cover over the soil [19]. An
ideal vegetation index should detect slight variations in vegetation phenological phases
while mitigating the influence of soil conditions and types, scene illumination geometry,
and atmospheric conditions [20].

For the experiments conducted in this study, the data source was satellite im-
agery obtained from the SuperDove nano-satellite, which is part of the PlanetScope
constellation [21], which generates images daily for any global location. The satellite
imagery includes eight multispectral bands: coastal blue, blue, green I, green, yellow, red,
red edge, and near-infrared, all with a spatial resolution of 3 m per pixel. For the analy-
sis, images from two sugarcane experimental fields during the 2020/2021 and 2021/2022
growing seasons were included, although images obstructed by clouds or shadows were
systematically excluded. Variations in image availability across locations and growing
seasons resulted in an imbalanced dataset, with more usable imagery captured during
the winter months. In total, for experiment 1 conducted in Piracicaba, São Paulo, Brazil,
57 images from the 2020/2021 season and 131 images from the 2021/2022 season were used.
For experiment 2 in Tambaú, São Paulo, Brazil, 121 images from the 2020/2021 season and
96 images from the 2021/2022 season were used. During the acquisition of remote sensing
imagery for temporal analysis, differences in the availability of cloud-free, high-quality
images were observed across various geographical locations and harvest cycles. These
variations resulted in an imbalanced distribution of valid data points among the four
datasets used to derive vegetation indices (VIs). To address potential biases introduced
by unequal sample sizes, mean VI values were calculated for each phenological stage
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of the sugarcane crop (such as tillering, grand growth, and maturation) during model
development, rather than using cumulative sums. Statistical evaluations of the models
confirmed that the imbalance in the dataset did not negatively impact predictive accuracy.

Based on a scrutinized evaluation of the literature, we identified six vegetation indices
that demonstrated statistically significant differentiation potential to be used in this study:
EVI [22], EVI2 [23], GNDVI [24], HUE [25], NDVI [26], and OSAVI [27]. These indices
are correlated with important traits throughout the production cycle, such as chlorophyll,
biomass, leaf area index, nitrogen availability, and soil color. Historically, NDVI is the
vegetation index that best correlates with crop biomass, which for crops such as sugarcane,
is usually the main indicator of yield [13,28,29]. Additionally, EVI also has a good corre-
lation with the availability of nitrogen in the crop [30]; GNDVI adds to the model a good
correlation with the availability of water in the crop, which, in turn, is also correlated with
final yield [31]. Recent studies show the use of these indexes to yield prediction approaches
for other crops, such as wheat [32,33]. Regarding the sugarcane maturation phenological
stage with a high leaf area index, it is common to observe saturation of values for NDVI,
making it unable to differentiate areas of higher and lower yield. In this case, variations of
NDVI, such as EVI2, which considers factors related to band reflectance, were used to try to
solve this drawback [5,34]. Finally, HUE and OSAVI can be used to evaluate phenological
stages, where the amount of soil could contribute to yield prediction. When exposed, the
HUE index can show significant differences in soil coloration, and the OSAVI can identify
differences in soil salinity even with a certain canopy cover [35]. These variations are also
essential to recognize, as they can influence final yield, especially in large-scale production
crops, such as sugarcane. In recent studies, these indexes have been used in approaches to
yield prediction in other crops, such as rice [36] and corn [37].

After selecting the vegetation indices, their average values over the crop development
period, which spans from 120 to 250 days after the start of the crop cycle, were calculated.
This analysis considered 224 virtual experimental plots, with 112 located at each experi-
mental field, across two growth cycles: the cane plant cycle and the first ratoon cycle. This
approach resulted in 448 data samples for each vegetation index.

2.2.2. Weather Data

Cumulative precipitation data for the experimental and commercial sugarcane fields
were sourced from the NASA Power database, following the methodological protocols
outlined by Monteiro et al. [38]. The dataset spans the period from planting through key
crop growth phases and was directly accessed and retrieved via The Power Data Access
Viewer [39].

2.2.3. Variables Definitions

The explanatory variables xi1 to xi10 were considered to evaluate their influence on
sugarcane yield, measured in tons of cane per hectare (TCH, t ha−1). The variable yi,
representing TCH, was analyzed with the independent variables.

The variable xi1 represents the blocks (1, 2, 3, and 4), and since it is a factor with
more than two levels, three dummy variables (pi1, pi2, pi3) were required. The variable xi2

refers to the varieties (V1, V2, V3, and V4) and similarly requires three dummy variables
(ci1, ci2, ci3). For xi3, which corresponds to the sugarcane growth cycle, two categories are
considered: the cane plant cycle and the first ratoon cycle.

The variable xi4 represents the accumulated precipitation during the growth phase,
and xi5 to xi10 correspond to the mean values of the vegetation indices EVI, EVI2, GNDVI,
HUE, NDVI, and OSAVI during the growth phase.

• yi: Tons of cane per hectare (TCH, t ha−1);
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• xi1: Block (1, 2, 3, and 4). In this case, being a factor with more than two levels, three
dummy variables are required (pi1, pi2, pi3);

• xi2: Varieties (V1, V2, V3, and V4). Here, being a factor with more than two levels,
three dummy variables are defined (ci1, ci2, ci3);

• xi3: Cycle (cane plant and first ratoon);
• xi4: Accumulated precipitation (during the growth phase);
• xi5: Mean EVI (during the growth phase);
• xi6: Mean EVI2 (during the growth phase);
• xi7: Mean GNDVI (during the growth phase);
• xi8: Mean HUE (during the growth phase);
• xi9: Mean NDVI (during the growth phase);
• xi10: Mean OSAVI (during the growth phase).

For i = 1, . . . , 448.
The explanatory variables xi1, xi2, and xi3 are categorical, representing distinct cat-

egories or groups. In contrast, the variables xi4 through xi10 are continuous, as they are
numerical and can take on a range of values. This classification ensures appropriate
statistical treatment for each type of variable.

2.3. Statistical and Machine Learning Models
2.3.1. Evaluation of Variance Inflation Factor

To ensure model robustness and mitigate multicollinearity issues, all explanatory
variables were initially included in the analysis process: block, varieties, cycle, accumu-
lated precipitation (during the growth phase), mean EVI (during the growth phase), mean
EVI2 (during the growth phase), mean GNDVI (during the growth phase), mean HUE
(during the growth phase), mean NDVI (during the growth phase), and mean OSAVI
(during the growth phase). The Variance Inflation Factor (VIF) [40] evaluation was con-
ducted to identify and remove highly collinear variables, resulting in a more concise and
robust selection.

2.3.2. Heteroskedastic GA Regression Model

• Gamma Probability Distribution

The gamma (GA) probability distribution is widely used to model asymmetric data
with positive values skewed to the right. This distribution is frequently applied in reliability
and survival studies. The probability density function (pdf) f (y) (Equation (1)), as derived
and reparameterized by McCullagh and Nelder [41] and Johnson et al. [42], employed in
this study is expressed as follows:

f (y|µ, σ) =
y(1/σ2−1) exp[−y/(σ2µ)]

(σ2µ)(1/σ2)Γ(1/σ2)
for y > 0, µ > 0 and σ > 0. (1)

The parameters µ and σ correspond to the mean and the square root of the dispersion
parameter, respectively, with the parametrization used derived from the gamlss pack-
age [43]. In this context, µ represents the mean of the gamma (GA) distribution, and σ is the
square root of the dispersion parameter in a Generalized Linear Model (GLM) [44] with a
gamma distribution.

• Structure and Estimation

In this study, the heteroskedastic GA regression model, based on the gamma distri-
bution, was applied to model the response variable Yi ∼ GA(µi, σi), with a structure that
allows mean-dependent variability. This model employs two systematic components to
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estimate the mean µi and the parameter σi, representing the relative standard deviation or
the coefficient of variation.

The modeling is conducted under the following expressions:

g(µi) = ηi = xT
i β1 and g(σi) = νi = vT

i β2, (2)

where xi and vi are vectors of predictor variables, β1 and β2 are vectors of coefficients to be
estimated, and g(·) is a logarithmic link function to ensure positive values.

The parameters estimate θ̂ = (βT
1 , βT

2 )
T are obtained using the maximum likelihood

method by maximizing the logarithm of the likelihood function (Equation (3)):

l(θ) =
n

∑
i=1

[(
1
σ2

i
− 1

)
log yi −

yi

σ2
i µi

− 1
σ2

i
log(σ2

i µi)− log Γ

(
1
σ2

i

)]
. (3)

To obtain the estimates θ̂, the gamlss package in the R software (v. 4.4.3) was used.
This model represents a particular case of the semiparametric heteroskedastic GA

regression model used by Santos et al. [5], who evaluated sugarcane yield in response to
applying a phosphate-solubilizing microbial inoculant. In this study, there are no variables
with nonlinear effects on the response variable, which led to the choice of the parametric
version of the model, as it provides a practical fit to the analyzed data.

2.3.3. Covariate Selection with GAIC

Next, the stepGAICAll.A(·) function from the gamlss package [43] was used to refine
covariate selection based on the Generalized Akaike Information Criterion (GAIC) applied
to all distribution parameters. This method, described by Stasinopoulos et al. [45] as an
adaptation of the stepAIC(·) function from the MASS package [46], enabled the individual
analysis of each variable concerning the model parameters. This approach facilitated the
creation of different covariate subsets for each parameter, enhancing the precision and
suitability of the final adjusted model.

2.3.4. Machine Learning Approaches: Random Forest and Neural Networks

This study expanded the modeling framework by incorporating RF regression and
ANN algorithms, exploring their potential as alternatives to the heteroskedastic GA regres-
sion model. The performances of these algorithms were evaluated using the R2 and a suite
of error metrics, ensuring a comprehensive assessment of their predictive accuracy and
reliability.

To ensure consistency and comparability with the statistical model, the dataset was
divided into training and testing subsets using the same methodology, with a fixed random
seed to ensure reproducibility. Furthermore, as described in [47], the Grid Search Method
was employed to optimize the hyperparameters for both algorithms. This method performs
an exhaustive search across a predefined subset of the hyperparameter space, systematically
identifying the optimal configuration for each regressor to enhance model performance.
The optimization of hyperparameters was achieved using the GridSearchCV class in the
Python 3.7 Scikit-learn library.

• Random Forest

Random Forest (RF) regression is an ensemble learning algorithm that combines many
regression trees. A regression tree represents a set of conditions or constraints that are
hierarchically organized and successively applied from the root to a leaf of the tree [48,49].

Breiman developed Random Forest (RF) [12] to improve the Classification And Re-
gression Tree (CART) method by combining a large set of decision trees. It consists of
a combination of tree predictors, where each tree depends on the values of a random
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vector independently sampled and identically distributed for all trees in the forest. The
generalization error for forests converges to a limit as the number of trees in the forest
becomes large.

The grid search method showed the hyperparameters to be employed on RF, and they
are described as follows:

1. n_estimators: Search space: [100, 200, 300, 400, 500]; Best found: 400.
2. max_depth: Search space: [10, 20, 30, 40, 50]; Best found: 50.
3. min_samples_split: Search space: [2, 5, 10]; Best found: 10.
4. min_samples_leaf: Search space: [1, 2, 4]; Best found: 4.
5. max_features: Search space: [‘auto’, ‘sqrt’, ‘log2’]; Best found: ‘log2’.

The hyperparameters are, respectively, constituted by (1) n estimators, which de-
termine the number of decision trees in the forest; (2) min samples split, specifying the
minimum number of samples required to split an internal node; (3) min samples leaf,
defining the minimum number of samples that must be present in a leaf node; (4) max
features, dictating the maximum number of features considered when searching for the
best split; and (5) max depth, setting the maximum depth permitted for each decision tree.

• Neural Network

Artificial Neural Networks are computational architectures inspired by the functioning
of the human brain. These networks can perform functional modeling and effectively
manage linear and nonlinear relationships by learning from data and generalizing to
previously unseen scenarios. Among the most widely used ANNs is the Multi-Layer
Perceptron (MLP). This potent modeling tool applies a supervised training procedure using
examples of data with known outputs [50].

To comprehend the structure and function of the Multi-Layer Perceptron (MLP), it is
essential first to examine its foundational components: the single-neuron perceptron and
the single-layer perceptron. The single-neuron perceptron represents the simplest form
of an ANN, consisting of a single output node connected to all input nodes, illustrated in
Figure 4. For a perceptron with n inputs (i = 0, 1, . . . , n), each input Xi is associated with a
corresponding weight Wi. These inputs represent features or variables, while the output Y
corresponds to a prediction.

Figure 4. Perceptron model, where X1. . . Xn corresponds to the inputs, W0. . . Wn to the weights, Z
represents the sum of the products of the entries and their corresponding weights as calculated by
the neuron and then input into the activation function f, and Y corresponds to the output, which is
the application of activation function f on Z.

The perceptron model operates through three fundamental steps described below:

1. Weighting Step: Each input feature value (xi) is multiplied by its associated weight
(wi), resulting in a weighted input (xiwi).

2. Summation Step: The weighted inputs are aggregated through summation, yielding

S =
n

∑
i=0

xiwi (4)
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3. Transfer Step: An activation function f , also referred to as a transfer function, is
applied to the summed value S. This function transforms the linear combination
of inputs into the perceptron’s final output y. The output can be mathematically
expressed as follows:

y = f

(
n

∑
i=0

xiwi

)
(5)

The activation function determines the output by mapping the weighted sum to a
classification or regression, forming the perceptron’s decision-making basis. This process
underpins the computational framework of more complex architectures like the MLP.

An extra operation for MLP, compared to RF, was the scale of features using Stan-
dardScaler [47]. The use of the grid search method showed the best hyperparameters to be
employed on it, and they are described as follows:

1. solver: Search space: [‘adam’, ‘lbfgs’, ‘sgd’]; Best found: ‘sgd’.
2. momentum: Search space: [0.1, 0.3, 0.5, 0.7, 0.9]; Best found: 0.5.
3. max_iter: Search space: [200, 500, 1000, 2000, 5000]; Best found: 500.
4. learning_rate_init: Search space: [0.001, 0.01, 0.1]; Best found: 0.1.
5. learning_rate: Search space: [‘constant’, ‘invscaling’, ‘adaptive’]; Best found: ‘invs-

caling’.
6. hidden_layer_sizes: Search space: [(50,), (100,), (50, 50), (100, 50), (50, 100), (100,

100)]; Best found: (100,).
7. alpha: Search space: [0.0001, 0.001, 0.01, 0.1]; Best found: 0.01.
8. activation: Search space: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]; Best found: ‘tanh’.

The hyperparameters are, respectively, constituted by (1) the solver, which specifies
the optimization algorithm used to adjust the model’s weights; (2) momentum, a parameter
that influences the contribution of previous weight updates to accelerate convergence;
(3) maximum iterations (max iter), the maximum number of epochs permitted for training;
(4) initial learning rate (learning rate init), which defines the initial step size for weight
adjustments; (5) learning rate, determining the scheme by which the learning rate is updated
during training; (6) hidden layer sizes, a specification of the number of neurons in each
hidden layer; (7) alpha, a regularization parameter that penalizes large weights to mitigate
overfitting; and (8) activation, the function applied at each neuron to introduce nonlinearity
into the network.

3. Results and Discussion
The field experiments with sugarcane were designed to maximize genetic and agro-

nomic diversity representation across contrasting Brazilian cultivation systems. Four
commercially relevant sugarcane cultivars were selected to capture variability in growth
maturity characteristics (short-, medium-, and normal phenology) and yield potential. The
trials were conducted at two geographically distinct locations to investigate the interactions
between genotype and environment (G × E): Tambaú, which has a semi-arid climate with
an average annual rainfall of 550 mm and sandy soil type with moderate fertility, and
Piracicaba, which is characterized by a temperate humid climate with an average yearly
rainfall of 1300 mm and latosols and podzolic soil types with high fertility.

Agronomic management protocols varied between the experimental fields to reflect
regional farming practices. The Tambaú trial used conventional stalk planting with lo-
cally sourced propagation materials from nearby commercial fields, simulating traditional
farming conditions. In contrast, the Piracicaba trial employed an advanced propagation
system that involved pre-sprouted seedlings (PSSs), which were acclimatized in a con-
trolled nursery environment before being transplanted into the field. This dual approach
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allowed for a comparative analysis of genetic diversity responses to abiotic stress factors,
such as water availability and soil fertility, as well as the impact of propagation technology
on crop establishment efficiency. Figure 5 presents a comprehensive time-series analysis of
six vegetation indices (EVI, EVI2, GNDVI, HUE, NDVI, OSAVI) across the sugarcane crop
cycle, encompassing both the plant cane and first ratoon phases for the experimental fields
located in Piracicaba (a) and Tambaú (b). Preliminary analysis identified optimal temporal
windows (indicated by the regions highlighted in gray and pink in Figure 5) corresponding
to the peak of biomass accumulation during critical growth phases. The ideal time frame
for evaluation was determined by the phenological stage of the sugarcane that showed
the best response to vegetation indices during its vegetative growth phase. During this
phase, the plant experiences rapid growth, which is reflected in increased canopy coverage
and fully expanded leaves, ultimately leading to a more significant increase in biomass.
This vegetative phase typically occurs approximately two to three months before the crop
matures and is ready for harvest. These intervals align with key phenological stages of
rapid physiological development, including maximum leaf canopy expansion, which drives
photosynthetic efficiency and biomass production. The selected periods were integrated
into predictive models to establish robust correlations between spectral indices and yield
outcomes, leveraging the temporal sensitivity of vegetation indices to crop vigor during
phases of heightened metabolic activity.

Figure 5. Time-series analysis of six key vegetation indices (EVI, EVI2, GNDVI, HUE, NDVI, OSAVI)
across the two sugarcane production cycles and two locations: Experimental field (a)—Piracicaba, SP,
Brazil; experimental field (b)—Tambaú, SP, Brazil. The shaded regions highlight periods correspond-
ing to the crop’s peak growth phase.
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After the temporal window analysis, an initial variable filtering process was carried
out to identify key predictors using the normalized relative feature importance scores
derived from the Random Forest model’s mean decrease in impurity metric (Figure 6a,b).
Following this step, we conducted a multicollinearity assessment to ensure that the selected
variables did not exhibit strong interdependencies, which could distort coefficient estimates
and model interpretation.

During the modeling process, we evaluated all possible combinations of variables
and calculated the respective Variance Inflation Factors (VIFs) for each set. We adopted a
threshold of 5 for VIF, eliminating variables exceeding this limit to reduce multicollinearity
while maintaining the model’s predictive capacity. This approach minimizes coefficient
estimation distortions and enhances result interpretability.

Table 2 presents the VIFs for all variables initially included in the model.

Table 2. Variance Inflation Factors (VIFs) for the initially included variables.

Variable VIF

Block 1.340
Varieties 1.311

Cycle (cane plant and first ratoon) 6.325
Accumulated precipitation (growth phase) 7.626

Mean EVI (growth phase) 1931.188
Mean EVI 2 (growth phase) 51,741.630

Mean GNDVI (growth phase) 45.490
Mean HUE (growth phase) 17.241
Mean NDVI (growth phase) 68,859.164
Mean OSAVI (growth phase) 207,649.379

As observed, some variables exhibited high VIF values, particularly mean EVI 2, mean
NDVI, and mean OSAVI during the growth phase, indicating strong correlations with other
variables in the model.

Although Figure 5 illustrates the temporal behavior of the variables and may suggest
that EVI and NDVI do not exhibit strong visual collinearity with other indices, the quan-
titative VIF analysis revealed otherwise. The VIF values for mean EVI and mean NDVI
were extremely high (1931.188 and 68,859.164, respectively, as shown in Table 2), indicating
a strong linear dependency with other variables in the model. This result reinforces that
visual analysis alone is insufficient to detect collinearity, requiring statistical measures to
ensure a robust and reliable model.

All possible combinations of the explanatory variables were evaluated to reduce
multicollinearity and enhance the robustness of the model. The combinations that yielded
VIF values below 5 were retained, while those with VIF values above 5 were discarded.
The combinations of variables with VIF values below 5 are presented in Table 3.

Table 3. Variance Inflation Factors (VIFs) for the retained variables in the final model.

Variable VIF

Varieties 1.014
Cycle (cane plant and first ratoon) 1.226

Accumulated precipitation (growth phase) 1.521
Mean GNDVI (growth phase) 1.344
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(a) (b)

Figure 6. (a) Normalized relative feature importance scores from the Random Forest model via a
mean decrease in impurity. Higher values indicate a greater contribution to the model. (b) Feature
importance scores from the MLP model using permutation importance. The importance scores
represent the average decrease in the R2 metric when each feature is permuted, indicating the
significance of each feature in the model’s predictive performance.

Subsequently, the heteroskedastic GA regression, RF, and ANN models were trained
exclusively on these selected variables to mitigate multicollinearity risks, ensuring robust
and interpretable model performance.

3.1. Heteroskedastic GA Regression—Training Data from the Experimental Data
3.1.1. Statistical Model

The method stepGAICAll.A automates the selection of additive terms in statistical
models, efficiently refining the fit. The process begins with all variables included in the
model, and at each step, it removes the least relevant one, as long as its exclusion does not
compromise the chosen selection criterion. This procedure continues until all remaining
variables are relevant to the model, resulting in a more parsimonious structure, i.e., a
model that achieves the desired level of explanation or prediction with the fewest possible
predictor variables [45]. Based on this criterion, the selected variables for the parameter
associated with the mean were varieties, cycle (cane plant and first ratoon), and mean
GNDVI (during the growth phase). For the dispersion parameter, the chosen variables
were accumulated precipitation (during the growth phase) and mean GNDVI. Figure 7a
shows no obvious linear correlation between precipitation and the response variable.
However, its inclusion in the proposed model is justifiable, as stepGAICAll.A is not limited
to detecting linear relationships but selects variables with the potential to influence the
response variable [45]. This reinforces the importance of statistical approaches capturing
patterns beyond linear correlation, ensuring a more robust and interpretable model.

Building upon this, the final heteroskedastic GA regression model selected based on
the GAIC has the systematic components given by

µi = exp(β10 + β11ci1 + β12ci2 + β13ci3 + β14xi3 + β15xi7)

and

σi = exp(β20 + β21xi4 + β22xi7).

3.1.2. Descriptive Statistics of the Field Experiment

Based on the descriptive analysis of the training data for the response variable tons of
sugarcane per hectare (yi: TCH, t ha−1), different behavior patterns are observed according
to the analyzed variables (Table 4).

For the variable varieties (xi2: V1, V2, V3, and V4), the average TCH ranged from
111.30 t ha−1 to 122.21 t ha−1. Variety V1 exhibited the lowest mean (111.30 t ha−1), while
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variety V3 had the highest mean (122.21 t ha−1). Regarding dispersion, the standard
deviation was 26.10 for variety V1 and 23.16 for variety V3, suggesting that while variety
V3 has the highest mean, it also shows lower variability in production than V1.

In the analysis of cycles (xi3: cane plant and first ratoon), the cane plant cycle recorded
an average of 106.93 t ha−1, while the first ratoon cycle achieved a higher average of
127.98 t ha−1. The standard deviation for the plant cycle was 27.60, compared to 22.37 for
the first ratoon cycle. These results indicate that the first ratoon cycle has a higher average
yield and lower variability, suggesting a more stable production than the cane plant cycle.

Figure 7 presents scatter plots highlighting the relationships between yi (tons of
sugarcane per hectare, TCH, t ha−1) and two explanatory variables: xi4 (accumulated
precipitation during the growth phase, shown in Figure 7a) and xi7 (mean GNDVI during
the growth phase, shown in Figure 7b), for the data referring to the commercial area.
As previously mentioned, environmental conditions influence sugarcane growth. In the
commercial area, it is observed that the accumulated precipitation was more favorable
during the cane plant cycle, with the same behavior being observed for the mean GNDVI.

Table 4. Estimates of the average yield in tons of sugarcane per hectare (yi: TCH, t ha−1) and standard
deviation (SD) based on varieties (xi2) and cycle (xi3) for the field experiment.

Category Mean Standard Deviation

Varieties (xi2)

V1 111.30 26.10
V2 120.80 27.89
V3 122.21 23.16
V4 115.53 30.28

Cycle (xi3) Cane Plant 106.93 27.60
First ratoon 127.98 22.37

Values represent estimates of yi and SD for each category.

Precipitation is a continuous variable; however, Figure 7a displays only four distinct
values. This outcome results from the natural variability in the data and the method used
to accumulate precipitation within specific time intervals during both experimental setups
and cycles (including the cane plant and the first ratoon). Despite presenting only four
values, the variable was considered continuous due to its nature and was not included in
the model as categorical. A similar approach was considered by [5].
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(a) Scatter Plot of yi vs. xi4.
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(b) Scatter Plot of yi vs. xi7.

Figure 7. (a,b) show the scatter plots of TCH against cumulative precipitation and the mean GNDVI
during the growth phase, respectively, for the field experiment.
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3.1.3. Heteroskedastic GA Regression Results

Table 5 presents the results of the heteroskedastic GA regression model adjusted for the
response variable yi, representing tons of sugarcane per hectare (TCH, t ha−1). The mean
µi is modeled using the logarithmic link function according to the specified structure in (2).
Varieties V2 and V3, defined by the parameters ci1 and ci2, show significant differences
compared to variety V1, which is the reference level of the statistical model (represented
by the factor in the intercept). As shown in Table 4, these two varieties (V2 and V3) have
higher means than V1. It is also worth noting that the means of V5 and V1 are close, and
the model indicated no significant differences between these two varieties. For the variable
cycle, it is observed that the cane plant differs significantly from the first ratoon. As shown
in Table 4, the first ratoon cycle has a higher mean, which is expected due to environmental
variations.

Table 5. Estimates of the parameters, standard error (SE), and p-value of the heteroskedastic GA
regression model adjusted for the training data. The notation (*) denotes the statistical significance of
the variables, indicating p-value < 0.05.

Parameter Effects Parameter Estimate SE p-Value

µ

Intercept β10 2.1760 0.1472 <0.0001 *
ci1 β11 0.0670 0.0232 0.0039 *
ci2 β12 0.0846 0.0242 0.0005 *
ci3 β13 0.0060 0.0238 0.8000
xi3 β14 0.2214 0.0169 <0.0001 *
xi7 β15 4.1985 0.2546 <0.0001 *

Intercept β20 −3.5966 0.7345 <0.0001 *
σ xi4 β21 −0.0008 0.0003 0.0033 *

xi7 β22 3.4889 1.3358 0.0095 *
(*) denotes statistical significance, with p-value < 0.05.

In Figure 7a,b, it is possible to observe that, during the first ratoon cycle, the yield was
higher, indicating that environmental conditions favored the growth of sugarcane. The
mean GNDVI also presented better results during this cycle, suggesting enhanced plant
health and photosynthetic activity. Ref. [5] found that when accumulated precipitation
is higher, yield is improved during the cycle, which was enhanced by the greater water
availability. The mean GNDVI shows an increasing relationship with tons of cane per
hectare. As Figure 7b shows, TCH values increase as the GNDVI rises. This behavior
indicates that higher vegetation, represented by the GNDVI, is associated with higher cane
yield per hectare, which is expected as denser and healthier vegetation tends to produce
more biomass. The analysis suggests that GNDVI could be useful for monitoring and
predicting crop yield.

The square root of the dispersion parameter σi, which is also modeled using the loga-
rithmic link function as shown in (2), indicates variability in TCH production. Regarding
variability, both the accumulated precipitation and the average GNDVI showed significant
variations, which was expected due to environmental fluctuations. These variations can
directly impact the development of sugarcane, as soil water availability, determined by
precipitation, influences important aspects such as vegetative growth and plant health. The
GNDVI, in turn, reflects the health and development of vegetation, being highly sensitive
to environmental conditions. Fluctuations in these factors can lead to variations in GNDVI
values: increases in healthy vegetation are reflected by higher index values, while decreases
in vegetation result in lower values. It is important to note that after sugarcane reaches
maturity, a decrease in the GNDVI is naturally observed, as vegetative growth slows down.



Agronomy 2025, 15, 793 17 of 24

The plants enter a stage of lower photosynthetic activity, focusing more on sugar production
than foliar growth.

These results underscore the importance of the selected variables in explaining both
the mean and variability of sugarcane production. Climatic and agronomic variables
significantly impact yield, with statistical significance determined by p-values < 0.05, as
presented in the table.

Figure 8 presents the residual analysis of the heteroskedastic GA regression model. The
dotted gray line represents the approximate point-wise 95% confidence intervals indicated
by the two elliptic curves. If the model is correct, we would expect approximately 95% of
the points to lie between these two curves, with around 5% outside. A higher percentage of
points outside the curves, or a clear systematic deviation from the horizontal line, suggests
that the model’s fitted distribution (or the fitted terms) may be inadequate to explain the
response variable. Notably, 3 points out of 448 lie inside the elliptical curves, corresponding
to approximately 0.67%. This is well within the expected range, as the model’s performance
is considered acceptable when the points outside the curves account for no more than
5%. The worm plot [51] further confirms that the model fits the data well, suggesting its
suitability for analyzing data with similar characteristics in the present study.
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Figure 8. Residual analysis plot evaluating the model’s fit to the data. Deviation (Y-axis): Quantile
residuals, transformed to follow a standard normal distribution. Unit normal quantile (X-axis):
Quantiles of the standard normal distribution.

3.1.4. Descriptive Statistics of the Commercial Area Data

The commercial area data evaluated the model’s ability to generalize to new situations
that mimic real-world production conditions. However, the training or testing processes
did not include this commercial data. Instead, it was utilized solely to compare the
models’ results with observed data, allowing us to assess their applicability in a commercial
production context. Based on the descriptive analysis of data from commercial sugarcane
fields for the response variable tons of sugarcane per hectare (yi: TCH, t ha−1), different
behavior patterns were observed across the analyzed variables (Table 6).

For the variable varieties (xi2): V2 and V3, the average TCH ranged from
104.45 t ha−1 to 105.17 t ha−1. Variety V2 had a higher standard deviation (21.34) than V3
(15.86), indicating greater variability in TCH for V2.

For the data from commercial sugarcane fields, the average TCH ranged from
89.92 t ha−1 (first ratoon) to 119.46 t ha−1 (cane plant), with standard deviations of 9.11 and
4.36, respectively.
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Table 6. Estimates of the average yield in tons of sugarcane per hectare (yi: TCH, t ha−1) and standard
deviation (SD) based on varieties (xi2) and cycle (xi3) for commercial area data.

Category Mean Standard Deviation

Varieties (xi2) V2 105.17 21.34
V3 104.45 15.86

Cycle (xi3) Cane Plant 119.46 4.36
First ratoon 89.92 9.11

Values represent estimates of yi and SD for each category.

Figure 9 presents scatter plots highlighting the relationships between yi (tons of
sugarcane per hectare (TCH, t ha−1)) and two explanatory variables (xi4 (accumulated pre-
cipitation during the growth phase) and xi7 (mean GNDVI during the growth phase)).
These variables were selected for graphical representation because they are continu-
ous and allow direct visualization of their relationships with the response variable.
Figure 9a shows the scatter plot of yi versus xi4. The data suggest that precipitation
levels influence sugarcane production in non-uniform ways, with no discernible linear rela-
tionship observed. Conversely, Figure 9b displays the relationship between TCH and xi7

(mean GNDVI during the growth phase), where the data distribution suggests a potential
linear relationship between vegetative growth and sugarcane yield. This plot provides an
initial view of how plant vegetative vigor, measured by mean GNDVI during the growth
phase, might be associated with biomass production.
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(b) Scatter Plot of yi vs. xi7.

Figure 9. (a,b) show the scatter plots of TCH against cumulative precipitation and the mean GNDVI
for the commercial area data, respectively.

3.2. Machine Learning Models Results

The dataset used in this study for generalization was insufficient to effectively im-
plement an ANN model, as demonstrated by the comparative performance outcomes.
The results obtained from the ANN were notably inferior to those achieved using the
heteroskedastic GA regression model and the RF approach. This discrepancy arises from
the inherent nature of ANNs, which typically require large volumes of data to extract
meaningful features and build robust predictive models accurately [52]. As observed in
other studies [53–55], given the limited dataset available in this study, the ANN struggled
to generalize patterns effectively, leading to suboptimal performance.

ANNs require large datasets to generalize effectively, and their performance dete-
riorates with limited data due to overfitting and poor generalization [56]. Studies have
shown that high-capacity models like ANNs exhibit high variance when trained on small
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datasets, making them unsuitable for scenarios with constrained data availability [57,58].
In contrast, alternative approaches such as heteroskedastic gamma regression and RF have
proven more effective in such cases. Gamma regression is particularly useful for modeling
skewed, continuous data, offering robustness and interpretability [41,59]. At the same time,
RF excels in handling small datasets by reducing overfitting and automatically selecting
important features [12,60].

Empirical research highlights RF’s superior generalization capabilities, especially
in ecological and remote sensing applications with limited data [61,62]. Unlike ANNs,
RF does not require extensive training data and is less prone to memorizing patterns
than learning general relationships. Similarly, gamma regression, as a parametric model,
provides stability in predictive tasks where data are scarce. These findings reinforce the
need for dataset-aware model selection, ensuring that the complexity of a chosen model
aligns with the available data to achieve optimal performance [63].

Consequently, this study highlights the critical importance of dataset size when select-
ing modeling techniques, particularly for data-intensive methods like ANNs. It underscores
the advantages of alternative approaches such as heteroskedastic GA regression and RF in
scenarios with constrained data availability.

3.3. Model Performance Analysis for Field Experiment Data

The analysis of the train and test results demonstrates that all three models—
heteroskedastic GA regression model, ANN, and RF—are suitable for explaining the
variability in the dataset. Table 7 presents the performance metrics for each model, high-
lighting their ability to provide accurate predictions.

Table 7. Performance metrics for training and testing data from the heteroskedastic GA regression
model, RF, and ANN from the experimental field data. Metrics include Coefficient of Determination
(R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

Model R2

(Train)
MAE

(Train)
RMSE
(Train)

R2

(Test)
MAE
(Test)

RMSE
(Test)

Heteroskedastic GA Regression Model 0.61 13.7743 15.6185 0.62 14.0355 14.7355
Random Forest 0.74 10.5100 13.9100 0.69 12.0100 16.0500
Neural Network 0.71 11.3200 14.7800 0.67 12.4300 16.3900

All models demonstrate levels of predictive performance with R2 values between
0.61 and 0.74, showing close results across training and testing datasets. The Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) values further indicate that these mod-
els provide accurate predictions, considering the yield mean values obtained through the
experiment (about 120 TCH). These results highlight the suitability of the heteroskedastic
GA regression model, RF, and ANN for modeling the dataset, offering viable approaches
for capturing the dataset’s underlying relationships and variability.

3.4. Performance Evaluation of the Model Using Data from Commercial Sugarcane Fields

This subsection presents the performance of the models—heteroskedastic GA regres-
sion model, ANN, and RF—when applied to commercial area data for sugarcane yield
(see Table S2 in Supplementary Materials). These models were evaluated on data not used
in the field experiment, measuring their generalization capability. The performance metrics
for each model are shown in Table 8, highlighting the ability of the models to generalize
and predict yield in commercial settings.
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Table 8. Performance metrics for data of commercial fields from the heteroskedastic GA regression
model, RF, and ANN. Metrics include Coefficient of Determination (R2), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE).

Model R2 MAE RMSE

Heteroskedastic GA Regression Model 0.89 3.9037 5.0870
Random Forest 0.67 43.4500 44.9900
Neural Network 0.04 110.7900 112.4900

The results in Table 8 show that the models exhibit varying performance when applied
to commercial area data. The heteroskedastic GA regression model achieved the highest
R2 of 0.89, indicating a strong ability to explain the variability in sugarcane yield. This
model also had the lowest MAE and RMSE, suggesting it provides accurate and precise
predictions for the commercial area data.

In contrast, the Random Forest model showed an R2 of 0.67, indicating a moderate fit,
with notably higher MAE and RMSE values, which suggest less predictive accuracy than
the heteroskedastic GA regression model. The ANN model performed the weakest among
the three, with an R2 of only 0.04, indicating poor performance. Its higher MAE and RMSE
values further highlight its limited ability to generalize well to the commercial data from a
few samples.

The results indicate that, although all models showed varying performance levels
based on the data source, the heteroskedastic GA regression model significantly outper-
formed the others when applied to commercial area data. In the field experiments, the
models performed similarly, with the Random Forest displaying slightly better results.
However, for the commercial area data, the heteroskedastic GA regression model achieved
the highest R2 and the lowest MAE and RMSE values. Meanwhile, the Random Forest
exhibited moderate performance, while the ANN model struggled, revealing its limited
generalization ability for this specific application. This underscores the importance of select-
ing the appropriate model based on the characteristics of the data, as the heteroskedastic GA
regression model appears to be more suitable for estimating sugarcane yield in commercial
areas.

4. Conclusions
This study examined how to estimate sugarcane yield at harvest by analyzing tem-

poral satellite imagery during critical growth phases. The heteroskedastic GA regression
model demonstrated superior performance, achieving an R2 of 0.89 with low prediction
errors (MAE = 3.9037, RMSE = 5.0870) in commercial sugarcane fields. It significantly
outperformed both RF and ANN models. The key covariates influencing the model’s
predictive capability included sugarcane variety (xi2), growth cycle profile (xi3), cumulative
precipitation during the growth phase (xi4), and the mean GNDVI spectral index during the
growth phase (xi7). Together, these variables captured the agronomic and environmental
dynamics of crop development.

The decision to focus exclusively on cumulative precipitation as the climatic variable
was based on its direct relationship with soil water availability, which plays a crucial role in
sugarcane growth and yield. While temperature can impact the crop, its effects are partially
reflected in the GNDVI, which indicates how vegetation responds to thermal and water
stress. Thus, it is appropriate to include cumulative precipitation, as the GNDVI indirectly
accounts for temperature effects. However, the role of temperature may still be significant.

One limitation of the approach used in this study is the requirement for a substantial
amount of quality data. Although the exponential increase in data improves the per-
formance of machine learning methods, the challenges in obtaining these data can be a
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significant drawback. Currently, new experiments involving sugarcane are being conducted
to generate additional data that can be applied to the methodology developed in this study
in the future. Additionally, new approaches could investigate whether incorporating more
environmental variables—such as temperature, soil moisture, and overall water availabil-
ity—would improve model performance, especially in extreme climatic conditions where
temperature stress on crops is more significant.

The model’s robustness highlights the value of integrating satellite-derived spectral in-
dices (e.g., mean GNDVI during the growth phase) with field-specific agronomic variables,
allowing for precise monitoring of yield trends. These findings support heteroskedastic
GA regression as a scalable tool for agricultural analytics, especially in data-scarce regions,
while emphasizing the importance of strategic variable selection to improve predictive
accuracy in crop yield modeling. This model-based approach is also a powerful tool
for mitigating abiotic and biotic stresses by enhancing data-driven decision-making and
optimizing sustainable crop management strategies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy15040793/s1, Table S1: Subset of the dataset (experi-
mental area) used to train the models; Table S2: Subset of the dataset (experimental area) used to test
the models; Table S3: Generalization Dataset of Commercial Sugarcane Plots for Assessing Model
Generalization Performance.
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