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Abstract: The study of substances of botanical origin is fundamental for the development
of new effective alternatives for the control of Aedes (Stegomyia) aegypti (Culicidae), a vector
of arboviruses in humans. In this study, the potential of two new dillapiole derivatives,
propyl ether dillapiole and piperidyl dillapiole, was tested to determine their ability to
deter oviposition and their larvicidal and residual effects against Ae. aegypti under simu-
lated field conditions, as alternatives for the control of this mosquito. The ability of these
substances to deter oviposition by pregnant Ae. aegypti females was assessed in the labo-
ratory, and then the larvicide and residual effects of different concentrations were tested
under simulated field conditions. The determination of the enzymatic activity in exposed
larvae was carried out using sublethal concentrations. The LC50 values of propyl ether
dillapiole after 24 and 48 h were 24.60 µg/mL and 14.76 µg/mL, and those of piperidyl
dillapiole were 31.58 µg/mL and 24.85 µg/mL, respectively. After 48 h of exposure to
aged, treated water, the mortality of propyl ether dillapiole (100 µg/mL) and piperidyl
dillapiole (200 µg/mL) fell to 81.7% and 75% on the second day, and to 73.3% and 66.7% on
the fourth day, respectively. The concentrations of 100 µg/mL of propyl ether dillapiole
and 200 µg/mL of piperidyl dillapiole caused oviposition rates of only 3.80% and 4.63% of
the eggs of the females, respectively, compared to 22.01% in the negative control (water and
DMSO at 2%). In the larvae exposed to propyl ether, piperidyl dillapiole, dillapiole, or the
chemical insecticide temephos (positive control), inhibition of acetylcholinesterase (AChE)
occurred. Propyl ether dillapiole and piperidyl dillapiole have potential for use as alterna-
tive forms of control of Ae. aegypti, with propyl ether dillapiole being the most promising
molecule. Further studies are needed to understand the effects of these substances on this
mosquito and on non-target organisms.
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1. Introduction
Aedes (Stegomyia) aegypti (Linnaeus, 1762; Diptera: Culicidae) is the main vector of

arboviruses DENV, CHIKV, ZIKV, and YFV, which cause dengue, Zika, chikungunya, and
urban yellow fever [1]. The use of synthetic chemical insecticides of the organophosphorus
class, such as temephos, and pyrethroids, such as deltamethrin, used in vector control
campaigns to combat this vector, has caused the selection of certain populations that are
resistant to these substances [2].

Plant-based substances have been widely investigated as alternatives for the control
of mosquito vectors [3]. Extracts from some plant species have demonstrated ovicidal,
larvicidal, pupicidal, and ovisposition deterrent effects against Ae. aegypti and other
mosquito vectors [4–7].

Species of the genus Piper, such as Piper aduncum [8], P. nigrum [9], P. betle [10], P.
capitarianum [11], P. aduncum, P. marginatum, P. gaudichaudianum, P. crassinervium, P. ar-
boreum [12], P. cubeba [13], and P. tuberculatum [14], have been investigated for their effects
against mosquito vectors of pathogens, including in Ae. aegypti [8,10–15].

However, there are few studies that have reported the insecticidal effect of substances
of botanical origin against Ae. aegypti under simulated field conditions. Extracts of Vitex
payos and V. schiliebenii from Kenya were effective against larvae of Anopheles gambiae under
simulated field conditions [16,17]. Similarly, the formulations of Annona squamosa and A.
montana showed a positive effect against An. gambiae and Culex quinquefasciatus larvae
when tested under the same conditions [18]. Cryptomeria japonica essential oil from Taiwan
has also been shown to be effective against An. gambiae larvae in laboratory and semi-field
environments [19]. In Brazil, although species of the genus Piper have been extensively
tested in the laboratory, only P. nigrum had its larvicidal activity against Ae. aegypti analyzed
in simulated field conditions [20].

Piper aduncum, a shrub of the Piperaceae family, has an insecticidal action against Ae.
aegypti [12,21]. From the essential oil of P. aduncum, collected in the region of Manaus, state
of Amazonas, Brazil, it is possible to extract dillapiole, which is its major component (50 to
98.9%) [22,23]. In a study by Rafael et al. [8], dillapiole showed a larvicidal effect against
Ae. aegypti. The effect of this natural molecule was also proven against An. marajoara and
Ae. aegypti [21] and against Spodoptera frugiperda [23].

The dillapiole and its semisynthetic derivatives ethyl ether, n-butyl ether, methyl
ether, propyl ether and isodillapiole had an adulticidal effect on Ae. aegypti [24]. Ethyl
ether and n-butyl ether caused larvicidal and genotoxic effects in Ae. aegypti [25] and
in Ae. aelbopictus [26]. Isodillapiole caused the expression of P450 resistance genes [27]
and a genotoxic effect in Ae. aegypti [28]. Dillapiole methyl ether also showed ovicidal
and larvicidal activity [29] and genotoxic in Ae. aegypti [30]. Propyl ether dillapiole and
piperidyl dillapiole were toxic to Ae. aegypti eggs, larvae and adults [31]. Similarly, the 4-
nerolidylcatechol (4-NC) from P. peltatum was toxic against Ae. aegypti, Cx. quinquefasciatus,
and An. darlingi [32].

Therefore, insecticidal activity (ovicidal, larvicidal, adulticidal, and genotoxic) of
dillapiole and some of its semisynthetic derivatives against the mosquito Ae. aegypti have
been proven in laboratory tests [8,24–30]. On the other hand, the effects of these substances
on this mosquito under simulated field conditions and their mechanisms of action in this
insect are unknown.

Some currently used insecticides belong to the class of organophosphates (OPs),
whose mechanism of action is based on the inhibition of acetylcholinesterase (AChE) [33].
Additionally, compounds derived from plants with insecticidal potential can affect the
AChE of insects [34]. Cholinergic effects, resulting from the accumulation of acetylcholine
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in the synaptic cleft and subsequent disruption of neuronal signaling, can trigger oxidative
stress, leading to genotoxic damage, which can trigger cell death [35].

The exposure of insects to various commercial chemical larvicides and plant-derived
substances triggers a series of enzymes that act in metabolic processes fundamental to
the normal functioning of the cell [36]. Enzymes such as superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione
S-transferase (GST) act in the elimination of reactive oxygen species (ROS) and in the
biotransformation and elimination of xenobiotics [37]. Antioxidant enzymes act as a cellular
defense mechanism against oxidative stress, eliminating ROS that cause oxidative damage
to macromolecules, such as DNA, lipids, and proteins [35,38]. GST plays a key role in the
metabolism of xenobiotics and may trigger the development of insecticide resistance [39]. In
insects, this enzyme acts in the detoxication of insecticides via the conjugation of glutathione
(GSH) in more water-soluble and excretable electrophilic substrates [40].

The activity of these enzymes is little analyzed in mosquitoes, although it can provide
important data on the responses of these organisms to the exposure of substances with
potential for vector control. Dillapiole derivatives, propyl ether dillapiole, and piperidyl
dillapiole, showed ovicidal, larvicidal, and adulticidal effects against Ae. aegypti under
laboratory conditions [31]. However, to validate the chemical potential as an agent for
controlling Ae. aegypti, it is crucial to evaluate its efficacy through further tests in conditions
closer to the mosquito’s natural environment. Thus, the aim of the present study was to
evaluate for the first time the derivatives propyl ether dillapiole and piperidyl dillapiole
against Ae. aegypti larvae under simulated field conditions.

2. Materials and Methods
2.1. Acquisition of Dillapiole Derivatives

Propyl ether dillapiole and piperidyl dillapiole were obtained from dillapiole, which
was isolated from P. aduncum essential oil, according to the method described by Silva
et al. [31]. The cultivation of this plant occurred at Embrapa Amazônia Occidental, kilometer
23 on the state highway AM-010 (02◦24′52′′ S, 54◦42′36′′ W), in the city of Manaus, state of
Amazonas, Brazil.

2.2. Maintenance of Aedes aegypti in the Insectarium

Immature Ae. aegypti (eggs and larvae) were captured in 2020 in the Coroado dis-
trict (3◦05′38.0”S 59◦59 ’02.8” W) in the east of Manaus, Amazonas, Brazil. These were
transported to the insectarium of the Laboratory of Cytogenetics, Genomics and Evolu-
tion of Mosquitoes (LCGEM), Coordination of Society, Environment and Health (COSAS),
Campus I of the National Institute for Amazonian Research (INPA), for identification of
specimens and colony formation, according to the method of Silva et al. [31]. The colony
was maintained without exposure to any known insecticide, under controlled conditions of
temperature (27 ± 2 ◦C) and humidity (70 ± 5%), with a 12D:12L photoperiod, in which
breeding and oviposition occurred [31]. Some of the eggs obtained were used to obtain
larvae for bioassays, and the rest were used for the formation of new generations in order
to maintain the standard colony.

2.3. Acquisition of Aedes aegypti for Bioassays

In the insectarium, six batches of Ae. aegypti eggs (n~15,000) (ninth filial generation),
with a difference of two days between them, were placed to hatch in a container with
drinking water (500 mL). After the hatching of the eggs, the larvae were fed with fish feed
(TetraMin® Tropical Flakes, Tetra GmbH, Melle, Germany) until reaching the third instar.
These larvae (first batch) were allowed to develop to the adult stage in order to verify
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the oviposition deterrence effects of the derivatives propyl ether dillapiole and piperidyl
dillapiole. The second, third, and fourth batches of larvae were used in the larvicide
bioassay in simulated field conditions to determine the lethal acute, chronic, and residual
effects of these derivatives. In the fifth batch, the activities of the enzymes catalase (CAT)
and glutathione S-transferase (GST) and the total proteins were determined. In the sixth
batch, acetylcholinesterase (AChE) activity was measured.

2.4. Oviposition Deterrence in the Insectarium

In the LCGEM insectarium, 100 female Ae. aegypti (5 to 7 seven days old) from the
standard colony, three days after the first blood feeding, were transferred to a cage (30 cm3)
and fed a 10% sucrose solution. Polypropylene cups (120 mL) lined with filter paper
and containing 30 mL of a solution of propyl ether dillapiole (6.25, 25, and 100 µg/mL),
piperidyl dillapiole (12.5, 50, and 200 µg/mL), dillapiole at 80 µg/mL as a comparative,
temephos (0.012), and two negative controls (NC 1 = water and NC 2 = water + 5% DMSO)
were offered for choice of oviposition of the females kept in the cage. The experiment
was conducted in duplicate, totaling twenty containers. Every 48 h, the cups were rotated
from one location to another within the enclosure. This bioassay was repeated twice
using the same conditions. The eggs from each cup were counted under a stereoscopic
microscope (Blue edition version Carl Zeiss Stemi 2000, Oberkochen, AxioCam MRc camera,
Oberkochen, Germany), and the mean and standard deviation of each concentration and
the controls were calculated.

2.5. Larvicidal and Residual Effect Bioassay Under Simulated Field Conditions

The larvicidal bioassay under simulated field conditions with propyl ether dillapiole
and piperidyl dillapiole was conducted according to guidelines of the World Health Orga-
nization (WHO) [41] and Morais et al. [20], with adaptations. The experiment was carried
out in April 2023, in the outdoor area of building 31, Coordination of Society, Environment
and Health (COSAS), Campus I, INPA, Aleixo, Manaus, Amazonas, Brazil, under local
environmental conditions.

At the experimental site, two containers containing 1 L of drinking water each were left
to age for 24 h before testing. The batch of third-instar Ae. aegypti larvae were acclimatized
12 h before. On the day of the experiment, 3 h before, 20 larvae each were placed in
65 plastic cups (300 mL, totaling 1300 larvae) containing 50 mL of water and about 1 mg of
TetraMin® feed. The containers were placed in a steel rack.

The substances propyl ether dillapiole and piperidyl dillapiole (10 mg) were diluted
in dimethyl sulfoxide (DMSO) (1 mL). From the stock solution, five concentrations (6.25,
12.5, 25, 50, and 100 µg/mL) of dillapiole propyl ether and five concentrations (12.5, 25, 50,
100, and 200 µg/mL) of piperidyl dillapiole were used. These concentrations were defined
in laboratory bioassays based on the LC50 values of the substances [31]. Dillapiole used at
80 µg/mL (Rafael et al. [8]) and temephos (0.012 µg/mL) was used as the positive control
(PC), as a comparative [42]. The susceptibility of Ae. aegypti larvae to these substances
was previously confirmed in the laboratory [31]. The negative control (NC) was water
and dimethyl sulfoxide (DMSO) at 0,5%. For all the concentrations of substances and
controls, five replicates, each consisting of a 300 mL plastic container containing 50 mL of
water, were used. Larval mortality was monitored at 24 h and 48 h after exposure to the
derivatives, and dead larvae were discarded. After this time, all the larvae were removed
from the container.

The analysis of the residual effects on Ae. aegypti larvae exposed to aged water treated
with propyl ether dillapiole and piperidyl dillapiole began after the larvicidal bioassay (48 h)
and lasted 96 h. Five 500 mL containers were prepared for each of the four concentrations
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of propyl ether dillapiole (12.5, 25, 50, and 100 µg/mL) and piperidyl dillapiole (25, 50, 100,
and 200 µg/mL). In addition, dillapiole (80 µg/mL) was used for comparison, along with a
positive control (temephos, 0.012 µg/mL), and a negative control. Batches of 20 larvae were
added to each container. Two batches of larvae were used (n = 1100). The first (n = 550)
was added on the second day (48 h), and the second (n = 550) was added on the fourth
day (96 h) after the start of the larvicidal bioassay. The mortality reading for both batches
was performed 48 h (2 and 4 days) after the addition of the larvae. The repetition of this
procedure was interrupted when mortality reached a minimum of 50%.

The measurement of the ambient temperature (Incoterm 5006—10 ◦C/+250 ◦C, In-
coterm Thermometer Industry Ltda, São Paulo, SP, Brazil) and pH of the water (Quimis,
Q400BC, Quimis Scientific devices Ltda, Diadema, SP, Brazil) was performed every 24 h.
The containers remained covered with a nylon mesh to prevent the entry of insects and
possible residues during the experimental period.

2.6. Sublethal Larvicidal Bioassay of Enzyme Activity

A total of 6000 third instar larvae were used to determine the activity of glutathione
S-transferase (GST) and catalase (CAT) enzymes (n = 3000), acetylcholinesterase (AChE),
and total proteins (n = 3000). At LCGEM/INPA, larvae, with 100 individuals per replicate
(n = 600), were exposed to sublethal concentrations of dillapiole propyl ether (10 µg/mL),
piperidyl dillapiole (10 µg/mL), dillapiole (10 µg/mL), temephos (0.001 µg/mL), or the
negative control (water and 0.5% DMSO) during 24 h. The larvae were weighed on an
analytical balance (Denver Instrumental, APX—153, Sartorius AG, Bohemia, NY, USA) and
frozen at −80 ◦C in a freezer (Panasonic MDF-U56VC-PA, Panasonic Healthcare Company
of North America, Wood Dale, IL, USA) until further analysis.

2.7. Catalase (CAT), Glutathione S-Transferase (GST), and Acetylcholinesterase (AChE) Activity,
and Total Protein Concentration

Analyses of the CAT, GST, and AChE enzymes and the total protein concentration
were performed in the Laboratory of Ecophysiology and Molecular Evolution (LEEM) at
INPA. For each enzyme assay, analyses were performed using six pools of 100 larvae as
biological replicates (n = 6), for each concentration of propyl ether dillapiole, piperidyl
dillapiole, dillapiole, temephos, and the negative control. Each replicate consisted of a pool
of 100 larvae, and technical replicates (three measurements per sample) were conducted
to ensure reproducibility. For analysis of the GST and CAT enzymes, the entire body of
the larvae was homogenized (1:4 w/v) in buffer (20 mM tris-base, 1 mM EDTA, 1 mM
dithiothreitol, 500 mM sucrose, and 150 mM KCl, pH 7.6), followed by centrifugation at
9000× g for 30 min at 4 ◦C. For the evaluation of acetylcholinesterase (AChE) activity, the
larvae were homogenized (1:3 w/v) in phosphate buffer (0.1 M, 20% glycerol, pH 7.4) and
centrifuged at 12,000× g for 20 min at 4 ◦C. All samples were homogenized in a MultiPro®

(Dremel, Racine, WI, USA) tissue homogenizer and centrifuged in a refrigerated centrifuge
(Eppendorf, 5430R). The procedure followed protocols for enzyme activity tests [43] and
protein purification [44].

The GST and AchE enzymatic activity was determined based on substrate consump-
tion, with no need for a standard curve [42]. Similarly, catalase activity was determined
following the method of Beutler [45]. The GST activity was evaluated using 1-chloro-2,4-
dinitrobenzene (CDNB) as the substrate [46]. The absorbance was measured using a spec-
trophotometer (SpectraMax M2, Molecular Devices, San Jose, CA, USA) at 340 nm. The en-
zyme activity was calculated using the molar extinction coefficient of CDNB (9.6 mM cm−1),
and the units were expressed as nmol of conjugated CDNB min−1 mg−1 protein (nmol
min−1 mg of protein−1). The CAT activity was measured via the degradation rate of exoge-
nous hydrogen peroxide (H2O2), with the generation of oxygen and water, according to the



Toxics 2025, 13, 283 6 of 18

methodology described by Beutler [45]. For the reading, the degradation rate of H2O2 was
measured for 60 s using a spectrophotometer at 240 nm. The results are expressed in µmol
min−1 mg of protein−1.

The AChE activity was determined according to the methodology described by Ellman
et al. [47]. After hydrolysis of the acetylthiocholine by the AChE, choline was formed, which
was combined with 5,5′-dithio-bis-2-nitrobenzoate (DTNB) to generate a yellow compound
measured at 415 nm. The results of the protein−1 were expressed as nmol min−1 mg−1. The
total protein content of the body of the larvae was quantified using a spectrophotometer at
595 nm. Bovine serum albumin was used as a standard, as per Bradford [48].

2.8. Statistical Analysis

The LC50 and LC90 values of propyl ether dillapiole and piperidyl dillapiole at in-
tervals of 24 and 48 h were estimated using the Generalized Linear Model (GLM) of
concentration–response (Probit) in R software (R Core Team, version 4.4.0, 2024, R Founda-
tion for Statistical Computing, Viena, Austria). The residual effect was analyzed using the
Kruskal–Wallis test, followed by Dunn’s test at a 5% probability of error, to detect significant
differences between the treatments and controls. The effects of the different compounds
on the activity of the GST, CAT, and AChE enzymes were compared by one-way ANOVA,
followed by the Tukey test, with a 5% significance level (p < 0.05).

3. Results
3.1. Oviposition Deterrence in Female Aedes aegypti

In the laboratory experiments, the derivatives propyl ether dillapiole and piperidyl
dillapiole, as well as dillapiole at 80 µg/mL and temephos at 0.012 µg/mL, demonstrated
significant inhibition (p < 0.05) of the oviposition of pregnant Ae. aegypti females when
compared to the negative controls 1 (water) and 2 (water and 0.5% DMSO), which were 24.62
and 22.01%, respectively. Propyl ether dillapiole, at concentrations of 25 and 100 µg/mL,
showed variations of 13.20 to 3.80% in the rate of eggs deposited, respectively. Piperidyl
dillapiole, at concentrations of 50 and 200 µg/mL, showed variations of 6.72 to 4.63%
in the rate of eggs deposited, respectively (Figure 1). The most significant reduction in
oviposition occurred at the highest concentrations of the compounds, notably for propyl
ether dillapiole.
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propyl ether dillapiole (PED), piperidyl dillapiole (PPD), negative control 1—NC1 (distilled water),
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negative control 2—NC2 (water and DMSO at 0.5%), dillapiole (DIL) at 80 µg/mL, and positive
control (PC)—temephos at 0.012 µg/mL, evaluated as an oviposition deterrent. The bars represent
the mean ± SD. Three replicates (n = 3) were used for each treatment and the control.

3.2. Larvicidal Bioassay Under Simulated Field Conditions

Regarding the physical conditions of the environment and the experiment, the average
water temperature recorded in the containers throughout the bioassay was 28.7 ◦C, ranging
from 26 to 30 ◦C. The mean minimum and maximum ambient temperatures at the bioassay
site were 28 (24 to 32.6) ◦C and 29.97 (25 to 33.8) ◦C, respectively. The pH of the water in
the containers ranged from 6.0 to 7.8. The mean humidity was 69.5%, ranging from 63.23 to
74.79% (Figure 2).
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Under the simulated field conditions, the larvicidal activity of the dillapiole deriva-
tives increased with their increasing concentrations. The increased activity of propyl ether
dillapiole ranged from 12 to 100% after 24 h and from 28 to 100% after 48 h, at the lowest con-
centration (6.75 µg/mL) and highest concentration (100 µg/mL), respectively (Figure 3A).
Larval mortality in the four highest concentrations of propyl ether dillapiole (200, 100, 50,
and 25 µg/mL) was higher (p < 0.0001) in relation to the negative control. The mortality of
larvae exposed to piperidyl dillapiole ranged from 8 to 100%, at the lowest (12.5 µg/mL)
and highest concentrations (200 µg/mL) after 24 h, and from 15 to 100% at concentrations
of 12.5 and 100 µg/mL, respectively, after 48 h (Figure 3B).

Under the simulated field conditions, propyl ether dillapiole presented LC50 values
of 24.60 µg/mL and 14.76 µg/mL, after 24 and 48 h, respectively (Table 1). The LC90

values were 78.13 µg/mL and 60.85 µg/mL after 24 and 48 h, respectively (Figure 4 and
Table 1). For the biolarvicide piperidyl dillapiole, the LC50 values were 31.58 µg/mL and
24.85 µg/mL after 24 and 48 h, respectively (Figure 3 and Table 1). The LC90 values were
75.22 µg/mL and 49.89 µg/mL for the same exposure times (Table 1).
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Figure 3. Percentage mortality rates (mean ± SD) of Aedes aegypti larvae at different concentrations of
dillapiole derivatives, after 24 and 48 h of exposure to propyl ether dillapiole (PED) (A) and piperidyl
dillapiole (PPD) (B). Negative control—NC (water and DMSO 0.5%), dillapiole (DIL) at 80 µg/mL,
and positive control—temephos (TM) at 0.012 µg/mL. The bars represent the mean ± SD. A two-way
ANOVA was applied, followed by Tukey’s post hoc test with a significance level of 5% (p < 0.05),
indicated by different letters (a, b, c, d). Three replicates (n = 3) were used for each treatment and
the control.
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Figure 4. Aedes aegypti larvae after 48 h of exposure to aged water treated with propyl ether dillapiole
(PED) (A) and piperidyl dillapiole (PPD) (B). Negative control—NC (water and DMSO 0.5%), dillapi-
ole (DIL) at 80 µg/mL, and positive control—temephos (TM) at 0.012 µg/mL, for 2 (2nd batch) and
4 days (3rd batch). The bars represent the mean ± SD. A two-way ANOVA was applied, followed by
Tukey’s post hoc test with a significance level of 5% (p < 0.05), indicated by different letters (a, b, c, d,
e, f). Three replicates (n = 3) were used for each treatment and the control.

Table 1. Lethal concentrations (LC50 and LC90) and 95% confidence intervals of propyl ether dillapiole
and piperidyl dillapiole biolarvicides against Aedes aegypti, under simulated field conditions, after
24 and 48 h.

Reading Intervals LC50 (CI 95%) µg/mL LC90 (CI 95%) µg/mL χ2 (df) Slope ± SE

Propyl ether dillapiole
24 h 24.60 (20.17–30.02) 78.13 (58.87–118.91) 19.81 (3) 2.55 (0.48)
48 h 14.76 (11.21–18.58) 60.85 (44.18–100.76) 15.38 (3) 2.08 (0.40)

Piperidyl dillapiole
24 h 31.58 (26.50–37.34) 75.22 (60.47–103.55) 3.73 (3) 3.40 (0.28)
48 h 24.85 (21.43–28.69) 49.89 (39.11–61.94) 21.87 (3) 4.64 (1.07)
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3.3. Residual Effects of Dillapiole Derivatives

The residual activity of propyl ether dillapiole and piperidyl dillapiole under simu-
lated field conditions (Figure 4) was determined by counting and replacing the batch of
larvae in the containers every 48 h until significant loss of activity. Both derivatives caused
a high mortality rate at the highest concentrations of aged, treated water, after 2 (second
batch) and 4 days (third batch), in the residual effect bioassay lasting 96 h. The highest
mortality was recorded on the 4th day (second batch of larvae) of exposure to dillapiole
propyl ether. On day 2 (second batch), the mortality ranged from 38.3 to 81.7% at the
concentrations of 12.5 and 100 µg/mL of propyl ether dillapiole, and from 18.3 to 75.00%
at the concentrations of 25 and 200 µg/mL of piperidyl dillapiole, respectively. On day 4
(third batch), the larval mortality decreased to 18.3% and 73.3% at the concentrations of 6.25
and 100 µg/mL of propyl ether dillapiole and to 10 and 66.7% at the concentrations 25 and
200 µg/mL of piperidyl dillapiole, respectively. On days 2 and 4 (second and third batches,
respectively), the larval mortality in dillapiole at 80 µg/mL was 93.3 and 86.7 and, in PC
(temephos at 0.012 µg/mL), it was 100 and 98.3%, respectively. There was no mortality in
the negative control.

Exposure to different concentrations of propyl ether dillapiole significantly affected
(χ2 = 32.37; df = 5; p < 4.998 × 10−6) the mortality of Ae. aegypti larvae in relation to the
negative control. The same pattern was observed for piperidyl dillapiole, for which the
mortality rates at concentrations of 50, 100, and 200 µg/mL were statistically (χ2 = 33.73;
df = 5; p < 2.69 × 10−6) higher than in the negative control.

3.4. Activity of the Enzymes Glutathione S-Transferase (GST), Catalase (CAT), and
Acetylcholinesterase (AChE)

The GST activity increased (F = 47.787; p < 0.001) only in the larvae treated with dilla-
piole at 10 µg/mL. This increase was absent in the larvae exposed to piperidyl dillapiole,
propyl ether dillapiole at 10 ug/mL, temephos, and the negative control (water and 0.5%
DMSO). The CAT activity remained stable, showing no difference (F = 1.445; p = 249) in the
treatments in relation to the dillapiole and temephos and the negative control (water and
0.5% DMSO) (Figure 5). Inhibition of AChE activity occurred in all treatments (F = 4.986;
p = 0.006) when compared to the negative control (Figure 6).
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Figure 5. Activity of glutathione S-transferase (GST) (A) and catalase (CAT) (B) enzymes in Aedes
aegypti larvae in five experimental groups: NC—negative control; PED—propyl ether dillapiole
(10 µg/mL); PPD—piperidyl dillapiole (10 µg/mL); DIL—dillapiole (10 µg/mL); TM—temephos
(0.006 µg/mL). Lowercase letters (a, b) indicate significant differences among treatments. Significance
level (Tukey test) was p < 0.05. Six replicates (n = 6) were used for each treatment and the control.
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Figure 6. Acetylcholinesterase (AChE) activity in Aedes aegypti larvae in five experimental groups: 
NC—negative control; DIL—dillapiole at 10 µg/mL; TM—temephos at 0.006 µg/mL; PED –propyl 
ether dillapiole at 10 µg/mL; PPD—piperidyl dillapiole at 10 µg/mL. Lowercase letters (a, b) indicate 
significant differences among treatments. Significance level (Tukey test) was p < 0.05. Six replicates 
(n = 6) were used for each treatment and the control. 
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field conditions is rare. 
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Figure 6. Acetylcholinesterase (AChE) activity in Aedes aegypti larvae in five experimental groups:
NC—negative control; DIL—dillapiole at 10 µg/mL; TM—temephos at 0.006 µg/mL; PED –propyl
ether dillapiole at 10 µg/mL; PPD—piperidyl dillapiole at 10 µg/mL. Lowercase letters (a, b) indicate
significant differences among treatments. Significance level (Tukey test) was p < 0.05. Six replicates
(n = 6) were used for each treatment and the control.

4. Discussion
Aedes aegypti has been the subject of several laboratory studies involving substances

of botanical origin that promote ovicidal, larvicidal, pupicidal, and adulticidal effects, as
well as the deterrence of oviposition [6–8,11,15,20,25,30]. When studying new larvicides,
it is essential to understand the wide range of effects on the target organism in order to
determine the frequency of application necessary to achieve effective vector control [49].
However, research that analyzes the different effects of these substances under simulated
field conditions is rare.

In mosquitoes, oviposition is a crucial event in the life cycle of these insects [50].
The use of substances that inhibit the oviposition of pregnant females may be an effective
alternative to interrupt the life cycle of these individuals and reduce population growth [51].
Studies on the inhibition of oviposition by plant extracts and their derivatives are scarce.
The use of substances with insecticidal action in water storage containers deters oviposition
in pregnant females, thus reducing the levels of larval populations [5,10,51–53].

Essential oils (EOs) with oviposition inhibition activity and larvicidal effect against
Ae. aegypti are of interest for the control of this mosquito. Laboratory and field tests with
piperidines ([1-(3-cyclohexen-1-ylcarbonyl)-2-methylpiperidine] and [1-(3-cyclohexen-1-
ylcarbonyl)-piperidine]) demonstrated high oviposition deterrence (43 to 90%) in pregnant
Ae. aegypti and Ae. albopictus females [51]. The species Cuscuta chinensis strongly inhibited
oviposition in Cx. quinquefasciatus females when compared to the negative control [53].
Similarly, in this study, propyl ether dillapiole and piperidyl dillapiole derivatives inhibited
the oviposition of pregnant Ae. aegypti females. The deterrent effect of these substances
may be related to the capture of chemosensory signals by females of this mosquito [54].
Few studies have reported the insecticidal effect of botanical substances against Ae. aegypti
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under simulated field conditions. However, extracts of Vitex trifolia (LC50 76.6 µg/mL)
and V. schiliebenii (LC50 14.6–17.4 µg/mL) from Kenya were shown to be effective against
An. gambiae larvae under simulated field conditions [16,17]. Formulations of Cryptomeria
japonica (LC50 8.22 to 134.84 µg/mL) caused mortality of An. gambiae under semi-field
conditions [19]. In Brazil, P. nigrum and its compound piperine showed larvicidal effects
(LC50 0.9–19.03 µg/mL) on Ae. aegypti under simulated field conditions [20].

In this study, in simulated field conditions, the larvicidal effect of propyl ether dil-
lapiole and piperidyl dillapiole in Ae. aegypti showed that these compounds were toxic,
with LC50 values of 24.60 and 14.76 µg/mL for propyl ether dillapiole and 31.58 and
24.85 µg/mL for piperidyl dillapiole after 24 h and 48 h, respectively. These derivatives
had a larvicidal effect on Ae. aegypti in the laboratory, with LC50 values of 48.31 and
67.18 µg/mL, respectively after 24 h [31]. Therefore, the derivatives were more toxic when
tested under simulated field conditions in comparison with the laboratory tests. Similar
results were observed by Silva et al. [46] when testing the larvicidal effects of quinone
derivatives, extracted from Connarus suberosus, in the laboratory and under simulated
field conditions.

Plants of the genus Piper present a variety of chemical compounds, including dilla-
piole, apiol, myristicin, safrole, sarisan, linalool, nerolidol, β-pinene, α-humulene, and
β-caryophyllene, among others, which have insecticidal activity against mosquitoes [52,55].
The essential oils of P. betle [10], P. longum [56], P. aduncum, P. marginatum, P. gaudichaudianum,
P. crassinervium, and P. arboreum have shown larvicidal activity against Ae. aegypti [12], P.
nigrum [20] and P. macedoi [57] have shown toxic effects against Ae. aegypti.

Similarly, P. nigrum and its compound piperine caused high mortality in An. arabi-
ensis, An. coluzzii, An. gambiae, An. quadriannulatus, and An. funestus [9]. The EO of P.
capitarianum, containing, as its main components, trans-caryophyllene, α-humulene, and
β-myrcene, showed larvicidal and adulticidal effects against Ae. aegypti and Ae. albopic-
tus [11]. The essential oil of P. purusanum and its compounds β-caryophyllene, α-humulene,
and germacrene D caused ovicidal and larvicidal effects against Ae. aegypti, Ae. albopic-
tus, An. albitarsis, An. triannulatus, An. darlingi, and An. nuneztovari, with inhibition
of acetylcholinesterase [15]. Hinokinin, a compound isolated from extracts of P. cubeba,
showed larvicidal action in Ae. aegypti [13]. Piper tuberculatum essential oil and its major
compound β-caryophyllene (54.8%) demonstrated larvicidal activity (LC50 values of 48.61
and 57.20 µg/mL, p < 0.05), inhibition of acetylcholinesterase (IC50 values of 57.78 and
71.97 µg/mL) and increased production of reactive oxygen and nitrogen species in Ae.
aegypti larvae [14]. The results of laboratory tests suggest that plant-derived compounds
may be an effective alternative for controlling Ae. aegypti. However, few of them have been
evaluated under simulated field conditions, as was carried out in this study with propyl
ether dillapiole and piperidyl dillapiole.

The dillapiole present in the essential oil of P. aduncum has shown larvicidal and
genotoxic activity [8], as well as adulticide activity [24], against Ae. aegypti and toxic effects
against S. frugiperda [23]. Its derivatives ethyl ether and n-butyl ether have also shown
ovicidal, larvicidal, and genotoxic effects [25], as well as adulticide effects [24] against this
mosquito and against Ae. albopictus [26]. Another derivative, isodillapiole, promoted the
expression of resistance genes [27] and genotoxic action in Ae. aegypti [28]. Methyl ether
dillapiole also caused ovicidal and larvicidal effects against this mosquito [29], in addition
to genotoxic damage to the genome of this mosquito [30]. The 4-nerolidylcatechol (4-NC)
compound from P. peltatum was toxic and genotoxic against Ae. aegypti, Cx. quinquefasciatus,
and Anopheles darlingi [32].

Clausena anisata extract showed larvicidal activity against Ae. eagypti in laboratory
and in simulated field conditions, with residual effects [58]. Quinone derivatives, isolated
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from Connarus suberosus, showed larvicidal activity and residual effects in laboratory and
in simulated field conditions against Ae. aeypti [49]. Similarly, under these conditions, the
essential oil of Ocimum kilimandscharicum caused high larval mortality in An. gambiae and
An. arabiensis [59]. The larvicidal and pupicidal activity of garlic oil has been observed in Ae.
aegypti, in laboratory and in simulated field conditions [60]. The essential oils of Cymbopogon
nardus and Eucalyptus globulus showed larvicidal activity in Ae. aegypti (LC50 = 14.46), An.
stephensi (LC50 = 12.85), and Cx. quinquefasciatus (LC50 = 9.23), in addition to inhibition of
oviposition in pregnant females (57.89 to 96.09%) [6].

Tectoquinone showed prolonged larvicidal activity that was higher in field tests (100%)
than in laboratory tests (87% to 99%), an effect that was attributed to the environmental
conditions [49]. The residual effect is the amount of time that the sample remains active [61].
When isolated from P. nigrum, piperine, a molecule containing methylenedioxyphenyl in
its structure, demonstrated larvicidal activity against Ae. aegypti, both in the laboratory
(LC50 19.03 µg/mL, after 24 h) and under simulated field conditions [20]. Asaricin and
isoasarone, isolated from P. sarmentosum, were highly lethal against Ae. aegypti, Ae. albopic-
tus, and Cx. quinquefasciatus and showed strong inhibition of acetylcholinesterase [62].

The absorption of toxic substances by a larva can occur through the cuticle, respiratory
siphon or via ingestion and, from there, it can act locally or systemically [63–65]. In the
body, this causes agitation with random movements, which is followed by lethargy and
then death [66].

In physiological terms, mosquitoes have a series of detoxification mechanisms against
reactive oxygen species (ROS), which are produced in excess by exposure to toxic agents,
such as insecticides and plant-derived substances, to minimize oxidative damage to cellular
components [67]. ROS can react with different cellular targets, leading to the formation of
oxidative lesions in proteins, DNA, and lipids [68].

Organisms can minimize the impacts of ROS due to the action of primary and sec-
ondary enzymatic constituents, as well as non-enzymatic constituents [69]. In insects,
GST has been implicated in insecticide resistance [70], sequestering [71], and protection
against secondary toxic effects, such as increased lipid peroxidation, induced by exposure
to insecticides [72]. Extracts of Stachytarpheta jamaicensis increased ROS production in Cx.
quinquefasciatus, resulting in increased detoxification enzymes and the death of larvae [73].

In the present study, we have presented previously unpublished data on the activity
of CAT, GST, and AChE enzymes in Ae. aegypti larvae after 24 h of exposure to propyl
ether dillapiole, piperidyl dillapiole, and dillapiole. There was an increase in GST activity
only in subjects treated with dillapiole, with no change in the catalase activity in any of
the treatments (Figure 6). The increase in GST activity in Ae. aegypti larvae treated with
dillapiole suggests a possible enzyme response during the metabolism of this compound.
The levels of this enzyme increased in Amblyomma sculptum (Acari: Ixodidae) [74] and
Ae. aegypti [75,76] exposed to dillapiole. There are no records in the literature on the
levels of detoxifying enzymes (CAT, GST, and AChE) in Ae. aegypti treated with dillapiole
derivatives. Therefore, this is the first study to analyze the effects of propyl ether dillapiole
and piperidyl dillapiole derivatives in this mosquito. The absence of an increase in enzymes
in larvae treated with propyl ether dillapiole and piperidyl dillapiole suggests that they
may not induce oxidative stress or be metabolized by other pathways.

A previous study showed that the differential expression of GST family genes is
related to the resistance of Ae. aegypti to different classes of insecticides, such as DDT,
OPs, and pyrethroids [77]. GST enzymes play an important role in phase II detoxification
mechanisms in insects [78]. According to Edwin et al. [79], the increase in GST activity in
Ae. aegypti exposed to plant extracts with insecticidal potential indicates the activation of
the detoxification process. Lima et al. [27] demonstrated an increase in the expression of the
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GSTE7 gene in the first generations of Ae. aegypti exposed to the lowest concentrations of
isodillapiole. Johnson et al. [34], suggested that the increase in GST activity in flies exposed
to lemongrass (Cymbopogon citratus) extracts is a response to the active components of
the plant.

The presence of methylenedioxy in the dillapiole molecule can inhibit the activity of
cytochrome P450 of the insect, thus affecting the phase I metabolism of xenobiotics [80–82].
In this research, the activity of enzymes in the P450 complex was not evaluated; however, as
propyl ether dillapiole and piperidyl dillapiole also have methylenedioxy in the structure,
inhibition would be expected.

CAT did not show a response that was similar to what was observed for GST (Figure 6).
Changes in the activity of this enzyme occurred in Cx. quinquefasciatus exposed to extracts of
Hyptis suaveolens [83]. The exposure of Callosobruchus chinensis and C. maculatus to Boswellia
carterii essential oil altered CAT activity according to the concentration [84]. Johnson
et al. [34] also reported contrasting results between GST and CAT in Drosophila melanogaster
exposed to C. citratus extracts, with an increase in GST activity and a decrease in CAT
activity being observed. Catalase is an enzyme that degrades hydrogen peroxide (H2O2)
into water (H2O) and oxygen (O2) [85] after exposure of the organism to stressful situations,
such as exposure to insecticides [86]. The absence of effects on CAT activity observed
in Ae. aegypti larvae exposed for 24 h to the substances tested may have been due to
the exposure period or indicative of an absence of excess H2O2. Our hypothesis is that
under these conditions, the Ae. aegypti developed a protective strategy to prevent oxidative
stress after exposure, which may explain the non-activation of catalase for hydrogen
peroxide degradation.

However, in the present study, AChE inhibition occurred in Ae. aegypti larvae exposed
for 24 h via both the organophosphorus temephos, and by dillapiole and its derivatives
propyl ether dillapiole and piperidyl dillapiole. AChE is an enzyme whose function is
to catalyze the hydrolysis of the neurotransmitter acetylcholine [87]. The inhibition of
this enzyme by organophosphorus insecticides, including temephos and plant-derived
substances, causes the accumulation of acetylcholine, leading to neurotoxic disorders,
such as involuntary muscle contraction and paralysis, which can cause the death of the
insect [88,89].

The mechanism of action of the derivatives propyl ether dillapiole and piperidyl dilla-
piole is completely unknown. This is the first study to analyze the effect of these substances
on the nervous system of Ae. aegypti. The inhibition of AChE induced by these substances
suggests an effect on the cholinergic system of this mosquito; however, further analysis is
needed to elucidate the mechanism of action of the compounds. The inhibition of AChE in
Ae. aegytpi after exposure to extracts derived from plants of the genus Piper has already been
reported [15]. The EO of P. alatipetiolatum (Piperaceae) showed larvicidal activity (LC50 of
4.53 µg/mL) in Cx. quinquefasciatus, with changes in the levels of detoxifying enzymes [90].
P. tuberculatum (Piperaceae) EO and its compound β-caryophyllene demonstrated larvicidal
activity (LC50 values of 48.61 and 57.20 µg/mL), with increased production of reactive
oxygen species [14]. Therefore, this effect observed in the larvae of Ae. aegypti exposed to
dillapiole and its derivatives indicates the neurotoxic potential of these substances, which
should be explored.

5. Conclusions
The novel derivatives propyl ether dillapiole and piperidyl dillapiole inhibited the

oviposition of pregnant Aedes aegypti females, which, under simulated field conditions,
showed concentration-dependent larvicidal action and little prolonged residual effects, in
addition to the inhibition of AChE activity. These effects were more evident in individuals
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treated with propyl ether dillapiole, demonstrating it to be the most promising molecule for
the effective alternative control of this mosquito. However, further studies are needed to
elucidate different effects of these substances on the mosquito and on non-target organisms.
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