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ABSTRACT  

 

Aquaculture in the Amazon has emerged as a solution for 

food security and income generation, addressing declining 

natural fish stocks. This study assesses the use of remote 

sensing to identify and monitor aquaculture ponds, 

determining whether they are active (stocked with fish) or 

inactive. We used in situ remote sensing reflectance (Rrs) and 

water quality data including chlorophyll-a concentration, 

turbidity and Normalized Difference Chlorophyll Index, to 

identify active ponds. Data were collected at Embrapa’s 

experimental ponds in Palmas-TO across an entire production 

cycle (Aug/23 to Feb/24) on different aquaculture systems. 

Rrs was simulated for PlanetScope’s SuperDove orbital 

sensor (Rrs-Dove) and classified using: Spectral Angle 

Mapper, Euclidian distance and Mahalanobis distance. 

Mahalanobis distance achieved the best performance with an 

overall accuracy of 83%. Notably, Rrs-Dove successfully 

identified 100% of inactive ponds and 75% of active ponds. 

This approach offers a valuable tool for sustainable and 

strategic aquaculture management in the region. 

 

Key words — Water Colour Remote Sensing, 

Aquaculture, Bioeconomy, Fishponds, Sustainability. 

 

1. INTRODUCTION 
 

Aquaculture plays a vital role in food security and income 

generation for local communities but faces challenges such as 

environmental degradation, unregulated growth, and the need 

for efficient water resource management [1]. In the Legal 

Amazon region, fish production has grown significantly and 

has emerged as an effective food security and income 

generation solution, addressing declining natural fish stocks 

[2]. In the context of inland aquaculture, many remote 

sensing studies have focused on mapping fishponds and 

distinguishing them from other natural or artificial water 

bodies [3–6], but there is a knowledge gap regarding their 

actual production status, in particular whether these ponds are 

actively being used. 

By “active pond”, we mean one that contains fish stocks 

and is actively managed for harvest. Some ponds may contain 

fish but are not being monitored for production. Therefore, 

“active” or “with fish stock” refers specifically to ponds 

receiving treatments aimed at producing fish for 

commercialization. 

Remote sensing provides a comprehensive view of 

fishponds, overcoming the limitations of in situ observations 

and allowing large-scale analysis across temporal and spatial 

boundaries [1,7]. Continuous monitoring of fishpond 

conditions through remote sensing can help optimize 

production [5] while minimizing negative environmental 

impacts, such as eutrophication and contamination of 

adjacent waters. Despite the advantages, there is still a gap in 

the application of water colour remote sensing to inland 

aquaculture due to the predominance of small fishponds in 

the Amazon region. About 95.8% have less than 5 hectares of 

water surface [8]. 

CubeSats, a class of small satellites, offer promising 

opportunities for monitoring inland fishponds, especially 

those with smaller dimensions. PlanetScope, a CubeSat 

constellation, provides daily images with high spatial 

resolution (3.7 m) and multispectral bands, making it an 

excellent tool for studying the dynamic nature of fishpond 

systems. PlanetScope with its fine spatial and temporal 

resolution (1 day) is especially suited to capture changes in 

these smaller and dynamic environments [9].  

The core hypothesis of this study is that water colour 

remote sensing can differentiate active farming fishponds 

stocked with native Amazonian species at commercial 

densities from empty ponds or without stock density. 

 

2. MATERIAL AND METHODS 

 

The data acquisition was conducted at the Experimental 

Center of Embrapa Fisheries and Aquaculture (CEAQ), 

located in Palmas, Tocantins (TO), North Brazil (Figure 1). 

In situ measurements were collected throughout the entire 
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production cycle, which spanned 7 months, from August 

2023 to February 2024. In total we analyzed 83 in situ 

samples from the fishponds.  
 

 
 Figure 1. Experimental area of Embrapa Fish and 

Aquaculture, Palmas, Tocantins, TO, Brazil.  
 

Assessed ponds had an average area of 600 m² and a 

depth of 1.5 m. Before introducing the fishes, ponds were 

treated with limed (200 g/m²) and fertilized (5 g of urea/m², 3 

g of single superphosphate/m², and 10 g of rice bran/m²). 

Three production systems were tested, each with four 

replicates: T (Tambaqui, Colossoma macropomum), TC 

(Tambaqui and Curimbatá, Prochilodus sp), and TCC 

(Tambaqui, Curimbatá and Amazon shrimp,  

Macrobrachium amazonicus). Systems with only one species 

are classified as monoculture, while those with two or more 

species are considered Integrated Multi-Trophic Aquaculture 

(IMTA). One pond was left untreated for fish farming and 

served as the control (inactive) pond.   
Above water radiometry was measured using an ASD 

FieldSpec 4 spectroradiometer, which measures radiance (L, 

µW m-2sr-1). The acquisition geometry was carefully 

designed to avoid shadows and sunglint contamination. 

Remote sensing reflectance (Rrs) was calculated according to 

Mobley [10]. To correct residual sunglint contamination, we 

used the Ruddick et al. [11] approach, recommended for 

turbid to very turbid waters. The in situ Rrs were simulated 

for PlanetScope's SuperDove bands (Rrs-Dove). The 

SuperDove has a spatial resolution of 3.7 m and eight spectral 

bands, making it suitable for assessing small fishponds.   
Using the Rrs-Dove, we aimed to test which 

unsupervised classification algorithm performed best. We 

first normalized the Rrs-Dove by its integrated value [12] 

using the trapezoidal method over the 443-865 nm bands. We 

tested three different methods: i) Spectral Angle Mapper 

(SAM), ii) Euclidean distance and iii) Mahalanobis distance 

to classify the spectral curves. 

SAM calculates the angular distance between two 

spectral curves, treating them as vectors in a high-

dimensional space [13]. As the magnitude of the spectral 

curve is not taken into account, normalization is not strictly 

necessary. However, for consistency, we normalized all 

spectral curves before applying the methods. Euclidian 

distance measures the linear distance between two points in 

multidimensional space [14], while Mahalanobis distance is 

a statistical metric, that accounts for correlations between 

variables and scales the distance based on covariance 

structure of the data [15].  
The turbidity (NTU) was measured using a turbidimeter 

(Hach 2100Q, Loveland, CO, USA), and chlorophyll-a was 

measured spectrophotometrically (Hach DR5000, Loveland, 

CO, USA) following the [16] protocol on water samples from 

the active ponds. In addition, the Normalized Difference 

Chlorophyll Index (NDCI) was calculated using equation 1 

to assess the presence of phytoplankton based on the near-

infrared (NIR – Band 705 nm) and red (Band 665 nm) bands 

of the Rrs-Dove data. 

 

𝑁𝐷𝐶𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
                              (1) 

 

3. RESULTS 

 

Rrs-Dove spectral curves were measured throughout the 

entire production cycle of different fishponds. The average 

Rrs-Dove measured in active ponds (dark blue line, Figure 2) 

differs significantly from the average Rrs-Dove measured in 

inactive ponds (red dashed line, Figure 2). A clear 

discrepancy is observed between 665 and 705 nm (Figure 2).  

 

 
Figure 2. Average remote sensing reflectance of the inactive 

and active ponds. 

 
The “inactive” and “active” spectral curves from Figure 

2 were used as reference inputs for the classification 

algorithms. While all algorithms achieved good accuracy 

(>60%), Mahalanobis distance performed best with an 

overall accuracy of 83% (Table 1), followed by SAM with 

77% and Euclidian distance with 62% (results not shown). 

Both SAM and Mahalanobis distance correctly 

classified the inactive ponds, with 100% accuracy, whereas 
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Euclidian distance performed poorly in this category with an 

accuracy of only 29%. However, active ponds were more 

frequently misclassified as inactive by all methods. Given the 

superior performance of the Mahalanobis distance, its results 

are shown in Table 1. Active ponds were correctly classified 

82% of the time, although IMTA ponds were more frequently 

misclassified as inactive, with an accuracy of 79%.   

 

Mahalanobis Distance 

  

Inactive 

Ponds Active Ponds 

  7/7 62/76 

Specificity and 

Recall 100% 82% 

Total accuracy 83% 

F1-Score 90% 

 Occupancy and Fish Culture 

Inactive 7/7 100% 

IMTA 36/48 79% 

Monoculture 24/28 86% 

Table 1. Confusion Matrix and classification performance of 

Mahalanobis distance. 

 

4. DISCUSSION 

 

Our results indicate that the proposed unsupervised 

classification based on Mahalanobis distance performed well, 

achieving high recall and a good balance between precision 

and recall, as shown by the F1-score (Table 1). Nevertheless, 

thirteen out of 83 samples were misclassified as inactive 

(~15%), and we aim to understand the underlying reasons. 

We gathered all the misclassified Rrs-Dove spectral curves 

and observed that they were somewhat similar to the spectral 

curve of inactive ponds, indicating the presence of chla 

(Figure 3).   

 

 

 
Figure 3. Remote sensing reflectance of the misclassified ponds. 

The dashed red line is the average of Rrs-Dove from inactive 

ponds.  

 

We plotted water quality metrics (turbidity, chla, 

chla/turbidity ratio and NDCI, Figure 4) for both 

misclassified and correctly classified fishponds based on 

Mahalanobis distance. We observed higher variability in the 

misclassified fishponds, along with a significantly greater 

presence of chla. Unfortunately, we did not have water 

quality measurements for the inactive fishponds, so it was not 

possible at this moment to compare active, inactive and 

misclassified fishponds.  

 

 
Figure 4. Boxplots of turbidity (NTU), chlorophyll-a 

concentration (mg/m³), chla-to-turbidity ratio, and NDCI in 

the ponds during the study period (Aug/23–Feb/24). The blue 

boxplots represent the misclassified fishponds, while the 

orange boxplots indicate the correctly classified fishponds 

according to Mahalanobis distance. 

 

However, these parameters cannot fully explain all 

misclassified cases. Further studies are needed to assess 

phytoplankton dynamics, as these organisms can sink or float 

in response to variations in light availability, nutrient levels, 

water circulation, and pond temperature [17], as well as the 

presence of zooplankton that can pasture rapidly the 

phytoplankton [18–20], the concentration of colored 

dissolved organic matter affecting measurements [21], or 

even the ponds’ previous use, to understand what was 

previously cultivated there.  

Regardless of the number of errors, it is important to 

note that our method correctly classified all inactive ponds 

throughout the seven months of the production cycle, while 

only occasionally misclassifying some active ponds during 

the same period. Our results indicate that continuous 

monitoring can effectively distinguish between active and 

inactive ponds. 
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5. CONCLUSIONS 

 

Our hypothesis that fishpond activity assessment is possible 

using water colour remote sensing was supported, 

successfully utilizing Rrs simulated for SuperDove 

PlanetScope bands. For future studies, we recommend 

conducting a detailed assessment of pond' bio-optical 

properties to better characterize the optical differences 

between active and inactive ponds. Additionally, we suggest 

expanding in situ data collection to include other fishponds 

with characteristics different from those of Embrapa’s 

Experimental Centre used in this study. We also recommend 

validating these findings with SuperDove PlanetScope 

imagery in future research. 
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