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ABSTRACT 

 
Remote sensing has emerged as a promising tool for 
environmental monitoring, offering a synoptic view, which 
contrasts with the time-consuming and costly in situ 
measurements. This study compares hyperspectral, 
multispectral, and broadband remote sensing data collected 
from fishponds in Palmas, Tocantins State, using a 
combination of field measurements, satellite imagery from 
PlanetScope SuperDove and smartphone applications called 
Hydrocolor, respectively. Results showed significant 
correlations between longer wavelength bands, across 
different datasets. However, weaker correlations in shorter 
wavelengths suggest the need for periodic adjustments, 
especially for lower-spectral-resolution sensors. 
Additionally, limitations such as cloud cover in satellite 
imagery highlight the importance of multi-sensor approaches, 
integrating satellite data with smartphone-based monitoring, 
to track small water bodies. The findings highlight the 
potential of citizen science in environmental management, 
although challenges related to data validation across 
platforms remain. Further studies are required to improve 
data integration and promote the adoption of emerging 
technologies in water monitoring. 
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1. INTRODUCTION 

 
Aquaculture has emerged as an important source of protein 
production, essential for food security and local economic 
growth [1]. With the growing demand for sustainable 
resources, especially in the Legal Amazon region, the 
expansion of this activity requires efficient monitoring tools 
to ensure water quality and productive performance. 
 Compared to in situ water quality monitoring, which 
is time-consuming and often costly, remote sensing has 

proven to be a solution for synoptic assessment of these 
parameters [2]. However, there are limitations to the use of 
this type of data, such as the need for periodic validation and 
the occurrence of cloud cover. The use of orbital data from 
the Planet constellation has become crucial in reducing data 
collection gaps, given its high revisit frequency and ability to 
cover extensive areas with high special resolution. To 
overcome limitations such as cloud cover, some alternatives 
have been proposed, such as the use of telemetry buoys, 
drones, and smartphone applications [3-5]. Specifically, the 
use of data generated by mobile applications has proven to be 
a democratic tool for real-time water quality monitoring, 
facilitating data collection and sharing by local producers [6]. 
The main limitations of this type of data include low spectral 
resolution, the variability in the spectral response function of 
each smartphone model, and the need of a reflectance 
standard.  

The integration of these data into large databases 
enables the development of citizen science, allowing the 
community to actively participate in environmental 
monitoring and management. The integration of water quality 
monitoring tools can address these limitations with a multi-
sensor approach [7]. The comparison and validation of these 
data, generated by conventional methods and new 
technologies is essential to ensure accuracy and reliability. 
Thus, comparing these different data sets is a challenge that 
must be addressed to promote the adoption of emerging 
technologies in water resource management. Therefore, the 
objective of this study is to compare data from different 
instruments used in the monitoring of fishponds in 
aquaculture. 
 

2. MATERIAL AND METHODS 
 
Data were collected at the Experimental Center (CEAQ) of 
Embrapa Fisheries and Aquaculture in Palmas, Tocantins 
State, Brazil (Figure 1). The work was conducted between 
August 2023 and February 2024 in ponds with a surface area 
of 600 m² and a depth of 1.5 m, used for fish farming. Species 
used in this study included Tambaqui (Colossoma 
macropomum), Curimbatá (Prochilodus sp.), and Amazon 
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shrimp (Macrobrachium amazonicum) in an Integrated 
Multi-Trophic Aquaculture (IMTA) system. 
 

 
Figure 1: Study area at the Aquaculture Experimental Center 

(CEAQ) – Embrapa Fisheries and Aquaculture in Palmas, 
Tocantins State, Brazil. 

 
ASD FieldSpec 4 (350-2500 nm) instrument was 

operated in radiance mode to collect water leaving radiance 
(Lw), sky radiance (Lsky) and the radiance of a Lambertian 
plaque (Ls). The Ls was converted to irradiance by 
integrating over the hemisphere by multiplying by π to obtain 
remote sensing reflectance (Rrs) data. The Rrs, with a 
spectral resolution of 1 nm, was processed following Mobley 
[8] protocol with Ruddick et al. [9] scheme to correct residual 
sunglint contamination. Broadband remote sensing 
reflectance measurements were also taken using the 
Hydrocolor App (470 nm, 540 nm, and 600 nm) during 
fieldwork conducted on November 13, 2023, December 18, 
2023, January 22, 2024, and February 21, 2024. Additionally, 
Planet constellation images (443 nm, 490 nm, 531 nm, 565 
nm, 610 nm, 665 nm, 705 nm, and 865 nm) with 3.7 m of 
spatial resolution were used for November 13, 2023. 
Hyperspectral data were simulated in R and Matlab 
environments to compare the bands with multispectral and 
broadband data [10] using Root Mean Square Deviation 
(RMSD), Mean Relative Absolute Difference (MRAD), and 
Mean Bias (MB) as shown in Equations 1, 2, and 3 below. 
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Where 𝑥  is the in situ Rrs and 𝑦 is the simulated 
Rrs from these instruments. 
 

3. RESULTS 
 
The different configurations of each type of Rrs sampling 
have strengths and limitations, which are summarized in 
Table 1. 

 

 
Table 1: Comparison of the main attributes of the sensors 

used. 
 
The comparison of the data simulated through 

hyperspectral reflectance with ASD FieldSpec 4 is organized 
in Figure 2, where A is the comparison with Planet data, B is 
the comparison with Hydrocolor data, and C is the 
comparison between Planet and Hydrocolor data. The results 
of the statistics of the spectral band comparison are organized 
in Table 2. 

 

 
 

Table 2: Comparison of statistical metrics between samples 
from different sensors. ASD Fieldspec 4 (FS) data were 
simulated into multispectral data from PlanetScope’s 

SuperDove CubeSat data (PD) and broadband data from 
Hydrocolor application (HC). 

Sensor Main Quality Main Limitation Spectral Bands

ASD FieldSpec Field truth
Requires experience 
for data collection

350-2500 nm

Hydrocolor App Democratic technology
Coarse spectral 
resolution

470 nm, 540 nm, 
and 600 nm

Planet
Spatial and temporal 
resolution

Requires cloud-free 
conditions

443 nm, 490 nm, 
531 nm, 565 nm, 
610 nm, 665 nm, 
705 nm, and 865 
nm

Band R2 RMSD Slope Intercept MB MRAD N

443 0.72 0.15 0.242 0.013 0.11 24 15

490 0.91 0.13 0.294 0.015 0.10 23 15

531 0.79 0.12 0.329 0.030 0.10 27 15

FS X PD 565 0.86 0.14 0.384 0.040 0.12 34 15

610 0.84 0.23 0.404 0.048 0.21 68 15

665 0.88 0.33 0.510 0.047 0.29 11 15

705 0.80 0.41 0.509 0.070 0.37 16 15

865 0.86 1.31 1.02 0.177 1.26 228 15

470 0.43 0.31 0.433 0.003 0.27 44 54

FS X HC 540 0.54 0.27 0.504 0.004 0.23 40 54

600 0.64 0.26 0.550 0.003 0.22 39 54

470 0.86 0.34 1.21 0.010 0.33 118 14

HC X PD 540 0.72 0.38 1.05 0.024 0.37 142 14

600 0.82 0.50 1.31 0.038 0.49 223 14
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Figure 2: Scatterplots of Rrs match-ups. 

The comparison between ASD Fieldspec 4 and Planet 
sensors across various bands demonstrates strong 
correlations, with R² values ranging from 0.72 to 0.92 for 
visible wavelengths and slightly decreasing in the near-
infrared region. ASD Fieldspec 4 dataset is closely related to 

Planet dataset, particularly at 490 nm (R² = 0.92) and 665 nm 
(R² = 0.89), indicating high consistency in measuring Rrs in 
these ranges. However, increasing RMSD values at longer 
wavelengths suggest more significant variability, mostly at 
865 nm (RMSD = 1.32). 

The comparison between ASD Fieldspec 4 and 
Hydrocolor show lower correlations, with R² values ranging 
from 0.43 to 0.64, particularly struggling in the blue band (R² 
= 0.43). In contrast, the Hydrocolor and Planet sensor 
comparison yields high consistency across all measured 
wavelengths, with R² values exceeding 0.73, particularly in 
the red band (R² = 0.83). Although this comparison 
demonstrates good agreement, it shows a higher bias 
compared to the other comparisons. The results highlight 
strong agreement between the orbital and in situ sensors, 
suggesting that either can be reliably used for reflectance 
measurements. However further investigation into the 
discrepancies in the near-infrared bands is necessary. 
 

4. DISCUSSION 
 
The main limitation of orbital remote sensing is the need for 
favorable atmospheric conditions, as the presence of clouds 
in the scene prevents the use of this type of data. Even using 
the Planet constellation image bank, which offers daily 
revisits and a spatial resolution of 3 meters necessary for 
studying small targets, such as ponds for fish farming, Table 
2 resulted in a reduced sample size (N) compared to other 
instruments. Considering the size of the ponds, the adjacency 
effect is inevitable. This can be observed in the high values 
of longer wavelength bands, like in Figure 2 A, in the 865 
band (even when using pixels from the center of the ponds), 
which are contaminated by the surrounding soil signal. 

Another characteristic observed in fishponds is the daily 
high spectral variation, where factors such as stocking type, 
stocking density, chlorophyll-a concentration, and/or the 
presence of macrophytes can change the water color 
throughout the day. This presents an additional challenge for 
integrated data collection among instruments. 

The accuracy of the data obtained by the Planet satellite 
is a fundamental issue in validating the use of remote sensing 
in aquaculture. In the context of studies in small areas, such 
as ponds for fish farming, the spatial resolution of the planet 
and the frequency of daily revisits have significant 
advantages. However, the precision of the Rrs depends on 
factors such as solar angle and cloud presence, which can 
interfere with the quality of the obtained data. It is also 
important to note that in situ data may also contain inherent 
variability in the data collection process, even with all 
correction procedures. Comparing the reflectance data from 
Planet with field data, we observed a close relationship for 
longer wavelength bands, especially in the red bands. 
Notably, the comparison between ASD Fieldspec data and 
Planet data showed the smallest biases (Table 2), suggesting 
sufficient accuracy for temporal pond monitoring, though 
occasional corrections are needed due to adjacency effects. 
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The coefficient of determination measures the linear 
relationship between datasets and serves as this study's 
primary sensor comparison tool. It is possible to observe that 
the relationship between the shorter wavelength-centered 
bands is weaker compared to the longer wavelength-centered 
spectral bands (in all cases, the red band showed the best 
correlation between the datasets). The best correlations 
occurred between the Planet data and the other sensors, likely 
due to the reduced sample size (Table 2). The comparison 
between the Hydrocolor app data and the ASD Fieldspec data 
showed the weakest correlation. This may indicate the need 
for different corrections in the hyperspectral data regarding 
the presence of glint, a common artifact in radiometric data. 
Additionally, the simulation of the bands from the Fiedlspec 
to RGB bands of the smartphone camaras adopted the 
response functions from the literature [10] and not from the 
model of smartphone actually used on the Hydrocolor 
sampling, which is potentially adding more uncertainty in this 
comparison. These results are consistent with findings from 
other studies, further supporting the reliability of these 
observations in sensor comparisons [5,6]. 

The proposed methodology shows great potential to 
expand the use of remote sensing data in aquaculture systems 
in the Amazon and other regions with highly turbid water 
bodies. By integrating orbital, hyperspectral, and app data, it 
is possible to build a robust database that can optimize and 
popularize the monitoring of essential environmental 
variables and improve pond management. This process also 
contributes to citizen science, as low-cost tools like mobile 
applications allow for accessible and continuous data 
collection. This methodology represents an advancement in 
sustainable water resource management for aquaculture, with 
the potential for adaptation to other areas sensitive to rapid 
environmental changes and locations where conventional 
monitoring is unfeasible. 

 
5. CONCLUSIONS 

 
This study demonstrated the advantages and limitations of 
different sensors to monitor ponds in the Legal Amazon. 
Hyperspectral, multispectral, and broadband data showed 
significant correlation, particularly in longer spectral bands, 
such as red and near-infrared. However, lower correlation in 
shorter wavelengths underlines the importance of periodic 
adjustments and validations, especially with lower-resolution 
sensors like the Hydrocolor app, which require a gray 
reference panel for accurate data - a limitation for widespread 
citizen science application. Nevertheless, studies like this are 
essential for creating and validating useful algorithms for 
monitoring parameters like turbidity, chlorophyll-a and 
suspended particulate matter (SPM), which present 
challenges in extremely turbid waters. 

The need for favorable atmospheric conditions also 
limits the continuous use of satellite remote sensing data, 
reinforcing the value of multi-sensor approaches, including 
smartphones, for monitoring small water bodies like ponds. 

Citizen science shows promising potential, yet data validation 
across sources remains a challenge. Future research should 
expand on using diverse sensors and satellite data to enhance 
monitoring scalability. Additionally, exploring daily 
variations in remote sensing reflectance (Rrs) could identify 
optimal times for data collection. Testing these techniques in 
varied environments and aquaculture systems will further 
support large-scale application, advancing environmental 
management and monitoring practices. 
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