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Abstract: Drought affects the agricultural sector, posing challenges for farm management,
particularly among medium- and small-scale producers. This study uses climate data
from remote sensing products to evaluate drought trends in the Semear Digital Center’s
Agrotechnological Districts (DATs), which are characterized by a high concentration of
small- and medium-sized farms in Brazil. Precipitation data from Climate Hazards Group
InfraRed Precipitation with Station (CHIRPS) and land surface temperature data from
Moderate Resolution Imaging Spectroradiometer (MODIS) were applied to calculate the
Standardized Precipitation–Evapotranspiration Index (SPEI) for a 6-month timescale from
2000 to 2024, with analysis divided into 2000–2012 and 2013–2024. Some limitations were
noted: MODIS systematically underestimated temperatures, while CHIRPS tended to un-
derestimate precipitation for most of the DATs. Despite discrepancies, these datasets remain
valuable for drought monitoring in areas where long-term ground weather station data are
lacking for SPEI assessments. Agricultural drought frequency and severity increased in
the 2013–2024 period. Exceptional, extreme, severe, and moderate drought events rose by
7.3, 5.4, 2.2 and 1.0 times, respectively. These trends highlight the importance of adopting
smart farming technologies to enhance the resilience of the DATs to climate change.

Keywords: SPEI; agricultural drought; remote sensing; climate change; MODIS;
CHIRPS; Agritempo

1. Introduction
The Semear Digital Center aims to increase the productivity of small- and medium-

sized farms through research, development, and innovation in information and commu-
nication technologies. To achieve this goal, ten municipalities in Brazil, located across
different states and biomes, were selected based on socioeconomic indicators, including the
concentration of small- and medium-sized farms. The Agrotechnological Districts (DATs)
located in these municipalities are pilot regions in which smart farming solutions have
been tailored to meet the specific needs of farmers [1].

Smart farming solutions play a crucial role in addressing the challenges of climate
change in Brazilian agriculture and livestock, as they increase resilience and adaptive
capacity and reduce the vulnerability of agribusiness [2,3]. Technologies involved in smart
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farming include robotics, digital twins, nanotechnology, cloud computing, the Internet
of Things (IoT), gene editing, artificial intelligence (AI), sensors, machine learning (ML),
unmanned aerial vehicles (drones), and satellite imagery [3–5]. For instance, drones and
satellite imagery provide detailed views of agricultural areas, enabling the development
of algorithms to monitor crops and livestock health, soil moisture levels, and fertilization
needs [6,7].

Technological innovation is vital because, without it, global warming is expected to
reduce Brazil’s agricultural output per hectare by 18%, with potential impacts on individual
municipalities ranging from −40% to +15% [8]. The Intergovernmental Panel on Climate
Change has indicated that since the 1950s, human activities have likely increased the
frequency of extreme weather events, such as droughts and heatwaves [9]. In Brazil,
especially in regions outside the south, droughts recorded since 2011 have been more
intense and severe than those experienced in the past 60 years [10]. Southeast Brazil has
also significantly increased summer droughts and heatwaves events [11].

Drought can affect both high- and low-rainfed areas and is classified into four types:
meteorological, agricultural, hydrological, and socioeconomic. Meteorological drought
refers to a prolonged lack of or below-normal rainfall. Agricultural drought impacts plant
growth and development, denoting how soil moisture fails to meet the water requirements
of plants, reflecting an imbalance between precipitation and evapotranspiration. Hydrolog-
ical drought relates to decreases in surface or subsurface hydrology (i.e., significant drops
in aquifer water levels or lower river flows than the long-term average), and socioeconomic
drought occurs when water shortages adversely affect socioeconomic systems, illustrating
a failure of water resource systems to meet demands [12–14].

The impacts of agricultural droughts on crop production can lead to famine, social
conflicts over water allocation, land disputes, and significant migration flows [14,15]. Small
and medium-sized farms are especially vulnerable to these adverse effects [16]. Therefore,
effective drought monitoring is essential for managing risks and developing mitigation
strategies, such as adopting smart farming solutions.

Numerous indices can monitor and analyze drought occurrences [17–24]. They can be
divided into site-based and remote sensing-based indices. Examples of site-based indices
include the Palmer Drought Severity Index (PDSI), Crop Moisture Index (CMI), Standard-
ized Precipitation Evapotranspiration Index (SPEI), and Standardized Precipitation Index
(SPI), which are typically derived from ground-based observations of hydro-climatic vari-
ables, such as precipitation, temperature, and soil moisture. On the other hand, remote
sensing-based indices, like the Vegetation Condition Index (VCI), Temperature Vegetation
Dryness Index (TVDI), Normalized Difference Water Index (NDWI), and Vegetation Health
Index (VHI), rely on unique spectral signatures of canopy characteristics and soil surface
mainly in shortwave infrared, red, and thermal spectral bands [25,26].

One of the most commonly used site-based indices for monitoring and analyzing
drought occurrences and severity is the SPEI [27–32]. This index relies on precipitation
and temperature data, using temperature to estimate potential evapotranspiration (PET)
through the Thornthwaite methodology [33]. By incorporating temperature variations into
drought assessments, the SPEI is a robust tool for evaluating the increasing severity of
droughts under conditions of global warming [20].

Although the World Meteorological Organization (WMO) recommends the SPI as
the standard drought index, it has limitations when evaluating the impacts of climate
change [34]. The main limitation is that SPI depends solely on precipitation data and
does not account for temperature effects. As temperature increasingly influences drought
conditions in a warming climate, the SPEI offers a more comprehensive assessment of
drought dynamics.
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Many studies on drought monitoring utilize remote sensing-based indices to ana-
lyze vegetation and soil moisture characteristics. They also incorporate site-based indices
derived from weather station data or climate data obtained from remote sensing prod-
ucts [35–38].

Remote sensing products, such as the Climate Hazards Group InfraRed Precipitation
with Station (CHIRPS) data [39] and the Moderate Resolution Imaging Spectroradiometer
(MODIS) [40], offer over two decades of high-resolution precipitation and land surface
temperature data, respectively. These datasets are particularly valuable for monitoring
agricultural droughts in regions lacking long-term ground-based weather station data. By
leveraging these remote sensing tools, researchers and practitioners can calculate site-based
drought indices, such as the SPEI to assess drought conditions and their impacts under
warming climates. This approach enables a more comprehensive understanding of drought
dynamics and supports the development of targeted mitigation strategies in vulnerable
agricultural areas.

Thus, this study employs climate data obtained through remote sensing from CHIRPS
and MODIS to compute the SPEI within the Agrotechnological Districts of the Semear
Digital Center. The goal is to monitor agricultural drought, thereby offering a clearer
understanding of drought patterns and changes in severity in response to shifting climate
conditions. Furthermore, the study emphasizes how smart farming solutions can mitigate
the impacts of agricultural droughts.

2. Materials and Methods
2.1. Study Area

Precipitation data from CHIRPS and land surface temperature data from MODIS
were obtained for nine of the ten DATs: Alto Alegre, Boa Vista do Tupim, Caconde, Guia
Lopes da Laguna, Ingaí, Jacupiranga, Lagoinha, São Miguel Arcanjo, and Vacaria (Figure 1).
Ground-based climate observations for these DATs were sourced from the Agritempo
database, which compiles daily climate data from 1600 weather stations across Brazil [41].
The locations and elevation of the Agritempo weather stations are provided in Table 1.

Table 1. Location and elevation of Agritempo weather stations.

Agrotechnological Districts Latitude Longitude Elevation (m)

Alto Alegre −21.58 −50.16 521.0
Boa Vista do Tupim −12.75 −41.00 260.0
Caconde −21.50 −46.75 834.0
Guia Lopes da Laguna −21.50 −56.00 380.0
Ingaí −21.40 −44.92 951.0
Jacupiranga −24.75 −48.00 3.0
Lagoinha −23.00 −45.25 1030.0
São Miguel Arcanjo −23.85 −48.16 672.0
Vacaria −28.50 −51.00 1040.0

The DATs of Alto Alegre, Caconde, Jacupiranga, Lagoinha, São Miguel Arcanjo, Ingaí,
and Vacaria are located in the Atlantic Forest biome. The first six are in southeastern Brazil,
while Vacaria is in the Southern region.

Boa Vista do Tupim and Guia Lopes da Laguna are in the Caatinga and Cerrado
biomes, respectively, corresponding to Brazil’s Northeastern and Midwest regions.
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Climate and Elevation

According to the Köppen climate classification [42], Alto Alegre has an Aw climate,
which is characterized as a tropical climate with dry winters. In contrast, Guia Lopes da
Laguna features an Af climate, indicating a tropical climate without a dry season. Both the
Aw and Af climates have average temperatures during the coldest month that are equal to
18 ◦C or higher (Table 2).

Caconde, Ingaí, and Lagoinha exhibit a Cwb climate, classified as a humid subtropical
climate with dry winters and temperate summers, typical of highland areas in tropical
regions. Jacupiranga and São Miguel Arcanjo display a Cfa climate, a humid subtrop-
ical oceanic climate lacking a dry season and hot summers. Vacaria experiences a Cfb
climate, a humid subtropical oceanic climate with no dry season and temperate summers
characterized by consistent year-round precipitation.

The Cwb, Cfa, and Cfb climate classifications are characterized by average tempera-
tures in the coldest month ranging from −3 ◦C to just below 18 ◦C. On the other hand, Boa
Vista do Tupim experiences a BSh climate, which signifies a dry semi-arid environment
typical of low latitudes and altitudes. This climate type is further distinguished by an
annual mean temperature of 18 ◦C or higher.

Mean elevation data from the Copernicus Global and European Digital Elevation
Model (GLO-30 product) [43] shows variation across the study areas. Ingaí represents
the highest elevation site at 953.64 m, followed by Caconde, Vacaria, and Lagoinha, all
exceeding 850 m. São Miguel Arcanjo occupies an intermediate position at 700.89 m, while
Alto Alegre and Boa Vista do Tupim cluster near 435 m. The lowest elevations occur in
Jacupiranga (103.56 m) and Guia Lopes da Laguna (285.32 m).
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Table 2. Characteristics of the agrotechnological districts.

DATs State Lat. Long.
Mean

Elevation
(m)

Köppen Climate Classification

Alto Alegre São Paulo −21.58 −50.16 434.67 Aw Tropical with dry winters
Boa Vista
do Tupim Bahia −12.66 −40.60 436.68 BSh Dry Semi-arid low latitudes

and altitudes

Caconde São Paulo −21.53 −46.64 868.51 Cwb Humid subtropical with dry winters
and temperate summers

Guia Lopes
da Laguna

Mato
Grosso do
Sul

−21.45 −56.10 285.32 Af Tropical climate without a dry season

Ingaí Minas
Gerais −21.40 −44.92 953.64 Cwb Humid subtropical with dry winters

and temperate summers

Jacupiranga São Paulo −24.69 −48.00 103.56 Cfa Humid subtropical oceanic climate
lacking a dry season and hot summers

Lagoinha São Paulo −23.08 −45.19 922.23 Cwb Humid subtropical with dry winters
and temperate summers

São Miguel
Arcanjo São Paulo −23.87 −47.99 700.89 Cfa Humid subtropical oceanic climate

lacking a dry season and hot summers

Vacaria
Rio
Grande do
Sul

−28.50 −50.93 881.40
Cfb Humid subtropical oceanic climate
without a dry season but with
temperate summers

Source: [42,43]. DATs = Agrotechnological Districts; Lat. = latitude; Long. = longitude.

2.2. Validation and SPEI Calculation

To validate the precipitation and land surface temperature time series derived from
CHIRPS and MODIS, respectively, we used observed monthly precipitation and tempera-
ture data from the Agritempo database.

The MODIS data from the Terra Moderate Resolution Imaging Spectroradiometer
Land Surface Temperature/Emissivity Daily Version 6.1 (MOD11A1.061) product are
available from 24 February 2000 to the present. It has a spatial resolution of 1 km and a
temporal resolution of 1 day, providing daily per-pixel land surface temperature (LST) and
emissivity [40].

We gathered mean daily LST data from March 2000 to October 2024 for all the DATs
using the Google Earth Engine platform by averaging the MODIS daytime and night-
time LST (see Figure 2). The temperatures were then converted from Kelvin to degrees
Celsius. If any data were missing during the studied period, we filled those gaps using
linear interpolation.

CHIRPS measures atmospheric precipitation at a high resolution of 0.05◦ (≈5 km)
and results from the combination of satellite and gridded data and in situ climate normal
from weather stations. It calibrates global Cold Cloud Duration rainfall estimates using
the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis version 7.
Data are available from 1 January 1981, to the present [39]. Daily precipitation data from
the UCSB-CHG/CHIRPS/DAILY product from March 2000 to October 2024 was retrieved
using the Google Earth Engine platform (see Supplementary Materials).

We aggregated MODIS and CHIRPS data into monthly values and validated them
using comprehensive statistical metrics. To assess the strength of the linear relationship
between our derived data and ground-based observations from Agritempo, we calculated
the Pearson correlation coefficient [44]. Additionally, we employed the mean bias error
(MBE) to detect systematic biases (over- or under-predictions) and the root mean square
error (RMSE) to evaluate overall prediction accuracy [45].
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Table 3 summarizes these metrics, providing an interpretation that clarifies their
implications for our analysis. Table 4 further classifies the Pearson correlation results based
on established interpretation ranges, as defined by Schober et al. [46].
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Table 3. Metrics, best values, and results interpretation.

Metric Best Value Analysis Interpretation

r 1 or −1 Direction and strength of a linear relationship

MBE 0
Performance considering average bias; negative value
represents underestimation, and positive value
indicates overestimation

RMSE 0 Measures the average magnitude of errors and is
sensitive to large deviations.

Source: [44,45]. r = Pearson correlation coefficient; MBE = Mean bias error; RMSE = Root mean square error.

Table 4. Pearson correlation coefficient interpretation.

r Interpretation

0.00–0.10 Negligible correlation
0.10–0.39 Weak correlation
0.40–0.69 Moderate correlation
0.70–0.89 Strong correlation
0.90–1.00 Very strong correlation

Source: [46]. r = Pearson correlation coefficient.

After the validation process, MODIS monthly temperature data and the DATs’ latitude
were utilized to calculate PET using the Thornthwaite method [33]. This calculation was
performed with a Python (version 3.11.6) script (see Supplementary Materials), following
the methodology outlined in [20].
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Monthly precipitation and evapotranspiration data were used to calculate the SPEI
using the R (version 4.4.2) Package SPEI [47]. According to the WMO guidelines [34],
agricultural drought is typically evaluated using timescales ranging from 1 to 6 months.
For this study, a 6-month timescale was chosen to account for the varying growth cycles
of crops.

2.3. Analysis of Trends: Comparing 2000–2012 and 2013–2024

We analyzed precipitation, temperature, and SPEI-6 trends over two periods: 2000–2012
and 2013–2024. This comparative approach enabled us to assess whether droughts have
increased in frequency and severity in recent years and to investigate the extent to which
changes in precipitation and temperature patterns contribute to the observed trend.

Raster files from MODIS and CHIRPS, containing the mean for 2000–2012 and
2013–2024, were used to calculate the anomaly for temperature and precipitation, respec-
tively, following Equation (1).

Z = (F − H) (1)

where: F = mean temperature or precipitation for the 2013–2024 period, H = mean tempera-
ture or precipitation for the 2000–2012 period, and Z = computed anomaly.

Positive values of the anomaly indicate that the precipitation or temperature for the
2013–2024 period is above that of the 2000–2012 period. In contrast, negative values indicate
the opposite.

We applied the Modified Mann–Kendall (MMK) test to detect trends in precipitation,
temperature, and SPEI data for the 2000–2012 and 2013–2024 periods at a 5% significance
level. This statistical test, proposed by Hamed and Rao (1998) [48], adjusts the variance of
the Mann–Kendall test to minimize the effects of autocorrelation, ensuring more accurate
trend analysis. All significant lags were considered. The null hypothesis (H0) assumes no
trend, while the alternative hypothesis (H1) indicates a monotonic trend. The analysis was
conducted in Python using the pymannkendall package [49].

2.4. SPEI Intensity and Frequency: Comparing 2000–2012 and 2013–2024

We classified the SPEI-6 results into different degrees of intensity, following the
methodology described in the Drought Monitor of Brazil [50]. Drought intensity was
divided into five categories: slight drought, moderate drought, severe drought, extreme
drought, and exceptional drought (Table 5).

Table 5. Drought intensity categories.

Category SPEI Probably Impacts

Slight drought −0.50 to −0.79 Reduced planting, decreased growth in crops
and pastures

Moderate
drought −0.80 to −1.29

Some damage to crops and pastures; streams,
reservoirs, or wells at low levels; developing or
imminent water shortages; voluntary water use
restrictions requested.

Severe drought −1.30 to −1.59 Likely crop or pasture losses; common water
shortages; mandatory water restrictions imposed.

Extreme drought −1.60 to −1.99 Major losses in crops and pastures; widespread
water shortages; strict water restrictions enforced.

Exceptional
drought <−2.00

Exceptional and widespread crops and pasture
losses; severe water shortages in reservoirs,
streams, and wells create emergencies.

Source: [50]. SPEI = Standardized Precipitation Evapotranspiration Index.
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The classification process was implemented using a Python script, and a pie chart was used
to compare the 2000–2012 and 2013–2024 periods, considering each Agrotechnological District.

3. Results
3.1. Validation of Climate Data Derived from Remote Sensing

Pearson correlation coefficients (r) exceeded 0.80 in eight of the nine DATs (Alto Alegre,
Caconde, Guia Lopes da Laguna, Ingaí, Jacupiranga, Lagoinha, São Miguel Arcanjo, and
Vacaria), indicating a strong linear relationship between monthly MODIS LST data and
Agritempo weather station measurements. The RMSE values, which quantify overall
deviation from observed values, ranged from 1.43 ◦C to 2.83 ◦C. Alto Alegre, Caconde,
Guia Lopes da Laguna, Ingaí, Lagoinha, and Vacaria exhibited lower RMSEs (<1.72 ◦C).
While Boa Vista do Tupim, Jacupiranga, and São Miguel Arcanjo showed higher deviations
(>2 ◦C), with RMSEs of 2.11 ◦C, 2.83 ◦C, and 2.77 ◦C, respectively (Figure 3).
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The MBE revealed a positive bias in MODIS temperatures compared to Agritempo at
Guia Lopes da Laguna (MBE = 1.08 ◦C) and Lagoinha (MBE = 0.38 ◦C), indicating MODIS
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overestimation. In contrast, MODIS temperatures exhibited a systematic negative bias in
the remaining DATs, with MBE values ranging from −0.29 ◦C to −2.47 ◦C. Specifically, Alto
Alegre (−0.29 ◦C), Boa Vista do Tupim (−0.78 ◦C), Caconde (−0.81 ◦C), Ingaí (−0.67 ◦C),
Jacupiranga (−2.47 ◦C), São Miguel Arcanjo (−2.43 ◦C), and Vacaria (−0.52 ◦C) all showed
underestimation by MODIS.

Monthly CHIRPS precipitation data showed strong linear relationships with Agritempo
ground observations across all DATs. Five locations (Alto Alegre, Boa Vista do Tupim,
Caconde, Ingaí, and Lagoinha) exhibited particularly strong correlations (r ≥ 0.80), while
the remaining four (Guia Lopes da Laguna, Jacupiranga, São Miguel Arcanjo, and Vacaria)
showed slightly lower but still strong linear relationships, with coefficients ranging from
r = 0.67 to r = 0.79 (Figure 4).
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The RMSE, which quantifies the average error in CHIRPS precipitation data relative to
Agritempo, ranged from 41.33 mm/month in Boa Vista do Tupim to 74.29 mm/month in Vacaria.
CHIRPS slightly overestimated precipitation in Ingaí, with an MBE of +8.27 mm/month. In
contrast, in all other DATs, CHIRPS consistently underestimated precipitation, with the most
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pronounced underestimations observed in Alto Alegre (−20.06 mm/month), São Miguel Arcanjo
(−20.88 mm/month), and Vacaria (−16.18 mm/month).

3.2. Precipitation and Temperature Anomaly

The changes in precipitation anomalies from 2013 to 2024, compared to the period
from 2000 to 2012, displayed spatial variation. The maximum values ranged from −0.11 to
1.13 mm, while the minimum values varied from −1.09 to 0.35 mm (Figure 5 and Table 6).
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Table 6. Descriptive statistics of precipitation anomalies and results of the Modified Mann–Kendall
Trend test.

Agrotechnological
Districts Mean Minimum Maximum Standard

Deviation
MMK
Trend

MMK
p-Value

Alto Alegre −0.17 −0.24 −0.11 0.03 decreasing 0.000
Boa Vista do Tupim −0.04 −0.36 0.20 0.11 no trend 0.147
Caconde −0.27 −0.43 −0.06 0.08 no trend 0.729
Guia Lopes da Laguna 0.42 0.24 0.57 0.05 increasing 0.000
Ingaí −0.12 −0.20 0.00 0.04 no trend 0.185
Jacupiranga −0.48 −1.09 0.34 0.30 increasing 0.000
Lagoinha 0.49 0.08 1.13 0.22 no trend 0.427
São Miguel Arcanjo −0.22 −0.52 0.15 0.12 increasing 0.000
Vacaria 0.45 0.35 0.55 0.04 increasing 0.000

MMK = Modified Mann–Kendall trend test.

The mean precipitation anomalies revealed distinct regional patterns. Guia Lopes da
Laguna, Lagoinha, and Vacaria experienced increases ranging from 0.42 to 0.49 mm above
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the 2000–2012 baseline. In contrast, the remaining six DATs—Alto Alegre, Boa Vista do
Tupim, Caconde, Ingaí, Jacupiranga, and São Miguel Arcanjo—showed decreases, ranging
from −0.48 mm (Jacupiranga) to −0.04 mm (Boa Vista do Tupim) below the baseline. Trend
analysis further clarified these patterns: Guia Lopes da Laguna, Jacupiranga, São Miguel
Arcanjo, and Vacaria exhibited statistically significant increasing trends, while Alto Alegre
showed a decreasing trend. No statistically significant trends were observed for Boa Vista
do Tupim, Caconde, Ingaí, or Lagoinha. Despite the negative mean anomaly in São Miguel
Arcanjo, the MMK test indicated an increasing trend for this agrotechnological district
(Table 6).

Temperature anomalies also exhibited spatial variation, with maximum anomalies
ranging from 0.90 to 3.18 ◦C and minimum anomalies ranging from −2.52 to −0.56 ◦C
(Figure 6, Table 7).
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Figure 6. Temperature anomalies representing differences between the 2000–2012 and 2013–2024 periods.

Results from the analysis of the mean temperature anomalies demonstrated that 2013–2024
was warmer than the baseline period of 2000–2012, with anomalies ranging from 0.09 to
0.70 ◦C. In most DATs, mean temperature anomalies remained below 0.50 ◦C, except for
Boa Vista do Tupim, which recorded a mean anomaly of 0.70 ◦C. Notwithstanding this
overall warming trend, the MMK test revealed a divergent pattern, indicating statistically
significant increasing trends only for Boa Vista do Tupim and Lagoinha DATs. Conversely,
decreasing trends were observed in Alto Alegre, Ingaí, Jacupiranga, and São Miguel



Atmosphere 2025, 16, 465 12 of 22

Arcanjo, while no statistically significant trend was detected for Caconde, Guia Lopes da
Laguna, and Vacaria (Table 7).

Table 7. Descriptive statistics of temperature anomalies and results of the Modified Mann–Kendall
trend test.

Agrotechnological
Districts Mean Minimum Maximum Standard

Deviation
MMK
Trend

MMK
p-Value

Alto Alegre 0.21 −1.17 1.47 0.39 decreasing 0.000
Boa Vista do Tupim 0.70 −2.52 3.18 1.13 increasing 0.000
Caconde 0.33 −0.70 1.80 0.45 no trend 0.687
Guia Lopes da Laguna 0.26 −1.13 1.30 0.44 no trend 0.063
Ingaí 0.28 −0.56 1.27 0.36 decreasing 0.006
Jacupiranga 0.32 −1.68 2.11 0.46 decreasing 0.000
Lagoinha 0.14 −1.59 0.90 0.43 increasing 0.032
São Miguel Arcanjo 0.27 −0.74 2.23 0.50 decreasing 0.000
Vacaria 0.09 −1.42 2.25 0.41 no trend 0.742

MMK = Modified Mann–Kendall trend test.

3.3. Trend of SPEI-6

Agricultural drought monitoring in the DATs using SPEI-6 revealed heterogeneous
spatial patterns. Between 2000 and 2012, most assessed DATs—including Alto Alegre,
Caconde, Lagoinha, and São Miguel Arcanjo in southeastern Brazil, as well as Guia Lopes
da Laguna and Vacaria in the central-western and southern regions—showed no statistically
significant trends in drought conditions. In contrast, Jacupiranga and Ingaí exhibited a
significantly increasing trend, indicating a shift toward wetter conditions. At the same time,
Boa Vista do Tupim in the northeast showed a significant decrease, suggesting a transition
to drier conditions (Figure 7).
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From 2013 to 2024, Alto Alegre, Caconde, Guia Lopes da Laguna, Jacupiranga, São
Miguel Arcanjo, and Vacaria exhibited a significant decreasing trend, marking a reversal
from their no trend conditions in the 2000–2012 period and signaling heightened drought
susceptibility. Ingaí experienced a notable shift from a wetter trend (2000–2012) to drier
conditions (2013–2024). Conversely, Boa Vista do Tupim reversed its previous decreasing
trend, showing an increasing trend during the latter period. Lagoinha remained the only
DAT with no significant trend, which was consistent with its earlier pattern.

Table 8 outlines the most severe drought events in the DATs during the periods of
2000–2012 and 2013–2024. From 2000 to 2012, several DATs experienced extreme droughts,
including Jacupiranga and São Miguel Arcanjo in August 2000; Lagoinha in December
2003; Alto Alegre and Guia Lopes da Laguna in July 2005; Vacaria in October 2006; and
Ingaí in July 2007. Boa Vista do Tupim experienced its most intense drought, classified as
exceptional, in September 2012. In contrast, Caconde’s most severe drought event occurred
in July 2010 and was classified as severe rather than extreme or exceptional.

Table 8. Most intense drought events in the 2000–2012 and 2013–2024 periods in the Agrotechnological
Districts.

Agrotechnological Districts Month and Year Worst SPEI-6 Drought Category

2000–2012

Alto Alegre July 2005 −1.69 Extreme drought
Boa Vista do Tupim September 2012 −2.60 Exceptional drought
Caconde July 2010 −1.57 Severe drought
Guia Lopes da Laguna July 2005 −1.73 Extreme drought
Ingaí July 2007 −1.62 Extreme drought
Jacupiranga August 2000 −1.59 Extreme drought
Lagoinha December 2003 −1.94 Extreme drought
São Miguel Arcanjo August 2000 −1.88 Extreme drought
Vacaria October 2006 −1.73 Extreme drought

2013–2024

Alto Alegre November 2020 −2.09 Exceptional drought
Boa Vista do Tupim March 2017 −1.87 Extreme drought
Caconde December 2020 −2.75 Exceptional drought
Guia Lopes da Laguna March 2024 −2.19 Exceptional drought
Ingaí September 2024 −2.22 Exceptional drought
Jacupiranga January 2020 −2.11 Exceptional drought
Lagoinha September 2024 −2.13 Exceptional drought
São Miguel Arcanjo June 2024 −2.29 Exceptional drought
Vacaria December 2021 −1.91 Extreme drought

SPEI-6 = Standardized Precipitation Evapotranspiration Index at 6-moth timescale.

In the subsequent period of 2013–2024, drought conditions intensified, with several
DATs reporting exceptional drought—the highest severity category. Notable occurrences
included Jacupiranga in January 2020, Alto Alegre in November 2020, Caconde in December
2020, Guia Lopes da Laguna in March 2024, São Miguel Arcanjo in June 2024, and Ingaí
and Lagoinha in September 2024. Additionally, extreme drought events were recorded in
Boa Vista do Tupim in March 2017 and Vacaria in December 2021.

3.4. Frequency of Droughts by Intensity Category

The frequency of each drought intensity category, based on SPEI-6 results, varied
between the periods 2000–2012 and 2013–2024, as well as among the DATs (Figure 8).
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Figure 8. Frequency and severity of drought events in the Agrotechnological Districts for the periods
2000–2012 and 2013–2024. AA = Alto Alegre, BVT = Boa Vista do Tupim, C = Caconde, GLL = Guia
Lopes da Laguna, I = Ingaí, J = Jacupiranga, L = Lagoinha, SMA = São Miguel Arcanjo, V = Vacaria.
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3.4.1. Slight Drought

Between 2000 and 2012, 152 slight drought events were recorded. The DATs experi-
enced varying frequencies: Boa Vista do Tupim had 11 episodes, Ingaí 12, Alto Alegre and
Vacaria 15, Caconde 17, Jacupiranga 19, Lagoinha and Guia Lopes da Laguna 20, and São
Miguel Arcanjo had 23 events.

From 2013 to 2024, slight drought occurrences decreased to 111. The frequency of
these events, listed from highest to lowest, are as follows: Ingaí (21), Jacupiranga (16),
Lagoinha (15), Boa Vista do Tupim (14), Caconde (10), Guia Lopes da Laguna, São Miguel
Arcanjo, and Vacaria (9), and Alto Alegre (8).

3.4.2. Moderate Drought

The category of moderate drought was the most frequently recorded, with 165 events
documented between 2000 and 2012 and 168 events from 2013 to 2024. During the first
period, Boa Vista do Tupim and São Miguel Arcanjo each recorded 8 occurrences, Jacu-
piranga, Caconde, Alto Alegre, Guia Lopes da Laguna, and Ingaí reported 13, 14, 20, 21,
and 22 events, respectively. Lagoinha and Vacaria had the highest numbers, with 28 and
31 episodes, respectively.

In the 2013–2024 period, Lagoinha and Vacaria recorded 17 moderate drought events
each, while Ingaí and Jacupiranga reported 18 events. Alto Alegre, Caconde, and São
Miguel Arcanjo presented 21 events each, Boa Vista do Tupim recorded 22, and Guia Lopes
da Laguna had 13 events.

3.4.3. Severe Drought

Between 2000 and 2012, 44 severe drought events were recorded. The distribution
of these occurrences was as follows: Jacupiranga and São Miguel Arcanjo experienced
one event, Alto Alegre and Boa Vista do Tupim had two, Ingaí recorded four, Caconde
had five, Lagoinha recorded eight, Guia Lopes da Laguna experienced nine, and Vacaria
faced twelve.

Severe drought events increased over time; from 2013 to 2024, 95 events were recorded.
The distribution during this time was as follows: Lagoinha (3 events), Ingaí and Guia
Lopes da Laguna (8 each), São Miguel Arcanjo (11), Jacupiranga (12), Boa Vista do Tupim,
Caconde, and Vacaria (13 each), and Alto Alegre (14).

3.4.4. Extreme Drought

Between 2000 and 2012, 15 extreme drought events were recorded. These included one
each in Alto Alegre, Ingaí, and São Miguel Arcanjo, two each in Vacaria and Guia Lopes da
Laguna, and four each in Lagoinha and Boa Vista do Tupim.

In contrast, from 2013 to 2024, there was a dramatic increase in extreme drought
occurrences, with 81 events reported. The distribution of these events was as follows: 4 in
Vacaria, 7 in Lagoinha and Caconde, 9 in Boa Vista do Tupim, 10 in Ingaí, Jacupiranga, and
São Miguel Arcanjo, 11 in Alto Alegre, and 13 in Guia Lopes da Laguna.

3.4.5. Exceptional Drought

From 2000 to 2012, Boa Vista do Tupim was the only region to experience exceptional
drought conditions, recording three distinct episodes. However, between 2013 and 2024,
the number of affected DATs increased to seven. Alto Alegre, Guia Lopes da Laguna, and
Lagoinha each recorded one episode, while Ingaí, Caconde, Jacupiranga, and São Miguel
Arcanjo documented three, four, five, and seven episodes, respectively. In total, there were
22 reports of exceptional drought events between 2013 and 2024, indicating a significant
rise in extreme drought conditions across the DATs.
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4. Discussion
This study demonstrates a strong linear relationship between monthly temperature

data derived from MODIS and Agritempo weather station records, with Pearson’s cor-
relation coefficients exceeding 0.80 in over 80% of the DATs. In contrast, Liu et al. [51]
reported that more than 70% of Pearson correlation coefficients were below 0.8 when
analyzing the relationship between LST from MODIS and air temperature from weather
stations in Brazil, highlighting a divergence from our findings. This discrepancy may be
attributed to regional climatic variations or distinct environmental characteristics affecting
temperature measurements.

The fundamental difference between MODIS and ground-based weather station mea-
surements is a key factor influencing these results. MODIS captures LST, which reflects
complex energy fluxes between the ground and atmosphere, encompassing all surface-
atmosphere interactions [52,53]. Conversely, weather stations, following WMO guidelines,
measure air temperature at a standardized height of 1.25 to 2 m above ground level [54].
These inherent differences, combined with atmospheric conditions (e.g., cloud cover, wind
speed), topographic complexity, elevation, and land cover variations, significantly affect
the accuracy of MODIS LST compared to weather station air temperature, as corroborated
by previous studies [55–59].

The RMSE values from MODIS validation indicate varying deviation levels be-
tween MODIS LST and observed temperatures across the DATs. Alto Alegre, Caconde,
Guia Lopes da Laguna, Ingaí, Lagoinha, and Vacaria exhibited relatively low errors
(RMSE < 1.72 ◦C), whereas Boa Vista do Tupim, Jacupiranga, and São Miguel Arcanjo
showed higher discrepancies (RMSE slightly above 2 ◦C). According to the Global Climate
Observing System [60], the required accuracy for LST derived from satellite observations
at a 1–10 km spatial resolution is 0.5–2.0 ◦C for agricultural, hydrological, and meteo-
rological research applications. Based on this benchmark, MODIS LST data meets the
recommended accuracy threshold in most DATs, except for the three locations with RMSE
values marginally exceeding 2 ◦C.

Mean bias error analysis revealed consistent biases in MODIS temperature estimates
across the studied regions. MODIS overestimated temperatures in Guia Lopes da La-
guna and Lagoinha, while underestimating them in all other locations, with the largest
negative biases observed in Jacupiranga (MBE = −2.47 ◦C) and São Miguel Arcanjo
(MBE = −2.43 ◦C). These results contradict Liu et al. [51], who reported a positive MODIS
bias for Brazil (1.42–1.87 ◦C for 2003–2016 data). Factors such as altitude, temperature
variability, latitude, and sensor viewing angle, as suggested by Ummus [61], likely explain
the biases observed in this study.

The monthly precipitation from CHIRPS presented a strong linear relationship with
Agritempo. The Pearson correlation coefficients ranged from 0.67 in Guia Lopes da Laguna
to 0.88 in Ingaí. These results align with previous research. For instance, Oliveira-Júnior
et al. [62] reported a correlation of 0.71 in Ponta Porã, approximately 175 km from Guia
Lopes da Laguna, supporting our findings. Similarly, Caparoci Nogueira et al. [63] observed
a slightly higher correlation of 0.96 in the southeast region of Minas Gerais, the state where
Ingaí is situated.

CHIRPS predominantly underestimated monthly precipitation across most DATs, with
underestimations ranging from −2.59 mm/month in Boa Vista do Tupim to −20.88 mm/month
in São Miguel Arcanjo. This pattern is consistent with previous studies [64,65]. Notably,
Ingaí presented an exception, displaying an overestimation of 8.27 mm/month, corroborat-
ing earlier research that reported an overestimation of 3.45 mm/month in southern Minas
Gerais [63].
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The RMSE values, which measure average error, varied significantly among the DATs,
ranging from 41.33 to 74.29 mm/month. This variability can be attributed to geograph-
ical locationand regional climate patterns [66]. In addition, these differences may result
from complex topographic features where precipitation is controlled by orography or
inconsistencies in gauge-based calibration [67].

Uncertainties in MODIS and CHIRPS data, including biases and combined errors, can
affect the reliability of drought severity assessments and trend analyses. Nevertheless, these
datasets remain essential for climate-related drought monitoring, particularly in regions
with sparse ground-based meteorological data.

The mean precipitation anomalies for 2013–2024, relative to 2000–2012, revealed
distinct regional trends. Guia Lopes da Laguna, Jacupiranga, São Miguel Arcanjo, and
Vacaria exhibited increasing precipitation anomalies, consistent with previous research.
For instance, for many parts of the Brazilian Midwest (where Guia Lopes da Laguna is
located), Santos et al. [68], documented rising intensity and frequency of precipitation
extremes between 1979 and 2019, while the increase in Vacaria aligns with southern Brazil’s
“wet-get-wetter” hypothesis [69]. Conversely, Boa Vista do Tupim, Caconde, Ingaí, and
Lagoinha showed no significant trends, while Alto Alegre displayed a decreasing trend.
This spatial variability is likely due to the complex interplay of large-scale atmospheric
dynamics and local circulation systems, such as the El Niño-Southern Oscillation (ENSO),
the South Atlantic Convergence Zone (SACZ), the South Atlantic Subtropical Anticyclone
(SASA), and cold fronts, which modulate precipitation patterns in Brazil [70].

Concurrently, mean temperature anomalies indicate that 2013–2024 was consistently
warmer than 2000–2012 (anomalies: +0.09 to +0.70 ◦C), corroborating broader warming
trends in Brazil [71,72]. Statistically significant cooling trends occurred in Alto Alegre,
Ingaí, Jacupiranga, and São Miguel Arcanjo, whereas Boa Vista do Tupim and Lagoinha
exhibited warming trends. No discernible trend was detected in Caconde, Guia Lopes da
Laguna, or Vacaria.

Temperature shifts, especially toward warming conditions, have significant hydro-
logical implications, as rising temperatures can increase evapotranspiration rates and
elevate water demand, intensifying moisture deficitseven in regions where precipitation
remains stable.

The trend analysis of SPEI-6 showed only one significant decreasing trend in the
2000–2012 period (Boa Vista do Tupim); however, a pronounced decreasing trend emerged
in the period 2013–2024 in the majority of DATs—except Lagoinha and Boa Vista do
Tupim. This is consistent with national studies that have linked increased drought trends
to global warming [10,11,36,38,72–74].Moderate drought remained the dominant category
across both periods, increasing approximately by 1.0 times (new value divided by the
old), rom 2000–2012 to 2013–2024. Notably, exceptional, extreme, and severe drought
categories saw substantial increases of approximately 7.3, 5.4, and 2.2 times respectively.
Only slight drought decreased (−0.7). This escalation in drought frequency highlights
the DATs’ growing vulnerability, emphasizing the need for adaptive strategies, such as
adopting technological innovations linked to smart farming. Promoting technological
innovations associated with smart farming is crucial for enhancing the resilience of small
and medium-sized farms, thereby mitigating their vulnerability to climate change.

To illustrate the impact of agricultural drought on crop yields and its subsequent
economic repercussions, we examine the case of the agrotechnological district of Caconde,
a major coffee-producing region in Brazil. This agrotechnological district attracted media
attention in both 2020 and 2024 due to severe droughts [75,76], which significantly affected
coffee production. The decline in supply was driven by rising temperatures, increased
potential evapotranspiration, and prolonged water deficits. In particular, high temperatures
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during the blossoming phase led to flower abortion, severely reducing crop productiv-
ity [77]. This decline in output, in turn, contributed to rising coffee prices, highlighting the
broader economic consequences of extreme drought conditions [78].

Small and medium-sized farms within the DATs can significantly improve their re-
silience to agricultural drought through the adoption of innovative farming solutions.
Real-time data acquisition is crucial, facilitated by IoT-connected sensors that monitor soil
and plant health, including nutrient levels, moisture, and disease. This data, combined with
the use of drought-resistant crop varieties and bio inputs, can enhance plant robustness and
soil health. AI-driven resource optimization can ensure the efficient allocation of fertilizers,
water, and pesticides, while robotic harvesting minimizes waste and damage, particularly
for delicate crops. Predictive analytics, powered by machine learning algorithms, can
provide more accurate yield forecasts based on multiple data sources. Smart traps- such
as sticky or pheromone traps combined with cameras or sensors—can provide real-time
insights into pest activity. Furthermore, farm management mobile apps and high-resolution
imaging technologies can help farmers to make more precise decisions. By integrating these
technologies, farms can enhance resilience, improve efficiency, and adapt to the increasing
risks associated with drought conditions [3–7].

Some of these smart farming solutions are already being implemented in the Semear
Digital Center’s DATs. In Caconde, farmers are using a mobile application to manage fish
farming and deploying drones to apply bio-inputs in coffee plots. In Vacaria, a robot has
been developed to harvest apples in orchards, enhancing efficiency and reducing labor
dependency. Meanwhile, in Alto Alegre, smart traps combining sticky traps with cameras
have been introduced to monitor sugarcane borer populations, enabling more precise and
targeted pest management [79–81].

5. Conclusions
MODIS temperature and CHIRPS precipitation data offer a valuable alternative for

drought monitoring in regions with limited long-term ground weather station data for SPEI
assessments. However, it’s crucial to acknowledge the inherent biases: MODIS systemati-
cally underestimated temperatures, and CHIRPS tended to underestimate precipitation
across most DATs. These biases may impact the precision of drought severity and trend
analyses. Nonetheless, in areas where ground meteorological data is scarce, MODIS and
CHIRPS remain essential tools for climate-related drought monitoring.

The comparative analysis of the periods 2000–2012 and 2013–2024 reveals signifi-
cant changes in precipitation anomalies across the DATs. While Guia Lopes da Laguna,
Lagoinha, and Vacaria exhibited positive mean precipitation anomalies, Alto Alegre, Boa
Vista do Tupim, Caconde, Ingaí, Jacupiranga, and São Miguel Arcanjo experienced negative
anomalies. Furthermore, mean temperature anomalies indicate a warming trend during
the 2013–2024 period. These climatic shifts can contribute to the intensification of drought
conditions in the DATs.

A significant escalation in the frequency and severity of agricultural drought events
occurred between 2013 and 2024, with increases ranging from 1.0 to 7.3 times compared to
2000 to 2012. Notably, the highest drought categories—exceptional, extreme, and severe—
demonstrated the most substantial increases, highlighting the intensified drought severity
and the increased vulnerability of the DATs.

In this context, the adoption of smart farming technologies can significantly enhance
the resilience of farms in the DATs, helping to mitigate vulnerabilities and improve adapt-
ability. However, to fully address the complex and multifaceted challenges posed by
drought, future research must adopt a holistic approach that integrates land use pat-
terns, vegetation cover dynamics, and socioeconomic data. Additionally, we believe that
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collaborative efforts involving researchers, agricultural extension services, local farmers’
associations, and regional policymakers will be critical to translating scientific insights into
actionable solutions, ensuring the sustainability of agricultural practices in the face of a
changing climate.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos16040465/s1, Figures; DATs shapefiles; DATs Raster files
for anomaly analysis; Google Earth Engine script to retrieve MODIS and CHIRPS data; Python scripts;
SPEI R script; Location map QGIS project; DATs climate data from CHIRPS and MODIS; DATs climate
data from Agritempo; DATs SPEI drought severity classification; DATs SPEI results.
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