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Abstract: This paper presents a method for dynamic pattern recognition and classification
of one dangerous caterpillar species to allow for its control in maize crops. The use of
dynamic pattern recognition supports the identification of patterns in digital image data
that change over time. In fact, identifying fall armyworms (Spodoptera frugiperda) is critical
in maize production, i.e., in all of its growth stages. For such pest control, traditional
agricultural practices are still dependent on human visual effort, resulting in significant
losses and negative impacts on maize production, food security, and the economy. Such
a developed method is based on the integration of digital image processing, multivariate
statistics, and machine learning techniques. We used a supervised machine learning
algorithm that classifies data by finding an optimal hyperplane that maximizes the distance
between each class of caterpillar with different lengths in N-dimensional spaces. Results
show the method’s efficiency, effectiveness, and suitability to support decision making for
this customized control context.

Keywords: image processing; pattern recognition; pests classification; machine learning;
deep learning

1. Introduction
Maize (Zea mays L.) is one of the most important agricultural crops and one of the

most cultivated cereals in the world. There are signs of maize cultivation dating back
approximately seven thousand years in the regions where the country of Mexico’s is
located today. It was the main food source for the American people of that period [1,2].

According to the United States Department of Agriculture (USDA) [3], Brazil is the
third largest maize producer in the world, with actual production of 122 million tons in an
area of 21.5 million hectares in its 2023/2024 harvest and production forecasts of 127 million
tons in an area of 22.30 million hectares for its 2024/2025 harvest. For comparison, the
United States and China are ahead of Brazil in this regard, with forecast productions for
their 2023/2024 harvests of 389.67 and 288.84 million tons, respectively.

A large range of pests and diseases attacks the maize crop during its different stages
of plant development, which severely affects its productive potential [4]. Among other
caterpillar pests, such as Helicoverpa armígera, Helicoverpa zea, and Elasmopalpus lignosellus
Zeller [5], the fall armyworm (Spodoptera frungiperda) (FAW) is one of the most notorious
and voracious, able to cause losses that could reach approximately 70% of production, as it
attacks the plant still in its formation stage [6]. The extensive losses caused by this pest can
heavily affect the economy, as it is also considered a serious pest for other important crops
in the world, such as soybean, cotton, potato, etc. [7]. Table 1 presents the specific patterns
of the above-cited caterpillars and their particularities.
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Table 1. Characteristics of caterpillars.

Type of Caterpillar Specific Patterns Color Patterns Maximum Size (mm)

Spodoptera frungiperda

Inverted “Y” marking in the head
area and four smaller dorsal spots
in a trapeze arrangement on most

segments and in a square
arrangement on the last segment

Greenish to dark brown 40 mm

Helicoverpa armígera Smooth saddle-shaped tubercles
with hairs at the apex

Yellowish–white to
reddish–brown or green 40 mm

Helicoverpa zea Stripes of other colors arranged on
the sides of the body

White and yellow,
turning to brown 35 mm

Elasmopalpus lignosellus
Zeller

Brown, purple, or dark-brown
transverse streaks

Yellowish with red
stripes; before hatching, it

takes on
a black coloration

22 mm

The first reports of FAW come from regions of North and South America, where it
has been considered a constant pest [8]; however, in recent years, the presence of this pest
has also been reported in different regions around the globe, including Asia [9], Africa [7],
and Oceania [10]. In 2020, Kinkar et al. elaborated a technical report to the European
Food Safety Authority (EFSA), where emergency measures were in place to prevent the
introduction and spread of FAW within the European Union (EU). Due to the high spread
capacity of adults, detection of moths at low levels of population is crucial to avoid further
spread of this pest [11].

The developmental sequence of the FAW can be seen in Figure 1, which characterizes
its different stages of growth, also called instars [5,12]. It is essential to emphasize that at
about the neonate stage (newborn), given the size of the pest, it is impractical to attempt its
detection by imaging; rather, it is more prudent to detect colonies (eggs).

Figure 1. Fall armyworm (Spodoptera Frugiperda) stages of growth [12].

However, according to agricultural pest experts, instars 5 and 6 can be regarded as a
single instar based on their characteristics, method of control, and damage to the maize
crop. Thus, the main focus of FAW pattern classification should be instars 1 to 5.
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The current method of monitoring for FAW in maize includes trapping males using a
pheromone odor similar to that of females. Once the pest is confirmed to be present in crop
areas, insecticides are used for control.

However, such a technique can capture only the specimens that are already about to
transform into moths or those that are already in that form, at which point they no longer
cause significant damage to production [13]. Furthermore, traditional methods executed by
humans are also labor-intensive and subjective, as they depend on human efforts [14].

This discrepancy between the current pest detection method and the intended result (to
detect pests while they are still at their harmful stages) motivated this research study to find
other methods for the early detection of this pest in cultured areas. Specifically, the focus of this
study is on the development of a method for dynamic pattern recognition and classification for
FAW based on the integration of digital image and signal processing, multivariate statistics,
and machine learning (ML) techniques to favor the productivity of the maize crop.

The concept of computer vision seeks, through computer models, to reproduce the
ability and functions of human vision, that is, the ability to see and interpret a scene. The
ability to see can be implemented through the use of image acquisition devices and suitable
methods for pattern recognition.

Nowadays, intelligent systems in agriculture that offer support for decisions in pro-
ductive areas are equipped with capabilities based on machine learning processes. ML
describes the capacity of systems to learn from customized problem-training data to auto-
mate and solve associated tasks [15–17]. In conjunction with such a concept, Deep learning
(DL) is also a machine learning process but based on artificial neural networks with a set of
specific-purpose layers [18,19]. The first layer of a neural network is the input layer, where
the model receives input data. Such networks also include a convolutional layer, which
uses filters to detect features in input data. In addition, to reduce the spatial dimensions of
data, a pooling layer is used, which decreases the computational load. Likewise, after that,
to allow for output, a fully connected layer is also included in such an arrangement, since
each neuron in the layer is connected to every neuron in the previous and subsequent layer,
which allows for analysis approaches [20].

Furthermore, ML and artificial intelligence (AI) can help in the decision-making
process to establish a diagnosis with the aim of controlling this pest in a maize crop area.
Currently, image and signal processing techniques are being utilized in several domains,
most prominently in medicine [21], industry, security, and agriculture [22], among others.

Image acquisition has been verified to be a promising approach to the detection and
identification of insect pests and plant diseases. In 2010, Sankaran et al. sought to identify
diseased plants with greening or with nutritional deficiency through a method based on
mid-infrared spectroscopy, where the samples are analyzed by a spectrometer [23]. In 2014,
Miranda et al. proposed the study of different digital image processing techniques for the
detection of pests in rice paddies by capturing images in the visible spectrum (RGB). They
proposed a methodology in which images are scanned pixel by pixel both horizontally and
vertically. This process is conducted in such a way that it is possible to detect and calculate
the size (in pixels) of detected pests [24].

In 2015, Buades et al. presented a method for the filtering of digital images based on
non-local means [25]. This method was compared with traditional methods of digital image
filtering, such as Gaussian filtering, anisotropic diffusion filtering, and neighborhood-based
filtering for white noise reduction. In 2011, Mythil and Kavitha compared the efficiencies
of applying different types of filters to reduce noise in color digital images [26]. Mishra
et al. compared Wiener, Lucy–Richardson, and regularized-filter digital filters to reduce
noise in digital images [27].
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In 2021, Bertolla and Cruvinel presented a method for the filtering of digital images
degraded by non-stationary noise. In their research study, these authors added Gaussian-
type noise with different levels of intensity to images of agricultural pests. Their ap-
proach allowed for the observation of images of maize pests with random noise signals for
their [28] processing.

In 2013, He et al. highlighted methodologies based on image segmentation for the
identification of pests and diseases in crops. With these methods, pests and diseases of
cotton crops could be identified through segmentation techniques based on pseudo-colors
(HSI and YCbCr), as well as in the visible spectrum (RGB) [29]. In 2015, Xia et al. detected
small insect pests in low-resolution images that were segmented using the watershed
method [30]. In 2017, Kumar et al. used the image segmentation technique known as adap-
tive thresholding for the detection and counting of insect pests. Such a method consists
of computing the threshold of each pixel of the image by interpolating the results of the
sub-images [31]. In 2018, Sriwastwa et al. compared color-based segmentation with Otsu
segmentation and edge detection methods. Their experiments were initially performed
with the Pyrilla pest (Pyrilla), found in sugarcane cultivation (Saccharum officinarum). Subse-
quently, the same methods were applied to images of termites (Isoptera) found in maize
cultivation. For color-based segmentation, images were converted to the CIE L*a*b* [32]
color space. For the feature extraction and pattern recognition of agricultural pests and
diseases, in 2007, Huang applied an artificial neural network with the backpropagation
algorithm for the classification of bacterial soft rot (BSR), bacterial brown spot (BBS), and
Phytophthora black rot (PBR) in orchid leaves. The color and texture characteristics of the
lesion area caused by the diseases were extracted using a co-occurrence matrix [33].

In 2011, Sette and Mailard proposed a method based on texture analysis of georef-
erenced images for the monitoring of a certain region of the Atlantic Forest based on
images analyzed in the visible spectrum. Metrics such as contrast, entropy, correlation,
inverse moment of difference, and second angular momentum were also extracted from
the co-occurrence matrix [34].

On the other hand, machine learning-based approaches were discussed in 2008 by
Ahmed et al., who then developed a real-time machine vision-based methodology for the
recognition and control of invasive plants. The proposed system also had the objective of
recognizing and classifying invasive plants into broad-leaf and narrow-leaf classes based
on the measurement of plant density through masking operations [35].

In 2012, Guerrero et al. proposed a method based on a support vector machine (SVM)
classifier for identification of weeds in maize plantations. For the classification process, they
used SVM classifiers with a polynomial kernel, radial basis function (RBF), and sigmoid
function [36].

In 2015, for the classification of different leaves, Lee et al. used a Convolutional
Neural Network (CNN) based on the AlexNet neural network and a deconvolutional
network to observe the transformation of leaf characteristics. For the detection of pests and
diseases in tomato cultivation, a methodology based on machine learning techniques was
proposed by Fuentes et al. [37]. Three models of neural networks were used to perform
this task. To recognize pests and diseases (objects of interest) and their locations in the
plant, faster region-based convolutional neural networks (F-CNNs) and region-based fully
convolutional neural networks (R-FCNs) have been used [38].

In 2017, Thenmozhi and Reddy presented digital image processing techniques for
insect detection in the early stage of sugar cane crops based on the extraction of nine
geometrical features. The authors used the Bugwood image database for image sample
composition [39]. In 2023, the same image database was used by Tian et al. The authors
proposed a model based on the deep learning architecture to identify nine kinds of tomato
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diseases [40]. In 2019, Evangelista proposed the classification of flies and mosquitoes based
on the frequency of their wing beats. Fast Fourier transform and a Bayesian classifier were
used [41].

In 2018, Nanda et al. proposed a method for detecting termites based on SVM classi-
fiers, using pieces of wood previously divided into two classes: infested and not infested
by termites. SVM classifiers with linear kernel, RBF, polynomial, and sigmoid functions
were used on datasets obtained by microphones, which captured sound signals from
termites [42]. In 2019, Lui et al. presented a methodology for extracting data from inter-
mediate layers of CNNs with the purpose of using these data to train a classifier and,
thus, make it more robust. Features extracted from the intermediate layers of a CNN were
representative and could significantly improve the accuracy of the classifier. To test the
effectiveness of that method, CNNs such as AlexNet, VggNet, and ResNet were used for
feature extraction. The extracted features were used to train classifiers based on SVM, naive
Bayes, linear discriminant analysis (LDA), and decision trees [43].

In 2019, Li et al. trained a maximum likelihood estimator for the classification of
maize grains. “Normal” and “damaged” classes were defined, the latter having seven
subclassifications [44]. In 2019, Abdelghafour et al. presented a framework for classifying
the covers of vines in their different phenological stages, that is, foliage, peduncle, and
fruit. For this task, a Bayesian classifier and a probabilistic maximum a posteriori (MAP)
estimator were used [45].

In 2022, Moreno and Cruvinel presented results related to the control of weed species
with instrumental improvements based on a computer vision system for direct precision
spray control in agricultural crops for the identification of invasive plant families and their
quantities [46].

In 2024, Wang and Luo proposed a method to identity specific pests that occur in
maize crops. This method is based on a YOLOv7 network and the SPD-Conv module to
replace the convolutional layer, i.e., to realize small target feature and location information.
According to the authors, the experimental results showed that the improved YOLOv7
model was more efficient for such control [47].

In 2024, Liu et al. proposed a model to detect maize leaf diseases and pests. These
authors presented a multi-scale inverted residual convolutional block to improve models’
ability to locate the desired characteristics and to reduce interference from complex back-
grounds. In addition, they used a multi-hop local-feature architecture to address problems
regarding the extraction of features from images [48].

In 2025, Valderrama et al. presented an ML method to detect Aleurothrixus floccosus in
citrus crops. This method is based on random sampling image acquisition, i.e., alternating
the extraction of leaves from different trees. Techniques of imaging processing, including
noise reduction, edge smoothing, and segmentation, were also applied. The final results
were acceptable, and the authors used a dataset of 1200 digital images for validation [17].

Also in 2025, Zhong et al. proposed a flax pest and disease detection method for
different crops based on an improved YOLOv8 model. The authors employed the Albu-
mentations library for data augmentation and a Bidirectional Feature Pyramid Network
(BiFPN) module. This arrangement was organized to replace the original feature extraction
network, and the experimental results demonstrated that the improved model achieved
significant detection performance on the flax pest and disease dataset [49].

This paper presents the integration of digital image processing, multivariate statistics,
and computational intelligence techniques, focusing on a method for dynamic pattern
recognition and classification of FAW caterpillars. Customized context analysis is also
performed, taking into account ML and DL based on SVM classifiers and an AlexNet CNN
(A-CNN) [50] through the use of the Tensorflow framework.
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After this Introduction, the remainder of this paper is organized as follows: Section 2
introduces the materials and methods, Section 3 presents the results and respective dis-
cussions, and Section 4 provides conclusions and includes suggestions for continuity and
future research.

2. Materials and Methods
All experiments were performed in Python (version 3.11), i.e., by using both the

image processing and ML libraries in openCV, as well as the scikit-image and scikit-learn
algorithms. We also considered an operating platform with a 64-bit CPU Intel (R) model
Core(TM) i7-970, 16 Gb RAM, and Microsoft Windows 11 operating system. Figure 2 shows
a block diagram of the method for classifying the patterns of FAW caterpillars.

Figure 2. Block diagram for classification of the classification of dynamic patterns of fall armyworm
(Spodoptera frugiperda) in maize crop.
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Concerning the dataset used for validation, the choice of images was based mainly
on their quality and diversity. For this study, the Insect Images dataset, which is a subset
of the Bugwood Image Database System, was selected. Currently, the Bugwood Image
Database System is composed of more than 300 thousand images divided into more than
27 thousand subgroups. Another important factor for the use of this dataset is that most of
the images were captured in the field, that is, they were influenced by lighting and have
variations in scale and size, among other characteristics resulting from acquisition in a real
environment. Therefore, in order to minimize the effects of lighting on the images, a set
of digital images from leaves and cobs with the presence of FAW was taken into account,
acquired under close lighting intensities, in addition to the inclusion of geometric feature
extraction, together with color and texture information, for pattern recognition. Table 2
outlines the characteristics of the images used to validate the developed method.

Table 2. Characteristics of images of fall armyworm (Spodoptera frugiperda) in Insect Image dataset.

Type of Archive JPG/JPEG

Color space RGB
Image width 3072 pixels
Image height 2048 pixels

Image resolution 72 ppi (pixels per inch)
Pixel size ≈0.35 mm

The restoration process considers the use of a degradation function (H), resulting in a
restored image ( f ′(x, y)). When the degradation is exclusively due to noise, the H function
is applied with a value equal to 1. On the other hand, a filter (g(x, y)) enables an image to
be obtained such that it presents a better result in terms of the Signal-to-Noise Ratio (SNR).
As a result, a restored image ( f̂ (x, y)) is obtained. The process of restoring noisy images
can be applied to both the spatial and frequency domains.

For noise filtering of the acquired images, the use of digital filters and the presence
of noise, mainly random Gaussian and impulsive noises, were considered [51]. In digital
image processing, noise can be defined as any change in the signal that causes degradation
or loss of information from the original signal, which can be caused by lighting conditions
of the scene or object, the temperature of the signal capture sensor during the acquisition of
the image, or transmission of the image, among other factors [28].

For the problem regarding FAW, it has been observed that only noises present in the
considered images need to be treated. Thus, H equals 1, and additive noises resulting from
temperature variation of the image capture sensor and influenced by lighting conditions
can be represented as follows:

f̂ (x, y) = η(x, y) + f (x, y) , (1)

where f (x, y) represents the original image, η(x, y) is the noise added to the original image,
and f̂ (x, y) is the noisy image [26,52].

In this work, image restoration was performed in the spatial domain. The use of
Gaussian filters [53] and non-local means [25] was evaluated. The application of a Gaussian
filter has the effect of smoothing an image; the degree of smoothing is controlled by the
standard deviation (σ). Its kernel follows the mathematical model expressed as follows:

f (x, y) =
1

2πσ2 exp

(
− x2+y2

2σ2

)
, (2)
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where x and y represent the kernel dimensions of the filter and σ is the value of the standard
deviation of the Gaussian function with σ > 0.

The application of a non-local mean (NLM) filter is based, as the name suggests, on
non-local mean measures. The NLM filter searches for the estimated value of the intensity
of each pixel (i) in a certain region of the image ( f ), then calculates the weighted average of
this region. The similarity is estimated according to an image with noise (g) in the form of
g(i)|i ∈ f , NLM[g](s), where NLM represents the estimated value of a given pixel (i) [54]
as follows:

NLM[g](s) =
1

C(i)
∑
j∈ f

ω(i, j)g(j) , (3)

where C(i) is a normalizing factor, i.e., C(i) ̸= 0, and ω(i, j) represents the similarity of the
weights of pixels i and j to satisfy the conditions of 0 ≤ ω(i, j) ≤ 1 and ∑j∈ f ω(i, j) = 1. In
addition, the weight of ω(i, j) [55] is calculated as follows:

ω(i,j) =
1

C(i)
exp−

|(Ni)
2−(Nj)

2 |
σ2 , (4)

where Ni and Nj are vectors of pixels whose values are related not only to similarity
measures but also to the Gaussian weighted Euclidean distance at which intensities of the
gray levels are within a square neighborhood centered at positions i and j, respectively.

For color-space operations, the use of the HSV and CEI L*a*b* color spaces was
evaluated based on images acquired in the RGB color space [56].

In reference to digital image processing, the RGB color space applies mainly to the
image acquisition and result visualization stages. However, because of its low capacity
to capture intensity variation in color components [57], its use is not recommended in the
other stages of the process.

To convert an RGB image to the HSV color space, because of the more natural repre-
sentation of RGB colors for human perception, it is necessary to normalize the values of the
R, G, and B components, measuring their respective maximum and minimum values, then
convert them to the HSV color space as follows:

H =


60◦ −

(
G
′−B

′

∆ mod 6
)

if Cmax = R
′

60◦ −
(

B
′−R

′

∆ + 2
)

if Cmax = G
′

60◦ −
(

R
′−G

′

∆ + 4
)

if Cmax = B
′

, (5)

S =

{
0 if ∆ = 0
∆

Cmax
if ∆ ̸= 0

, (6)

V = Cmax , (7)

where Cmax is the maximum value of the R, G, and B components; Cmin is the minimum
value of the R, G, and B components; and H, S, and V are the components of the HSV
color space.

It is also possible to convert images from the HSV to the RGB color space, considering
the following:
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(R1, G1, B1) =



(C, X, 0) if 0◦ ≤ H < 60◦

(X, C, 0) if 60◦ ≤ H < 120◦

(0, C, X) if 120◦ ≤ H < 180◦

(0, X, C) if 180◦ ≤ H < 240◦

(X, 0, C) if 240◦ ≤ H < 300◦

(C, 0, X) if 300◦ ≤ H < 360◦

, (8)

where R1, G1, and B1 represent points on the faces of the RGB cube, whereas C represents
the chroma component.

On the other hand, the conversion from the RGB to the CIE L*a*b* color space follows
the method described below. The Commission Internationale de l’Eclairage (CIE), or the
International Commission on Illumination, defines the sensation of color based on the
elements of luminosity, hue, and chromaticity. Thus, the condition of existence of color
is based on three elements: illuminant, object, and observer [58]. Accordingly, the color
space known as CIE Lab started to consider the “L” component as a representation of
luminosity, ranging from 0 to 100; the “a” component as a representation of chromaticity,
ranging from green (negative values) to red (or magenta for positive values); and the “b”
component also as a representation of chromaticity, varying from yellow (for negative
values) to blue (or cyan for positive values) [59]. In 1976, the CIE L*a*b* standard was
created based on improvements of the CIE Lab created in 1964. The new standard provides
more accurate color differentiation concerning human perception [60]. However, given
that the old standard is still widely used, the use of asterisks (∗) was adopted in the
nomenclature of the new standard.

Because the CIE L*a*b* color space standard, like its predecessor, is based on the CIE
XYZ color standard, conversion from RGB images occurs in two steps [61]. First, the RGB
image is converted to the CIE XYZ standard, that is,X

Y
Z

 =

0.4125 0.3576 0.1804
0.127 0.7152 0.0722

0.0193 0.1192 0.9502


R

G
B

 . (9)

Once the image has been converted to the CIE XYZ standard, it can be converted to
the CIE L*a*b* standard, considering the following:

L∗ =


116

(
Y
Yn

) 1
3 − 16 if Y

Yn
> 0.008856

903, 3
(

Y
Yn

)
if Y

Yn
≤ 0.008856

, (10)

a∗ = 500
[(

X
Xn

) 1
3 −

(
Y
Yn

) 1
3

]
, (11)

b∗ = 200
[(

X
Xn

) 1
3 −

(
Z
Zn

) 1
3

]
. (12)

The segmentation step aims to divide, or isolate, regions of an image, which could be
labeled as foreground and background objects. Thus, foreground objects are called regions
of interest (ROIs) of the image, that is, regions where patterns related to the end objective
are sought for the identification of FAW. Background objects are any other objects that are
not of interest [62].

Segmentation algorithms are generally based on two basic properties: discontinuity,
such as edge detection and the identification of borders between regions, and similarity,
which is the case of pixel allocation in a given region [63].
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In binary images, the representation of pixels with values of 0 (black) normally indi-
cates the background of the image, whereas that of pixels with values of 1 (white) indicates
the object(s) of interest [64].

A binary image (b(x, y)) is generated with the application of a threshold (T) to the
histogram of the original image ( f (x, y)), considering the following:

b(x, y) =

{
0, if f (x, y) < T
1, if f (x, y) ≥ T

. (13)

The threshold value can be chosen through a manual analysis from the histogram
of an image or the use of an automatic threshold selection algorithm. In this case, seed
pixels were used. Additionally, the use of Otsu’s method was considered. This method
performs non-parametric and unsupervised discriminant analysis and automatically selects
the optimal threshold based on the intensity values of the pixels of a digital image, allowing
for a better separation of classes [65].

In a 2D digital image with dimensions of N × M and an intensity level of L, where
ni denotes the number of pixels of intensity i, and MN is the total number of pixels, the
histogram is normalized considering the following [66] :

pi =
ni

MN
, (14)

where pi ≥ 0 and ∑L
i=1 pi = 1.

The operation of a threshold (T(k) = k, where 0 < k < L − 1) divides the L intensity
levels of an image into two classes (C1 and C2, representing the object of interest and the
background of the image, respectively, where C1 consists of all pixels in the range of [0, k]
and C2 covers the range of [k + 1, L − 1]). This operation is defined as follows:

P1(k) =
k

∑
i=0

pi , (15)

where P1(k) is the probability of a pixel (k) being assigned to class C1.
Likewise, the probability of occurrence of class C2 is expressed as follows:

P2(k) =
L−1

∑
i=k+1

pi = 1 − P1(k) . (16)

The values of the average intensities of classes C1 and C2 are given considering the
following equations:

m1(k) =
k

∑
i=0

iP(i|C1) =
1

P1(k)

k

∑
i=0

ipi , (17)

m2(k) =
L−1

∑
i=k+1

iP(i|C2) =
1

P2(k)

L−1

∑
i=k+1

ipi . (18)

The average cumulative intensity (m(k)) is expressed as follows:

m(k) =
k

∑
i=0

ipi . (19)

The optimal threshold can be obtained via the minimization of one of the discriminant
functions, described as follows:
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λ =
σ2

B
σ2

W
, η =

σ2
B

σ2
G

, κ =
σ2

T
σ2

W
, (20)

where σ2
W is within-class variance, σ2

B is cross-class variance, and σ2
G is global variance,

respectively expressed as follows:

σ2
B = P1P2(m1 − m2)

2 =
(mGP1 − m)2

P1(1 − P1)
, (21)

σ2
G =

L−1

∑
i=0

(i − mG)
2 pi . (22)

The greater the difference in the average values of m1 and m2, the greater the variance
between classes (σ2

B), confirming it to be a separability measure [66]. Likewise, if σ2
G is a

constant, it is possible to verify that η is also a measure of separability and that maximizing
this metric is equivalent to maximizing σ2

B. Thus, the objective is to determine the value of
k to maximize the variance between classes. Therefore, the threshold (k) that maximizes the
η function is selected based on the following:

η(k) =
σ2

B(k)
σ2

T
. (23)

Also, when the optimal threshold (k∗) is obtained, the original image ( f (x, y)) is
segmented considering the following:

b(x, y) =

{
0, if f (x, y) ≤ k∗

1, if f (x, y) > k∗
. (24)

The use of Otsu’s method automates the process of segmenting images containing
objects that represent FAW both in maize leaves and cobs. Additionally, after the segmenta-
tion method was applied, the extraction of features from these patterns, through the use of
the methods of the histogram of oriented gradient (HOG) [67] and invariant moments of
Hu [68], was considered.

Herein, the HOG descriptor is applied in five stages [69]. The first involves transform-
ing the segmented image in the CIE L*a*b* color space to grayscale (in 8-bit or 256-tone
conversion), whereas the other steps involve calculating the intensities of the gradients;
grouping the pixels of the image into cells; grouping these cells into blocks; and, finally, ex-
tracting characteristics of the magnitude of the gradient, according to the following equation:

m(x, y) =
√
[ fu(x, y)]2 + [ fv(x, y)]2 , (25)

where m is the magnitude of the feature vector at point (x, y). Additionally, fu(x, y) consists
of a component in u directions, and fv(x, y) is a component in v directions . It is possible to
obtain the direction of the gradient vector (θ(x, y)) in the following form:

θ(x, y) = tan−1 fv(x, y)
fu(x, y)

. (26)

In addition, for geometrical feature extraction purposes, the Hu invariant moments
descriptor was considered [70]. First, it is necessary to calculate the two-dimensional
moments. They can be defined as polynomial functions projected in a 2D image ( f (x, y))
with dimensions of M × N and order (p + q).
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The normalized central moments allow the central moments to be invariant-to-scale
transformations, defined as follows:

ηpq =
µpq

µ
γ
00

, (27)

where γ is defined as

γ =
p + q

2
+ 1 , (28)

for p + q = 2, 3, . . ., positive integers ∈ Z.
Then, the invariant moments can be calculated as follows:

ϕ1 = η20 + η02 , (29)

ϕ2 = (η20 − η02)
2 + 4η2

11 , (30)

ϕ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 , (31)

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2 , (32)

ϕ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η21 − η03)(η21 + η03) ,
(33)

ϕ6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]+

4η11(η30 + η12)(η21 + η03) ,
(34)

ϕ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]+

(3η12 − η30)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] .
(35)

Furthermore, in this work, we used Principal Component Analysis (PCA) [71] to
reduce the dimensionality of the vector. We consider a data array (X) with n observations
and m independent variables.

X =


x11 · · · x1m

...
. . .

...
xn1 · · · xnm

 . (36)

The principal components can be measured as a set of m variables (X1, X2, . . ., Xm)
with means (µ1, µ2, . . ., µm) and variance (σ2

1 , σ2
2 , . . ., σ2

m), in which covariance between the
n-th and m-th variables takes the following form:

Σ =


σ2

11 · · · σ2
1m

...
. . .

...
σ2

n1 · · · σ2
nm

 , (37)

where Σ is the covariance matrix. Eigenvalues and eigenvectors are measured ((λ1, e1),
(λ2, e2), . . ., (λm, em), where λ1 ≥ λ2 ≥ . . . ≥ λm) and associated with Σ, where the i-th
principal component is defined as follows:

Zi = ei1X1 + ei2X2 + . . . + eimXm , (38)

where Zi is the ith principal component. The objective is to maximize the variance of Zi

as follows:
Var(Zi) = Var(e′iX) = e′iVar(X)ei = e′iΣei , (39)



Electronics 2025, 14, 1449 13 of 38

where i = 1, . . ., m. Thus, the spectral decomposition of the matrix (Σ) is expressed as
Σ = PΛP′, where P is the composite matrix according to the eigenvectors of Σ and Λ is the
diagonal matrix of eigenvalues of Σ. Thus,

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

 . (40)

The principal component of greatest importance is defined as the one with the greatest
variance that explains the maximum variability in the data vector, as the second high-
est variance represents the second most important component, and so on, to the least
important component.

The vector of reduced dimensionality features is composed of normalized eigenvectors,
representing the descriptors of the FAW descriptors in the images. The feature vector
comprises the input data for pattern recognition, involving ML.

As mentioned previously, in other words, ML may also be understood as the ability of
a computational system to improve performance in a task based on experience [72]. In this
work, the classification technique is related to ML—specifically, supervised learning [73].
Supervised learning is based on existent and classified patterns serving as training examples
that enable a classifier to be efficiently generalized to new datasets [18]. In this context,
the feature vector, with reduced dimensionality, is used for classification according to its
position in the feature space.

In this work, after having defined the feature vector, as a next step, the application of
computational intelligence is considered, i.e., based not only on SVM classifiers [74] but
also taking into account the A-CNN through the use of the Tensorflow framework [19,75]
for evaluation. In such a way, it is possible to carry out a context evaluation to choose
between the use of ML or DL models in such a customized pest control problem.

SVM classifiers were selected for use in this study, since they have been quite well
used for the classification of agricultural data, as reported in [76]. SVMs can be established
based on linear behavior or even non-linear behavior. In this work, two types of kernel that
are associated with these functionalities were evaluated to determine which one leads to
the best operability, accuracy, precision, and other parameters associated with the analysis
of the behaviors of these classifiers [77].

Classifiers with linear behavior use a hyperplane that maximizes the separation be-
tween two classes from a training dataset (x) with n objects (xi ∈ X) and their respective
labels (yi ∈ Y) such that X represents the input dataset and Y = (−1,+1) represents
possible classes [72]. In this case, the hyperplane is defined as follows:

yi(w · xi + b)− 1 ≥ 0, ∀(xi, yi) ∈ X , (41)

where w is the normal vector to the hyperplane, w · x is the dot product of vectors w and x,
and b is a fit term.

The maximization of the data separation margin in relation to w · x + b = 0 can
be obtained via the minimization of ∥w∥ [78]. The minimization problem is quadratic
because the object function is quadratic and the constraints are linear. This problem can be
solved via the introduction of the Lagrange function [79]. The Lagrange function must be
minimized concerning w and b, implying the maximization of the variables (αi). The value
of L is derived concerning w and b.

This formulation is referred to as the dual form, whereas the original problem is
referred to as the primal form. The dual form presents simpler restrictions and allows for
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the representation of the optimization problem in terms of inner products between data,
which are useful for the nonlinearization of SVMs. It is also worth noting that the dual
problem uses only training data and their labels [72].

Linearly separable datasets are classified efficiently by linear SVMs, with some error
tolerance in the case of a linear SVM with smooth margins. However, in several cases, it is
not possible to efficiently classify training data using this modality of a hyperplane [72],
requiring the use of interpolation functions that allow for operation in larger spaces, that is,
using non-linear SVM classifiers.

In that manner, it is possible for SVMs to deal with non-linear problems through a Φ

function, mapping the dataset from its original space (input space) to a larger space (input
space characteristics) [80], characterizing a non-linear SVM classifier.

Thus, based on the choice of Φ, the training dataset (x), in its input space (R2), is scaled
to the feature space (R3) as follows:

Φ(x) = Φ(x1, x2) = (x2, 2
√

2x1x2, x2
2) , (42)

h(x) = w · Φ(x) + b = w1x2
1 + w2

2
√

2x1x2 + w3x2
2 + b = 0 . (43)

In this way, the data are initially mapped to a larger space; then, a linear SVM is
applied over the new space. A hyperplane is then found with a greater margin of separation,
ensuring better generalization [81].

Given that the feature space can be in a very high dimension, the calculation of Φ

might be extremely costly or even unfeasible. However, the only necessary information
about the mapping is the calculation of the scalar products between the data in the feature
space obtained through function kernels [72]. Table 3 presents the kernels selected to
validate the developed method.

Table 3. Selected kernels to validate the developed method.

Kernel Function K(xi, xj) Parameters

Polynomial (δ(xi · xj) + κ)d δ, κ e d
Radial basis function (RBF)

kernel exp(−σ
∥∥xi − xj

∥∥2
) σ

Sigmoidal tanh(δ(xi · xj) + κ) δ e κ

For each type of kernel, one should define a set of parameters, which must be cus-
tomized as a function of the problem to be solved.

In addition, the use of a CNN based on a tensor is evaluated, which can be defined as a
mathematical entity used for multidimensional representation of data. Its order determines
the indices required for the component’s access. In fact, tensors can be scalar, vectors,
matrices, or even higher-order entries with N dimensions [82], as follows:

X ∈ RI1xI2x...IN , (44)

where Ik for 1 ≤ k ≤ N is the dimension of the k-th mode of the tensor and xi1,i2,...,iN denote
each element of the tensor (X).

A Tensor Network (TN) is defined as a collection of tensors that can be multiplied or
compacted according to a predefined topology. In such an arrangement, the configuration
can be obtained by taking into account two types of indices. One of them considers a linked
index, which can connect tensors two at a time to structure the network arrangement. The
other uses an open index, which makes it possible to connect tensors directly to the network
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being structured. Larger scale dimensions can also be obtained by using addition and
multiplication operations and considering linked and open operators, respectively.

In this work, all parameters are considered, not only for the SVM classifiers but also
for the A-CNN, to allow for control of FAW caterpillars in maize crops.

3. Results and Discussions
For this study, an image dataset of the FAW in maize crop was organized, with a total

of 2280 images representing its five stages of development, that is, 456 images generated
for each stage of development. Figure 3 shows the results of the image acquisition step.

Figure 3. Different stages of the Fall Armyworm (Spodoptera frugperda) found on maize leaves (a,b)
and cobs (c,d), i.e., instar 1, instar 2, instar 3, and instar 4.

Based on the mean squared error (MSEs) and peak signal-to-noise ratios (PSNRs) of
the images restored by the spatial filtering process, it was observed that the NLM filter
yielded a better result than the Gaussian filter, as shown in Figure 4.

Figure 4. Evaluation of the (a) Mean Squared Error (MSE), and (b) Peak Signal-to-Noise Ration
(PSNR) for the non-local mean filter validation.



Electronics 2025, 14, 1449 16 of 38

Table 4 presents the parameters used for the application of the NLM filter. These
parameters were obtained after several tests performed with this filter based on the
available literature.

Table 4. Non-local mean filter parameters and values.

Parameter Value

Kernel 7 × 7
Patch width 11
Patch height 11

The use of a kernel with dimensions of 7 × 7 pixels and a height and distance patch
of 11 pixels allowed for the maximum attenuation of medium- and low-frequency noise
effects, as well as the maintenance of the textural characteristics of the images.

For the image segmentation stage, tests were conducted using Otsu’s method based
on the conversion of the HSV and CIE L*a*b* color spaces. However, because of the verified
restrictions for the H map of the HSV color space, it was decided that the CIE L*a*b* would
be used instead to obtain an ideal segmentation process.

Figures 5–7 illustrate the image segmentation process using Otsu’s method based on
components a* and b*, where each image shows only one FAW found on the considered
region of maize leaves.

Figures 8–10 illustrate the image segmentation process using Otsu’s method and based
on components a* and b*, where each image showed two FAWs found on the considered
region of maize leaves.

Figure 5. Segmentation process using Otsu’s method. (a) Original image, (b) channel a*, (c) channel
a* histogram, and (d) segmented image result.
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Figure 6. Segmentation process using Otsu’s method. (a) Original image, (b) channel b*, (c) channel
b* histogram, and (d) segmented image result.

Figure 7. Segmentation process using Otsu’s method. (a) Original image, (b) segmented image by
channel a*, (c) segmented image by channel b*, and (d) segmented image result.
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Figure 8. Segmentation process using Otsu’s method. (a) Original image, (b) channel a*, (c) channel
a* histogram, and (d) segmented image result.

Figure 9. Segmentation process using Otsu’s method. (a) Original image, (b) channel b*, (c) channel
b* histogram, and (d) segmented image result.
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Figure 10. Segmentation process using Otsu’s method. (a) Original image, (b) segmented image by
channel a*, (c) segmented image by channel b*, and (d) segmented image result.

When the histograms of the a* components of Figures 5 and 8 are analyzed, it can
be seen that the pixels with the lowest values, represented by the blue color, refer to the
pixels of maize plant leaves. Conversely, the highest-value pixels, in red, represent pest
pixels and other anomalies present on the leaf. Therefore, to segment the pest from the
rest of the image, only pixels with values above the threshold obtained by Otsu’s method
are considered.

However, based on the tests conducted on the segmentation of images of FAWs on
leaves using Otsu’s method and only the a* component of the CIE L*a*b* color space, it
was determined that, despite the proven efficiency of this segmentation method, there is
an evident need for a second segmentation stage. Assays were then performed using the
b* component.

In histogram analysis of Figures 6 and 9, it can be seen that the pixels with the lowest
values represent the pixels of the pest and some parts of the leaf. Therefore, to segment the
pest from the rest of the image, only pixels with values below the threshold obtained by
Otsu’s method were considered.

Approximating the segmentation process using only the a* component, segmentation
using the b* component also resulted in an image with parts of the leaf still in it. However,
it was possible to verify that, in the spatial domain of the image, the non-segmented parts
referring to the leaf in the segmentation with the a* component did not belong to the same
spatial locations as the segmentation result achieved by the b* component. Therefore,
based on the results obtained via the segmentation of the pest from the image on a leaf
by the a* and b* components of the CIE L*a*b* color space, a new segmentation step was
performed, this time in the form of an intersection. It can be observed from the results that
segmentation by intersection proved to be efficient in the segmentation of images of pests
on leaves.

Figures 11 and 12 illustrate the image segmentation process using Otsu’s method
and based on the b* components of FAWs found in the considered region of maize cobs.
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In Figure 11, only one FAW caterpillar is shown. In Figure 12, two FAW caterpillars in
different stages are shown.

Figure 11. Segmentation process using Otsu’s method. (a) Original image, (b) channel b*, (c) channel
b* histogram, and (d) segmented image result.

Figure 12. Segmentation process using Otsu’s method. (a) Original image, (b) channel b*, (c) channel
b* histogram, and (d) segmented image result.
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For the segmentation of the FAW on maize cobs using Otsu’s method, the results
of the tests performed on the a* component of the CIE L*a*b* color space are shown
to be inefficient, given the conversion process from the RGB color space. Thus, for the
segmentation of pests on maize cobs, only the b* component was used.

The histograms of the map of the b* component (Figures 11 and 12) show that the
highest-value pixels represent the maize cob pixels in the b* component. Thus, to segment
the FAW caterpillars from all the collected images, pixels with values below the threshold
obtained by Otsu’s method were considered.

The results of the segmentation process showed that parts of the cob were not com-
pletely segmented. These results were expected for the segmentation of both images with
spikes and images containing leaves because during the tests performed to validate the
segmentation step of the standard method, the complexity of image formation was verified
in terms of the two values of the pixels that constitute both the FAW and the background of
the image.

Thus, it could be verified that for images of FAW caterpillars found on leaves, the
segmentation process using Otsu’s method and the a* and b* maps achieved a result con-
sidered ideal, whereas for images of FAW caterpillars found on cobs, only the segmentation
using the map of the b* component was sufficient.

In relation to image descriptors, in this work, we considered the use of the HOG and
Hu methodologies.

The HOG descriptor was used to extract texture features of the FAW. Table 5 displays
the parameterization of the HOG descriptor.

Table 5. HOG descriptor parameters.

Parameter Value

Pixels per cell 16 × 16
Cells per block 2 × 2

Numbers of orientations 9
Feature vector TRUE

Transform SQRT FALSE

For the execution of the HOG descriptor, previously segmented images were resized
to obtain a spatial resolution of 256 × 256 pixels. Once the parameters of the HOG de-
scriptor were applied to the resized images, it was possible to generate a feature vector of
8100 positions in the form of V[HOG] for each image of the FAW, as illustrated in Figure 13.

Figure 13. HOG feature descriptor. (a) Segmented fall armyworm image; (b) HOG image.



Electronics 2025, 14, 1449 22 of 38

Once the feature vector (V[HOG]) was obtained through the use of the HOG descriptor,
the Hu invariant moment descriptor was then applied to the FAW images, as demonstrated
in Figure 14.

Figure 14. Hu invariant moment results. (a) Fall armyworm stage, 1 (M1 = [2.581], M2 = [5.231],
M3 = [9.430], M4 = [10.169], M5 = [20.381], M6 = [−13.881], M7 = [−20.003]). (b) Fall armyworm,
stage 3 (M1 = [2.4329], M2 = [4.9603], M3 = [8.2253], M4 = [9.0384], M5 = [−18.623], M6 = [−11.739],
M7 = [17.673]).

Thus, for each image of the FAW, a feature vector (V[Hu]) was generated, containing
the seven invariant moments of Hu, that is, the shape and size features of the pests: M1,
M2, M3, M4, M5, M6, and M7.

Considering the obtained descriptors, one referring to texture characteristics (HOG)
and another referring to geometric characteristics (Hu), it was possible to classify the
patterns of the FAW in its different stages of development after applying PCA to reduce the
feature vector.

In fact, in feature extraction using the HOG descriptor and the Hu invariant moment
descriptor, the feature vectors (V[HOG] and V[Hu]) were concatenated to generate a single
vector of features (V[HOG,Hu]) with 8107 positions, as illustrated in Figure 15.

Figure 15. Feature vector example (Vetor[HOG,Hu]).

Therefore, because the values referring to texture, shape, and size characteristics are
in different scales, it was necessary to normalize them before the generation of a database
with the characteristic features of the patterns presented in each analyzed image.

Furthermore, by using PCA, it was possible to achieve a dimensionality reduction
from 2280 to 128 principal components, maintaining approximately 98% of the variability
of the original data, as shown in Figure 16.

Figure 16. Feature vector example (Vetor[HOG,Hu]) obtained via PCA.

In the tests on the classification and ML stage, SVM classifiers with a linear kernel
function and a sigmoid kernel function were considered. For the validation of each SVM
classifier, both the accuracy and precision in classifying the FAW target stage were taken
into account.

For the training and testing stages of the SVM classifiers and the CNN, dataset pro-
portions of 50%:50%, 70%:30%, and 80%:20% were evaluated for training and testing,
respectively. Tables 6, 7, and 8 present the results of SVM classifiers with a linear kernel
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function and dataset proportions of 50% for training and testing, 70% for training and 30%
for testing, and 80% and 20% for training and testing, respectively.

Table 6. Fall armyworm stage classification with SVM linear function kernel and dataset proportion
of 50% for training and testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.81 0.63 0.71 183 0.59
# 2 0.83 0.69 0.75 183 0.64
# 3 0.73 0.79 0.83 183 0.73
# 4 0.85 0.79 0.82 183 0.72
# 5 0.85 0.72 0.78 183 0.68

Table 7. Fall armyworm stage classification with SVM linear function kernel and dataset proportions
of 70% for training and 30% for testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.74 0.68 0.71 106 0.56
# 2 0.78 0.65 0.71 106 0.57
# 3 0.82 0.79 0.80 106 0.70
# 4 0.81 0.78 0.80 106 0.69
# 5 0.86 0.75 0.80 106 0.71

Table 8. Fall armyworm stage classification with SVM linear function kernel and dataset proportions
of 80% for training and 20% for testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.71 0.61 0.66 72 0.50
# 2 0.72 0.65 0.69 72 0.53
# 3 0.79 0.81 0.80 72 0.68
# 4 0.81 0.78 0.79 72 0.68
# 5 0.82 0.75 0.78 72 0.67

Tables 9, 10, and 11 present the results of the SVM classifiers with sigmoidal kernel
functions and dataset proportions of 50%:50%, 70%:30%, and 80%:20% for training and
testing, respectively.

Table 9. Fall armyworm stage classification with SVM sigmoidal function kernel and dataset propor-
tion of 50% for training and testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.80 0.87 0.83 183 0.72
# 2 0.80 0.81 0.81 183 0.68
# 3 0.80 1.00 0.89 183 0.80
# 4 0.81 0.99 0.89 183 0.80
# 5 0.80 0.85 0.82 183 0.71
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Table 10. Fall armyworm stage classification with SVM sigmoidal function kernel and dataset
proportions of 70% for training and 30% for testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.75 0.86 0.86 106 0.67
# 2 0.77 0.83 0.80 106 0.68
# 3 0.77 1.00 0.87 106 0.77
# 4 0.77 0.99 0.87 106 0.77
# 5 0.75 0.87 0.81 106 0.89

Table 11. Fall armyworm stage classification with SVM sigmoidal function kernel and dataset
proportions of 80% for training and 20% for testing.

SMV
Classifier Precision Recall F1 Score Support

Vectors
Accuracy

(%)

# 1 0.77 0.88 0.82 72 0.70
# 2 0.80 0.86 0.81 72 0.69
# 3 0.78 1.00 0.88 72 0.78
# 4 0.78 0.97 0.86 72 0.76
# 5 0.77 0.86 0.81 72 0.68

Taking into account the classifiers having linear and sigmoidal function kernels, the
assessed results revealed their efficiency in the dynamic classification of the FAW. It was
possible to observe that the best results were obtained by using the sigmoidal function
kernel. Therefore, a deeper evaluation of the SVM classifier based on such a function kernel
was considered as follows.

For stage 1, the SVM classifier with a proportion 50%:50% of the dataset for training
and testing presented the best result, with an accuracy rate of 72% and a precision rate
of 80%. For stage 2, the SVM classifier with a proportion of 80%:20% of the dataset for
training and testing, respectively, showed the best results based on precision and accuracy
of 80% and 69%, respectively. For stage 3, the SVM classifier with a proportion of 50% of
the dataset for training and testing showed the best result, with 80% accuracy and precision.
For stage 4, the best result was demonstrated by the SVM classifier with a proportion of
50% of the dataset for training and testing. Finally, for stage 5, the SVM classifier that
presented the best result was also the classifier with a proportion of 50% of the dataset for
training and testing, resulting in 71% accuracy and 80% precision.

Figures 17–19 illustrate the confusion matrices and ROC curves for the performance
of Classifier #1.

Based on the measurements of the false-positive rate and true-positive rate, the AUC
measures resulting from each version of Classifier #1 could be analyzed. In this way, it
could be verified that the proportion of 50% of the dataset used for training and testing led
to the best result in relation to the classifiers set for this work placement, i.e., AUC = 52%,
followed by the classification with a proportion of 70%:30% of the dataset used for training
and testing, respectively, with AUC = 48%. The classification with a proportion of 80%:20%
of the dataset used for training and testing, respectively, led to the result of AUC = 45%.

Figures 20–22 illustrate the confusion matrices and ROC curves for Classifier #2.
For Classifier #2, for the produced AUC measures, it was observed that the classifier

with a proportion of 50% of the dataset used for training and testing obtained the best
result in relation to the classifiers set for this work placement, i.e., AUC = 50%, followed
by the classification with a proportion of 80%:20% of the dataset used for training and
testing, respectively, with AUC = 49%. The classification with a proportion of 70%:30% of
the dataset used for training and testing, respectively, obtained a result of AUC = 45%.
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Figure 17. Confusion matrix (a) and ROC curve (b) of Classifier #1 with sigmoidal function kernel
and dataset proportion of 50% for training and 50% for testing.

Figure 18. Confusion matrix (a) and ROC curve (b) of Classifier #1 with sigmoidal function kernel
and dataset proportion of 70% for training and 30% for testing.

Figure 19. Confusion matrix (a) and ROC curve (b) of Classifier #1 with sigmoidal function kernel
and dataset proportion of 80% for training and 20% for testing.
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Figure 20. Confusion matrix (a) and ROC curve (b) of Classifier #2 with sigmoidal function kernel
and dataset proportion of 50% for training and 50% for testing.

Figure 21. Confusion matrix (a) and ROC curve (b) of Classifier #2 with sigmoidal function kernel
and dataset proportion of 70% for training and 30% for testing.

Figure 22. Confusion matrix (a) and ROC curve (b) of Classifier #2 with sigmoidal function kernel
and dataset proportion of 80% for training and 20% for testing.

Figures 23–25 illustrate the confusion matrices and ROC curves for Classifier #3.
For Classifier #3, for the produced AUC measures, it was observed that the classifier

with a proportion of 50% of the dataset used for training and testing presented a result
of AUC = 48%, and the same result was achieved for classification with a proportion of
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70%:30% of the dataset used for training and testing, respectively. The classification with a
proportion of 80%:20% of the dataset used for training and testing, respectively, achieved a
result of AUC = 44%.

Figure 23. Confusion matrix (a) and ROC curve (b) of Classifier #3 with sigmoidal function kernel
and dataset proportion of 50% for training and 50% for testing.

Figure 24. Confusion matrix (a) and ROC curve (b) of Classifier #3 with sigmoidal function kernel
and dataset proportion of 70% for training and 30% for testing.

Figure 25. Confusion matrix (a) and ROC curve (b) of Classifier #3 with sigmoidal function kernel
and dataset proportion of 80% for training and 20% for testing.

Figures 26–28 illustrate the confusion matrices and ROC curves for Classifier #4.
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Figure 26. Confusion matrix (a) and ROC curve (b) of Classifier #4 with sigmoidal function kernel
and dataset proportion of 50% for training and 50% for testing.

Figure 27. Confusion matrix (a) and ROC curve (b) of Classifier #4 with sigmoidal function kernel
and dataset proportion of 70% for training and 30% for testing.

Figure 28. Confusion matrix (a) and ROC curve (b) of Classifier #4 with sigmoidal function kernel
and dataset proportion of 80% for training and 20% for testing.

With regard to Classifier #4, the classifiers with a proportion of 50% of the dataset
used for training and testing presented the best result in relation to the classifiers set for
this work placement, i.e., AUC = 49%, followed by the classification with a proportion of
70%:30% of the dataset used for training and testing, respectively, with AUC = 43%. The
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classification with a proportion of 80%:20% of the dataset used for training and testing,
respectively, achieved a result of AUC = 35%.

Figures 29–31 illustrate the confusion matrices and ROC curves for Classifier #5.

Figure 29. Confusion matrix (a) and ROC curve (b) of Classifier #5 with sigmoidal function kernel
and dataset proportion of 50% for training and 50% for testing.

Figure 30. Confusion matrix (a) and ROC curve (b) of Classifier #5 with sigmoidal function kernel
and dataset proportion of 70% for training and 30% for testing.

Figure 31. Confusion matrix (a) and ROC curve (b) of Classifier #5 with sigmoidal function kernel
and dataset proportion of 80% for training and 20% for testing.
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In relation to Classifier #5, for the produced AUC measures, it was observed that the
classification with a proportion of 50% of the dataset used for training and testing presented
the best result in relation to the classifiers set for this work placement, i.e., AUC = 45%,
followed by the classification with a proportion of 80%:20% of the dataset used for training
and testing, respectively, with AUC = 42%. The classification with 70%:30% of the dataset
used for training testing, respectively, achieved a result of AUC = 34%.

It was also observed that, even in some cases where the metrics of the confusion matrix
and the ROC curve showed considerable rates of false positives and false negatives, the
classification rate of true-positive values was significantly more accurate. Such behavior
can be explained by the fact that all images included the pest and that, even at different
stages of development, its shape, size, and texture characteristics are similar.

Since the use of SVM classifiers was useful in the methodology for FAW recognition
and classification, a deep analysis was carried out in order to select the best parameters.
In terms of time consumption for training and testing, the best proportion among the
presented results is 70% for training and 30% for testing, as illustrated in Table 12.

Additionally, analyses with the same proportions of data split were carried out on
the CNN for FAW classification. In this scenario, for hidden layers, the ReLU function
activation was selected and as the final activation function for the output layer, and the
Softmax function was applied. The considered number of epochs was equal to twelve.

Tables 13, 14, and 15 present the results obtained using the A-CNN with dataset
proportions of 50%:50%, 70%:30%, and 80%:20% for testing and testing, respectively.

Table 12. Selected SVM classifiers for fall armyworm (Spodoptera frugperda) image pattern classification.

SVM Classifier Kernel Function Parameter C Parameter Delta (δ)

# 1 Sigmoidal 10 1,0
# 2 Sigmoidal 100 1,0
# 3 Sigmoidal 0.1 0.1
# 4 Sigmoidal 0.1 10
# 5 Sigmoidal 1 1

Table 13. Fall armyworm stage classification with A-CNN and dataset proportion of 50% for training
and testing.

Instar Precision Recall F1 Score Accuracy (%)

# 1 0.84 0.83 0.83 0.90
# 2 0.96 0.69 0.80 0.90
# 3 0.80 1.00 0.89 0.90
# 4 0.95 0.95 0.95 0.90
# 5 1.00 1.00 1.00 0.90

Table 14. Fall armyworm stage classification with A-CNN and dataset proportion of 70% for training
and 30% for testing.

Instar Precision Recall F1 Score Accuracy (%)

# 1 0.55 0.97 0.70 0.83
# 2 1.00 0.13 0.23 0.83
# 3 1.00 0.99 0.99 0.83
# 4 0.94 1.00 0.97 0.83
# 5 1.00 1.00 1.00 0.83
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Table 15. Fall armyworm stage classification with A-CNN and dataset proportions of 80% for training
and 20% for testing.

Instar Precision Recall F1 Score Accuracy (%)

# 1 0.88 0.94 0.91 0.84
# 2 1.00 0.80 0.89 0.84
# 3 0.60 1.00 0.85 0.84
# 4 0.98 0.51 0.67 0.84
# 5 1.00 0.97 0.98 0.84

Figures 32–34 illustrate the confusion matrices and ROC curves for the results obtained
using the A-CNN.

Tables 16, 17, and 18 present comparisons of SVM classifiers and the A-CNN based
on precision and accuracy, with dataset proportions of 50%:50%, 70%:30%, and 80%:20%
training and testing, respectively.

Table 16. Comparison of fall armyworm classification with SVM and A-CNN using a dataset
proportion of 50% for training and testing.

Instar SVM Accuracy
(%)

CNN Accuracy
(%)

SMV
Precision

CNN
Precision

# 1 0.72 0.90 0.80 0.84
# 2 0.68 0.90 0.80 0.96
# 3 0.80 0.90 0.80 0.80
# 4 0.80 0.90 0.91 0.95
# 5 0.71 0.90 0.80 1.00

Table 17. Comparison of fall armyworm classification with SVM and the A-CNN using dataset
proportions of 70% for training and 30% for testing.

Instar SVM Accuracy
(%)

CNN Accuracy
(%)

SMV
Precision

CNN
Precision

# 1 0.67 0.83 0.75 0.55
# 2 0.68 0.83 0.77 1.00
# 3 0.77 0.83 0.77 1.00
# 4 0.77 0.83 0.77 0.94
# 5 0.89 0.83 0.75 1.00

Table 18. Comparison of fall armyworm classification with SVM and the A-CNN using dataset
proportions of 80% for training and 20% for testing.

Instar SVM Accuracy
(%)

CNN Accuracy
(%)

SMV
Precision

CNN
Precision

# 1 0.70 0.84 0.77 0.88
# 2 0.69 0.84 0.80 1.00
# 3 0.78 0.84 0.78 0.60
# 4 0.76 0.84 0.78 0.98
# 5 0.68 0.84 0.77 1.00

For the configurations presented as options for the computational intelligence stage,
both for the use of SVM classifiers (with an ML focus) and for the use of the A-CNN (with
a DL focus), percentages of 50:50%, 70:30%, and 80:20% were considered for training and
testing, respectively. For such a context, both the confusion matrix and the respective ROC
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curves were observed in order to evaluate the information regarding precision and accuracy
for all different instars of the FAW caterpillar.

Figure 32. Confusion matrix (a) and ROC curve (b) of the A-CNN classifier with dataset proportions
of 50% for training and 50% for testing.

Figure 33. Confusion matrix (a) and ROC curve (b) of the A-CNN classifier with dataset proportions
of 70% for training and 30% for testing.

Figure 34. Confusion matrix (a) and ROC curve (b) of the A-CNN classifier with dataset proportions
of 80% for training and 20% for testing.

Taking into account these results, it was possible to observe the following. For instar
#1 the best configuration was obtained using the A-CNN with a proportion of 50%:50%
for testing and training, respectively, leading to an accuracy equal to 90% and a precision
equal to 84%. For instar #2, the best configuration was obtained using the A-CNN with a
proportion of 50%:50% for testing and training, respectively, leading to an accuracy equal to
90% and a precision equal to 96%. For instar #3, the best configuration was obtained using
the A-CNN with a proportion of 50%:50% for testing and training, respectively, leading to
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an accuracy equal to 90% and a precision equal to 80%. It is important to observe that for
instar #3, the resulting precision value, when using the SVM classifier, was equal to that
achieved by the A-CNN; however, the accuracy value was smaller. For instar #4, the best
configuration was obtained using the A-CNN with a proportion of 50%:50% for testing and
training, respectively, leading to an accuracy equal to 90% and a precision equal to 95%.
For instar #5, the best configuration was obtained using the A-CNN with a proportion of
50%:50% for testing and training, respectively, leading to an accuracy equal to 90% and
a precision equal to 100%. Table 19 presents the final parametrization for the A-CNN to
classify the different instars of FAW caterpillars.

Table 19. A-CNN parametrization for fall armyworm (Spodoptera frugperda) image pattern classification.

Instar
Hidden-Layer

Activation
Function

Output-Layer
Activation
Function

Epochs

# 1 ReLU Softmax 10
# 2 ReLU Softmax 10
# 3 ReLU Softmax 10
# 4 ReLU Softmax 10
# 5 ReLU Softmax 10

Furthermore, Figure 35 illustrates the resultant context analysis considering the use
of both ML and DL for FAW caterpillar classification purposes, focusing its control in a
maize crop area. It was possible to observe that the structure that considers ML with SVM
classifiers solved the problem in a good way, including gains in performance; however,
A-CNN showed much better results.

Figure 35. Comparative time-consumption analysis between ML and CNN training and testing for
FAW stage identification.

The use of DL has been increasing in recent years, allowing for a multiplicity of data
analyses from different angles. Therefore, DL algorithms are recommended problems that
require multiple solutions or that may depend more heavily on situations that require the
leveraging of technologies to solve problems that involve decisions based on unstructured
or unlabeled data.

Although the use of ML based on structured data enabled a solution, including
facilities for interoperability, the use of one A-CNN allows for a robust decision support
system for FAW caterpillar classification. Additionally, such a result can be coupled with
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an agricultural fungicide sprayer to control varying dose rates as a function of FAW instars,
i.e., enabling pest control in maize plants.

Another relevant aspect observed in this contextual analysis is that the use of ML
required less training time compared to the same percentage of samples used in DL, which
could be of interest for the scope of the problem related to pattern recognition and dynamic
classification of FAW caterpillars in maize crops, leading to the opportunity to use less
expensive hardware. However, today, one may use advanced hardware, such as Field
Programmable Gate Arrays (FPGAs) or even Graphical Processor Units (GPUs) for time
acceleration, which can bring about significant reductions in time processing, i.e., making
the use of DL necessary. In fact, the experiments conducted for validation of the method
proposed herein show its capacity to classify the patterns presented by FAWs in maize
crops, which involves observing their different color, shape, size, and texture characteristics.
The spatial location on maize plants should also be considered, i.e., whether present on the
leaves or on the cobs.

4. Conclusions
An innovative method for in situ FAW recognition and classification is presented. The

proposed method has the ability to evaluate the growth stages of this caterpillar species
directly on maize plants. For validation, digital images of different stages of growth and dif-
ferent quantities of caterpillars were evaluated. Likewise, for image processing, techniques
like filtering, segmentation by color scales, feature extraction based on the HOG and Hu
algorithms, and the use of multivariate statistics with PCA were considered. Additionally,
a contextual analysis for computational intelligence was conducted, taking into account not
only an ML structure based on a set of SVM classifiers but also a DL supported by A-CNN.
Results based on the evaluation of accuracy, precision, time processing, and hardware
availability confirmed the DL structure with the A-CNN model as the final choice for the
presented method, i.e., instead of the ML structure based on the use of SVM classifiers. The
developed method has also proven to be useful in FAW pest control, which is considered
the most dangerous pest for maize production, i.e., its use can allow for a decrease in losses,
as well as the minimization of economic damage experienced farmers and producers. Im
future work, one may consider the evolution of the developed method by including other
computational intelligence techniques for pattern recognition and classification in both
an unsupervised manner and through the use of a multi-spectral camera embedded in an
Unmanned Aerial Vehicle (UAV) for real-time operation.
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Abbreviations
The following abbreviations are used in this manuscript:

A-CNN AlexNet Convolutional Neural Network
AI Artificial Intelligence
BBS Bacterial Brown Spot
BSR Bacterial Soft Rot
CIE Commission Internationale de l’Eclairage
CNN Convolutional Neural Network
DL Deep Learning
F-CNN Faster Region-based Convolutional Neural Network
HOG Histogram of Oriented Gradient
LDA Linear Discriminant Analysis
MAP Maximum A Posteriori
ML Machine Learning
MSE Mean Squared Error
NLM Non-Local Mean
PBR Phytophthora Black Rot
PCA Principal Component Analysis
PSNR Peak Signal-to-Noise Ratio
R-FCN Region-based Fully Convolutional Neural Network
RBF Radial Basis Function
ROI Region Of Interest
SNR Signal-to-Noise Ratio
TN Tensor Network
SVM Support Vector Machine
USDA United States Department of Agriculture
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