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Abstract 

Despite advances in determining the factors influencing clea v age activity of a CRISPR–Cas9 single guide RNA (sgRNA) at an (off-)target DNA se- 
quence, a comprehensive assessment of pertinent ph y sico-chemical / str uct ural descriptors is missing. In particular, studies ha v e not y et directly 
exploited the information-rich internal protein 3D nanoenvironment of the sgRNA–(off-)target strand DNA pair, which we obtain by harvesting 634 
980 residue-le v el features f or CRISPR–Cas9 comple x es. As a proof-of-concept study, we simulated the internal protein 3D nanoenvironment 
for all experimentally available single-base protospacer-adjacent motif-dist al mut ations for a given sgRNA–target strand pair. By determining 
the most rele v ant residue-le v el features f or CRISPR–Cas9 off-target clea v age activity, w e de v eloped S TING_CRISPR, a machine learning model 
deliv ering accurate predictiv e perf ormance of off-target clea v age activity f or the type of single-base mutations considered in this study. By 
interpreting STING_CRISPR, we identified four important Cas9 residue spatial hotspots and associated str uct ural / physico-chemical descriptor 
classes influencing CRISPR–Cas9 (off-)target clea v age activity for the sgRNA–target strand pairs co v ered in this study. 
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Introduction 

CRISPR–Cas9 is a programmable RNA-guided endonucle-
ase which originates from adaptive bacterial defense systems
[ 1–3 ]. The CRISPR–Cas9 genome editor is composed of a
Cas9 nuclease and a single guide RNA (sgRNA) [ 4 ]. Cas9,
which stands for CRISPR-associated protein 9, is a bi-lobed
enzyme, in which the sgRNA is placed between the alpha-
helical lobe (called REC), which mediates nucleic acid bind-
ing, and the nuclease lobe (containing the RuvC and HNH
domains), which mediates DNA cleavage. Cas9 genome edit-
ing involves three stages. First, the protospacer-adjacent motif
(PAM)-interacting domain (PI) of Cas9 recognizes the PAM
(5 

′ -NGG in the case of SpCas9). R-loop formation then takes
place, consisting of the unwinding of the targeted sequence
(on-target)’s double-stranded DNA (dsDNA) and sgRNA–
target strand DNA (sgRNA–tsDNA) heteroduplex formation
via complementary base pairing between the sgRNA’s spacer
sequence and target site DNA’s target strand [ 2 ]. Finally, the
Cas9 enzyme cleaves the DNA in a specific spot, typically 3-
to 4-bp upstream of the PAM [ 5 ]. 

The Cas9 nuclease may also cleave off-targets, i.e. genomic
DNA sequences containing mismatches with respect to the
sgRNA, which results in undesired cleavage. The possibility
of off-target cleavage depends on the number of mismatches,
their position, and the type of mismatch [ 6 , 7 ]. For example,
a PAM-distal 4-bp mismatch can trap the catalytic HNH do-
main in an inactive conformation, but mismatches at PAM-
proximal positions preserve the shape of the RNA:DNA hy-
brid [ 8 ]. Accurate identification of all potential off-target sites
and evaluation of their activities have been the goals of vari-
ous computational tools [ 9–17 ]. 

Machine learning (ML) has been instrumental in building
the most widely used and efficient (as evaluated by predic-
tion accuracy) models for on / off-target activity prediction [ 9 ,
10 , 18 ]. These models require the careful selection of relevant
features related to the activity of a given sgRNA at a poten-
tial (on / off) target site. Some of the most widely used observed
features originate from pioneering work on optimized sgRNA
design [ 13 , 19 ] and include (but are not limited to) dinu-
cleotide and single-nucleotide identities at each position of the
sgRNA, position independent nucleotide counts, the location
of the sgRNA within the gene, the GC count of the sgRNA,
as well as thermodynamic features. These features were first
used to feed ‘traditional’ predictive ML methods, e.g. regular-
ized linear regression, support vector machines [ 20 ], random
forest [ 21 ], and gradient-boosted regression trees [ 22–25 ], just
to mention a few. Deep learning (DL)-based off-target pre-
diction models [ 9 , 10 ] were also proposed. Deep neural net-
works [ 26 ] have the advantage of high prediction accuracy
but make model interpretation more challenging and need a
large amount of training data. 

Current state-of-the-art DL approaches [ 27–30 ] for off-
target activity prediction complement the sequence features
with a diverse set of physically inspired scores such as ap-
proximate energy terms [ 16 ] for sgRNA–tsDNA hybridiza-
tion and epigenetic features essential for off-target activity
[ 27 ], but have not yet directly exploited knowledge based
on the information-rich internal 3D local structure (protein)
environment surrounding the sgRNA–tsDNA sequence pair,
which has been investigated in various experimental studies
[ 7 , 31 ]. This work aims to make the first step towards filling
this gap and paves the way for a new generation of models that
are rooted in the paradigms of rational design, interpretabil- 
ity , and explainability , and therefore aspires to deliver a deeper 
insight into the mechanistic factors that underlie (off-)target 
cleavage activity in CRISPR–Cas9 gene editing. 

Atomistic molecular dynamics (MD) has been used to char- 
acterize the functioning of the CRISPR–Cas9 systems, provid- 
ing trajectories and therefore a series of conformations for sys- 
tems with distinct base pair mismatches at PAM-distal sites 
of the sgRNA–tsDNA heteroduplex. Here, we found that the 
modulation of cleavage activity induced by a base pair mis- 
match at PAM-distal sites is captured by the internal protein 

3D nanoenvironment of the sgRNA–tsDNA pair, hereon re- 
ferred to as ‘nanoenvironment’. In particular, we studied the 
role of different descriptors and amino acid residues in order 
to build and train an ML model—named STING_CRISPR—
for CRISPR–Cas9 off-target activity prediction of all possible 
single PAM-distal mismatches of the target of a given sgRNA.
This novel approach led to high accuracy (measured in terms 
of Spearman and Pearson correlations) of experimental off- 
target activity prediction for sgRNA–tsDNA pairs with single 
PAM-distal mismatches of a given sgRNA (further referred 

to as studied sgRNA–tsDNA pairs). However, our presented 

model unlike established models is not yet capable of pre- 
dicting cleavage activity for any sgRNA–tsDNA pair. There- 
fore, this study does not aim for the development of a gen- 
eral CRISPR–Cas9 off-target activity prediction model but 
the presentation of a proof-of-concept investigation of uti- 
lizing the internal protein 3D nanoenvironment for CRISPR–
Cas9 off-target activity prediction. Scikit-learn’s SelectFrom- 
Model feature selection step [ 32 ] in the trained ML pipeline 
revealed that density, side chain orientation (SCO), accessi- 
bility, weighted contact number entropy density, electrostatic 
potential, sponge, cross presence order, contact energy density,
graph descriptor, and solvation, measured at 23 Cas9 residues 
are of fundamental importance for off-target cleavage activ- 
ity prediction for the studied sgRNA–tsDNA pairs (see the 
Supplementary material for the specific definition of each de- 
scriptor). Our results lay the foundations for a new type of 
interpretable ML models capable of predicting CRISPR–Cas9 

off-target activity. 

Materials and methods 

The importance of accurately predicting the (off-)target cleav- 
age activities of the CRISPR–Cas9 gene editing system fueled 

the application of ML / DL models developed for this predic- 
tion task. Most approaches presented in the literature [ 9 , 10 ,
18 ] build on labeled datapoints that contain the sgRNA (or 
guide) and the (off-)target DNA sequences s g , s t together with 

an experimentally derived cleavage activity label, a . A given 

dataset with N such datapoints, 
{(

s (i ) g , s 
(i ) 
t , a i 

)}N 

i =1 can be par- 
titioned into training, validation, and test sets so that models 
for (off-)target cleavage activity prediction can be constructed.
Recent years have witnessed the development of a variety of 
customized models [ 9 , 10 , 18 ] that use distinct DL architec- 
tures and / or encoding of the guide and target sequence pair.
While all these approaches bring distinct technical contribu- 
tions, they all aim to learn the following function: 

f a : S g × S t → R , (s g , s t ) �→ f a (s g , s t ) , (1) 

where S g and S t are the sets of all guide and target sequences,
respectively, and f a is the functional map from a pair of said 
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Figure 1 . Sc hematic summary f or obtaining S TING_CRISPR, our ML model predicting CRISPR–Cas9 clea v age activity f or the studied sgRNA–tsDNA 

pairs. ( A ) Comparison between the purely sequence-based and the nanoenvironment-based approaches for CRISPR–Cas9 clea v age activity prediction b y 
using an ML / DL model and STING_CRISPR, respectively. Catalytically active CRISPR–Cas9 complexes with sgRNA (middle blue strand) and dsDNA 

(target: top green strand, non-target: bottom purple strand) in PDB 5F9R crystal str uct ure ( B ) and CMUT1 ( C ). Yellow highlights at position +19 show the 
nucleotides mutated in CMUT1 compared with 5F9R. The leftmost PAM-distal base pair is +20, and the rightmost PAM-proximal base pair is +1. The 20 
sgRNA–tsDNA base pairs (vertical black lines) form the heteroduplex. Both DNA strands are cleaved (black arrows) by the HNH and RuvC domains of 
CRISPR–Cas9, respectively. ( D ) The three-step data pipeline for generating the residue-resolved nanoenvironment dataset from the guide–target 
dataset. ( E ) The nanoenvironment dataset contains | H || S | residue-resolved STING features, namely | S | = 1671 STING, i.e. physico-chemical and 
str uct ural, descriptors, each one e v aluated at | H | sgRNA–tsDNA heteroduple x-pro ximal residues (HPRs). ( F ) Our ML pipeline which predicts 
CRISPR–Cas9 clea v age activity, with h yperparameters m 1 , m 2 , and f . ( G ) Grid search with fiv e-f old cross-v alidation to optimiz e models m 1 and m 2 , 
f ollo w ed b y feature set siz e reduction via thresholding of Spearman correlation change ( �ρS ) to find f * , resulting in a pipeline with h yperparameters m 

∗
1 , 

m 

∗
2 , and f * . Shown on the top left, the number of HPRs | H | vary for different train-test splits (with the training and test partitions in grey and blue, 

respectively) during performance evaluation and five-fold cross-validation. 
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equences to activity (see sequence approach in Fig. 1 A). The
vailability of comprehensive datasets [ 11 ] is fundamental for
roducing models capable of accurately predicting activities
ssociated with unseen guide and target sequences. Methods
iming to learn the function shown by equation ( 1 ) have to use
ata restricted to a particular Cas enzyme (most commonly
pCas9) and by construction they are incapable of predicting
changes in activity caused by amino acid residue mutations in
the Cas enzyme. The availability of models that predict cleav-
age activity based on local physical and chemical properties
which can be traced back to the amino acid composition of
the Cas enzyme would be of utmost importance as they would
catalyse the development of bioengineered Cas enzymes with
maximal specificity and efficiency. 
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To meet this objective, we reframe the learning task to
that of deciphering the relationship between target cleav-
age activity and the 3D nanoenvironment—a collection of
features characterizing the sgRNA–dsDNA–Cas9 complex,
namely the Cas enzyme and the environment encapsulat-
ing the guide / target pair in the CRISPR–Cas9 complex (see
Fig. 1 A). The 3D nanoenvironment is represented by a vec-
tor in R 

M where M is a suitable integer we determine for
the system. A vector can be derived based on a conforma-
tion of the sgRNA–dsDNA–Cas9 complex with zero or more
nucleotide mutations in the sgRNA, tsDNA, and / or non-
target strand DNA (ntsDNA). We can obtain a vector for a
given sgRNA–dsDNA–Cas9 complex via the following two
steps: (i) construct a 3D atomistic model of the said com-
plex, and (ii) obtain M residue-resolved features character-
izing the structural and physico-chemical properties of the
complex by calculating the STING features for its atomistic
model (see nanoenvironment approach in Fig. 1 A). We real-
ize that the same sgRNA–dsDNA–Cas9 complex may assume
various distinct conformations each giving rise to a poten-
tially distinct 3D nanoenvironment. Therefore as the confor-
mation of the sgRNA–dsDNA–Cas9 complex may dynami-
cally change so does the 3D nanoenvironment calculated from
it. To account for having multiple conformations representing
sgRNA–dsDNA–Cas9 complexes, we performed MD calcula-
tions to generate dynamical trajectories based on the atomistic
model for each sgRNA–dsDNA–Cas9 complex and obtain the
M features (representing the 3D nanoenvironment) for each of
the k model conformations (snapshots) we sample from each
MD trajectory (see Fig. 1 D). The implementation details of
these steps are discussed in the sections ‘MD of the CRISPR–
Cas9 complex with guide–target pair’ and ‘STING descriptors
for CRISPR–Cas9 complex with a guide–target pair’. Given
that in this study we consider N distinct sgRNA–dsDNA–
Cas9 complexes (based on the distinct sgRNA–dsDNA pairs)
and k conformations for each complex (obtained from the cor-
responding MD trajectories), we altogether consider kN con-
formations. Obtaining the 3D nanoenvironment for each of
these conformations results in kN distinct 3D nanoenviron-
ments. Furthermore, we may label each 3D nanoenvironment
with the experimental cleavage activity of the corresponding
sgRNA–dsDNA pair. Thus, we can obtain a labeled dataset
D = 

{(
x i , a i 

)}kN 

i =1 , where x i ∈ R 

M and a i ∈ R (see nanoenviron-
ment dataset in Fig. 1 D). Having this labeled dataset enables
us learn the relationship between 3D nanoenvironment and
cleavage activity. Therefore, formally we aim to learn the fol-
lowing function: 

f̄ a : �3DN 

→ R , x �→ f̄ a (x ) , (2)

where �3DN 

⊂ R 

M and f̄ a (x ) is a functional map that takes
a vector in R 

M as input and then return a cleavage activity.
The dimension M of the vector x i can depend on the degree
of detail we choose for describing the 3D nanoenvironment. 

Having the dataset 
{(

x i , a i 
)}kN 

i =1 enables us to train a regres-
sion model to decipher the relationship between experimen-
tal cleavage activity and 3D nanoenvironment. Details on the
regression model with feature selection are discussed in the
section ‘ML models for CRISPR–Cas9 cleavage activity pre-
diction from STING descriptors’. 
MD of the CRISPR–Cas9 complex with guide–target 
pair 

MD simulations were performed using GROMACS version 

2020.2 [ 33 ], using bsc1 and AMBER force fields for nucleic 
acids and protein atoms, respectively. For water molecules,
the TIP3P model was used. Protonation states of titratable 
residues were estimated using the pypKa server [ 34 ]. Before 
the production runs, structures were subjected to NVT equi- 
libration for 400 ps using the modified Berendsen thermostat,
and to 1 ns of NPT equilibration using the Parinello–Rahman 

barostat. 

Targeted MD 

We chose as a reference structure for the enzyme and RNA 

sequence the crystal structure of the catalytically active Strep- 
tococcus pyogenes Cas9, primed for target DNA cleavage, in 

complex with single-stranded guide RNA and dsDNA (both 

target and non-target strands). The PDB code of this struc- 
ture is 5F9R, released in 2016. 5F9R has become the most 
commonly used reference in the literature in recent years. In- 
terestingly, in 2019 the 6O0Y structure was released [ 35 ]. Ob- 
tained via cryo-electron microscopy (cryo-EM), 6O0Y shows 
the conformation of the two key domains RuvC and HNH 

in the catalytically competent state. 5F9R and 6O0Y have 
the same sgRNA sequence. However, 6O0Y is lacking some 
key residues and atoms. Therefore, we decided to use the 
structural information contained in 6O0Y to adapt the con- 
formation of the more complete 5F9R structure. To do this,
we performed all-atom explicit solvent targeted MD (TMD) 
using PLUMED [ 36–38 ] as a plugin of GROMACS, in or- 
der to bring the RuvC and HNH domains of 5F9R to their 
catalytically active conformation, mutated from the 6O0Y 

structure. More specifically, the bias was applied to the heavy 
atoms of the two protein domains. The collective variable 
used was the root mean square deviation (RMSD), using a 
moving restraint with κ going from 0 to 10 

5 in 1.5 × 10 

8 

steps. 

Reference choice and mutants generation 

In order to identify our reference sequence for the analysis, we 
applied the following requirements by filtering the crisprSQL 

database [ 11 ]: having an sgRNA sequence identical or as close 
as possible to that of the structural reference; having a suffi- 
cient number of singly mutated entries in the PAM-distal re- 
gion of the target DNA strand; and the candidate sequence 
and the mutated entries must have experimental off-target 
cleavage activity data. We therefore selected an entry which 

differs only in one position (RNA base number 2) with re- 
spect to the 5F9R and 6O0Y structures and fulfils the other 
mentioned requirements. For this entry, 28 singly mutated 

and experimentally annotated other entries were found in the 
database. We then first mutated base 2 of RNA to adenine and 

base 29 of the tsDNA to thymine in our reference structure in 

order to make it identical to the reference sequence, and called 

it CMUT1 (see Fig. 1 B and C). Then we generated the same 
28 mutations that were also present in the database on the 
DNA target strand of CMUT1. Base mutations were done us- 
ing the software UCSF CHIMERA [ 39 ]. Each of them presents 
only a single mutation, located in the target DNA strand with 

respect to our reference. A table of the mutations, with associ- 
ated nomenclature, can be found in Supplementary Table S1 . 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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Table 1. List of 60 STING descriptor classes (bolded) considered in 
this study for characterizing the internal protein 3D nanoenvironment of 
CRISPR–Cas9’s sgRNA–tsDNA heteroduplex 

Parent descriptor classes 
Associated neighbour descriptor 
classes 

Accessibility 
Cross link order (CLO) CLO-GN, CLO-SW, CLO-WNA, 

CLO-VD 

Cross presence order (CPO) CPO-GN, CPO-SW, CPO-WNA, 
CPO-VD 

Curvature (Curv) Curv-GN, Curv-SW, Curv-WNA, 
Curv-VD 

Density Density-GN, Density-SW, 
Density-WNA, Density-VD 

DSSP 
Contact energy density 
(CED) 

CED-GN, CED-SW, CED-WNA, 
CED-VD 

Electrostatic potential (EP) EP-GN, EP-SW, EP-WNA, EP-VD 

Entropy density (ED) ED-GN, ED-SW, ED-WNA, ED-VD 

Graph descriptor (GD) GD-GN, GD-SW, GD-WNA, 
GD-VD 

Hydrophobicity 
Residue contacts (RC) RC-GN, RC-SW, RC-WNA, 

RC-VD 

Side chain orientation (SCO) SCO-GN, SCO-SW, SCO-WNA, 
SCO-VD 

Solvation (Solv) Solv-GN, Solv-SW, Solv-WNA, 
Solv-VD 

Sponge Sponge-GN, Sponge-SW, 
Sponge-WNA, Sponge-VD 

STRIDE 

Unused contacts (UC) UC-GN, UC-SW, UC-WNA, 
UC-VD 

Weighted contact number WCN-GN, WCN-SW, WCN-WNA, 
WCN-VD 

Originating from 18 parent descriptor classes (left column), the 60 descrip- 
tor classes consist of 4 parent descriptor classes (bolded, left column) and 56 
neighbour descriptor classes (bolded, right column) arising from the appli- 
cation of graph neighbours (GN), sliding window (SW), weighted neighbour 
average (WNA), and Voronoi diagram (VD) aggregations to 14 other parent 
descriptor classes (unbolded, left column). 
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nbiased MD 

e performed 1 μs of all-atom explicit solvent unbiased MD
n the output of the TMD, in order to evaluate the dynamics
f the structure and to obtain a reference against which to
ompare further simulations. We also performed 250 ns of
ll-atom, explicit solvent, unbiased MD on the TMD’s output
or each mutant. 

lectrostatic calculations 
e performed electrostatic calculations using the Poisson–

oltzmann equation finite differences solver DelPhi [ 40 ]. We
alculated the electrostatic energies (partitioned in Coulom-
ic and reaction-field contributions) and the electrostatic po-
ential at the atom centres in order to characterize the local
otential on snapshots extracted every 10 ns from the MD
rajectory of each mutation. Atomic radii and charges were
aken from the AMBER force field [ 41 ]. 

MSD calculations 
o evaluate the dynamics of the system, we calculated the
MSD of the following residues for each mutation along the
D trajectory: 

• Protein residues (136, 164, 268, 317, 402, 408, 411, 415,
728, 730, 732, 733, 734, 837, 838, 839, 908, 919, 1010,
1016, 1017, 1025, and 1122). These residues were se-
lected based on the following two criteria: they either
emerged as significant residues from our ML analysis
(see the section ‘Characterization of the heteroduplex-
proximal CRISPR–Cas9 internal protein nanoenviron-
ment’ under the section ‘ML models for CRISPR–Cas9
cleavage activity prediction from STING descriptors’). 

• RNA and DNA bases belonging to the heteroduplex:
chains B and C. 

We calculated the RMSD of the nucleic backbone and of the
ollowing atoms: C4 and N9 (purines); C6 and N1 (pyrim-
dines). We also calculated the RMSD of the phosphorus
toms and the N9 and N1 atoms (respectively). This analysis
as performed using the MDAnalysis Python package [ 42 ]. 

tructure naming scheme 
tructures were given a four-character identifier, similar to a
DB code. The first character is a letter, identifying the start-

ng structure for the mutation. We had two kinds of starting
tructures, the result of our TMD (C for Cryo) and 5F9R (X
or X-ray). The second character is either a number from 0
o 9 or a letter from A to Z, and identifies the specific muta-
ion in numerical order from 0 to 9 for the first 10 mutants
nd then letters in alphabetical order for the remaining ones.
he third and fourth character are digits which indicate the
napshot number. 

TING descriptors for CRISPR–Cas9 complex with a
uide–target pair 

n this study, we consider 60 physico-chemical / structural de-
criptor classes available from the STING platform database
see Table 1 ). This translates to 1671 descriptors being orga-
ized into the relational database STING_RDB_2_CRISPR,
amely one that allows the simultaneous analysis of mul-
iple structures. A concise outline of the 1671 descriptors
s included in the section 1 of the Supplementary material,
nd full descriptions for all STING parameters / descriptors
published previously on STING’s web-server site can be
found at http:// www.cbi.cnptia.embrapa.br/ SMS/ STINGm/
help/MegaHelp _ JPD.html and in several papers [ 43–47 ]. In
this work, we first adopted and then used STING SDL (sting
descriptor library), an in-house program able to calculate
the descriptors in all possible variants (meaning, using all
values for variables employed into formulas that calculate
each one of STING descriptors) and applying batch calcula-
tions on the sgRNA–dsDNA–Cas9 complexes analysed in MD
simulations. 

These descriptors were calculated in correspondence of all
atoms and in the presence of DNA or RNA bases at distances
of 3, 5, and 12 Å from the phosphates for each snapshot. Atom
presence lists were generated using custom Python scripts, in
which atomic coordinates were parsed using Biopython [ 48 ].

ML for CRISPR–Cas9 cleavage activity prediction 

from STING descriptors 

Dataset 
Fig. 1 outlines our approach for building STING_CRISPR.
Namely, by generating atomistic MD trajectories and comput-
ing residue-resolved STING feature values for the atomistic
model conformations, we are able to convert our labelled se-
quence dataset containing 1 on-target and 27 single-mismatch

http://www.cbi.cnptia.embrapa.br/SMS/STINGm/help/MegaHelp_JPD.html
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off-target sites into a labelled nanoenvironment dataset of
size 672 (Fig. 1 D, see raw data in Supplementary Fig. S1 and
Supplementary Table S1 ). 

We hypothesize that the internal protein 3D nanoenviron-
ment proximal to Cas9’s sgRNA–tsDNA heteroduplex in the
catalytically active conformation is indicative of CRISPR–
Cas9 cleavage activity. Moreover, a STING descriptor’s value
varies across Cas9 residues, as the value of a physico-chemical
or structural property is always tied to a local region / district,
i.e. a Cas9 residue in our case. Taking these two ideas into ac-
count, we formulate x i as a vector of length M = | H || S | (see
Fig. 1 E), where 

• H denotes the set of HPRs whose α-carbon atoms are 3
to 7 Å away from the C4’ atoms of any sgRNA–tsDNA
heteroduplex nucleotide in at least one of the training
PDB snapshots, and 

• S denotes the set of 1671 STING neighbour descriptors
available in STING_RDB_2_CRISPR (see Table 1 and
Supplementary Table S2 ) [ 49–51 ]. 

In other words, x i is a vector containing features (or inde-
pendent variables) defined by a given STING descriptor at a
particular heteroduplex-proximal Cas9 residue, i.e. a STING
descriptor–Cas9 residue pair. When computing H , we limit
distance calculations to training PDB snapshots to avoid data
leakage when training ML models. 

For STING_CRISPR, we compute 1671 physico-chemical
and structural descriptors on 380 HPRs, which resulted
in a nanoenvironment dataset with 634 980 STING fea-
tures (Fig. 1 E, see a breakdown of the feature counts in
Supplementary Table S2 ), where the feature values are ag-
gregated over residues within a local neighbourhood as de-
fined by four different aggregation methods available in the
STING_RDB_2_CRISPR database—GN, SW, WNA, and VD.
See the section ‘Training’ for an explanation on how 380
HPRs were obtained for STING_CRISPR. 

Exploratory analysis with heteroduplex base pair distances 
For each PDB snapshot in the dataset, we compute the Eu-
clidean distance between the two C4’ atoms in each of the 19
PAM-proximal base pairs. We then use a heatmap for each off-
target trajectory in order to visualize the heteroduplex base
pair distances across all snapshots within each off-target tra-
jectory. As a measure of heteroduplex plasticity, we sum all
Euclidean distances across the 19 base pairs over all snap-
shots for all on- and off-target trajectories. To examine the
relationship between this measure and CRISPR–Cas9 cleav-
age activity, we create violin plots for four groups of sums,
namely the sums corresponding to the on-target trajectory, tra-
jectories with low ( < 0.01) activity, trajectories with medium
(0.01–0.1) activity, and trajectories with high ( > 0.1) activity.
We also create a scatter plot between the sums and cleavage
activities. 

ML model 
To decipher the relationship between experimental cleavage
activity and the 3D nanoenvironment, we build an inter-
pretable scikit-learn [ 32 ] ML pipeline (see Fig. 1 F) consisting
of the following three steps: 

(1) StandardScaler. This scales features to zero mean and

unit variance. 
(2) SelectFromModel utilizes base model m 1 and all | H || S | 
features to train m 1 and SelectFromModel selects the f 
� | H || S | most important features from the | H || S | available
features. 

(3) ML model m 2 with f input features. 

Notably, we embed a feature selection step, i.e. SelectFrom- 
Model, into our pipeline, in order to combat the curse of di- 
mensionality [ 52 ], and to ensure that f is significantly smaller 
than the training dataset size in our final interpretable ML 

model. 

Training 
Summarized in Fig. 1 G, the training procedure for obtaining 
STING_CRISPR is as follows. To prepare the data partitions,
we first split the dataset into training and test partitions of size 
560 and 112 by holding out the last 4 PDB snapshots in from 

all MD trajectories for testing. Such a split ensures that points 
in the training and test datasets are distributed similarly. We 
then randomly split the training partition into five folds for 
five-fold cross-validation, resulting in five sets of training and 

validation datasets of size 448 and 112, respectively. Given 

that models m 1 and m 2 are tunable hyperparameters in the 
ML pipeline, we first perform grid search with five-fold cross- 
validation to optimize hyperparameters m 1 and m 2 in the ML 

pipeline. Specifically, we use grid search to consider the fol- 
lowing 5 · 6 · 10 = 300 ML pipelines by using the following 
hyperparameter ranges: 

• model m 1 being either a linear, ridge, XGBoost [ 23 ], ex- 
tra trees [ 53 ], or LightGBM [ 24 ] model with default hy- 
perparameters (all together five possibilities); 

• model m 2 being either a linear, ridge, XGBoost, extra 
trees, LightGBM, or CatBoost [ 25 ] model with default 
hyperparameters (all together 10 possibilities); and 

• number of possible feature size selections | F | = 10, where 
F = {5, 10, ..., 50}. We choose such an F not only because 
all elements f ∈ F satisfy f � | H || S |, but also because we
hypothesize that many of the STING features are cor- 
related, meaning that the optimal feature set size is ap- 
proximately 

√ 

448 ≈ 21 . 2 given a training data size of 
448 during five-fold cross-validation [ 54 ]. 

We then measure the mean five-fold Spearman correlation 

validation performance ρS ( m 1 , m 2 , f ) of each combination 

( m 1 , m 2 , f ), and subsequently find the model pair (m 

∗
1 , m 

∗
2 )

with the highest validation performance when averaging the 
mean Spearman correlation across the 10 possible feature size 
selections. Once the model pair is found, we pick the smallest 
feature set size f * such that increasing the selected feature set 
size by 5 improves the resulting mean five-fold Spearman cor- 
relation validation performance by no more than �ρS = 2 ×
10 

−3 (a hyperparameter which thresholds Spearman improve- 
ment). Using the hyperparameter configuration (m 

∗
1 , m 

∗
2 , f 

∗) ,
we then train a single ML pipeline on all 560 points from 

the training partition. Once trained, we extract m 2 from the 
pipeline to obtain STING_CRISPR. 

Since the HPR set H is dependent on the training PDB 

snapshots, it is worth noting that the training procedure uses 
six HPR sets, namely one for each fold in five-fold cross- 
validation, and one extra when training the final model (see 
top left of Fig. 1 G for the HPR set sizes, and the section 

‘Heteroduplex-proximal residues’ in the Supplementary ma- 
terial for the specific residues in the six HPR sets). In prac- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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ice, HPR set sizes of 378, 379, 376, 376, and 374 are ob-
ained for the training sets used in folds 1–5 during five-
old cross-validation, respectively. When performing residue-
eteroduplex nucleotide distance calculations on the entire
raining partition of the nanoenvironment dataset, we iden-
ify 380 sgRNA–tsDNA HPRs. 

In practice, this grid search strategy (see the bullet points
bove) yields the XGBoost–extra trees combination, which
as a mean five-fold cross-validation Spearman correlation of
.826 when averaged across 10 XGBoost–extra trees pipelines
ith 5–50 features (Fig. 1 G). Illustrated in Fig. 2 A, subse-
uent application of the Spearman correlation change thresh-
ld with value 0.002 on the XGBoost–extra trees combina-
ion results in a pipeline with 30 features (see Supplementary 
able S3 for the list of 30 features). By setting such a thresh-
ld, we are able to minimize the feature set size without sac-
ificing model performance. Together with SelectFromModel,
he threshold drastically reduces the ML pipeline’s feature set
ize from 634 980 to 30 features. By extracting the cleavage
ctivity model from the ML pipeline (see Fig. 2 B), we ob-
ain an extra trees model with 30 features, which we name as
TING_CRISPR (Fig. 2 , red vertical box) in this study. In sum-
ary, from the nanoenvironment dataset, the training proce-
ure produced an ML pipeline which feeds the top 30 most
mportant STING features selected from the trained XGBoost
urrogate model into an extra trees model for Cas9 activity
rediction. 

valuation 

e record STING_CRISPR’s performance on the test dataset
or the following metrics: Spearman correlation, Pearson cor-
elation, mean squared error, and mean absolute error. Using
est data, we also use bar plots to visualize the mean and stan-
ard deviation of the square errors between predicted and ac-
ual cleavage activities for the on-target interface, PAM-distal
ismatch positions, and mismatch interface types. 

odel interpretation 

ur framework for interpreting STING_CRISPR is founded
n feature counts and SHapley Additive exPlanations (SHAP)
 55 ] (a summary of the theory behind SHAP can be found in
he Supplementary material). Using STING_CRISPR and the
HAP TreeExplainer model [ 56 ], we obtain SHAP values φ
or all PDB snapshots in the ML dataset, where φ(i ) 

j denotes
he SHAP value assigned to the j th feature for the i th data-
oint. We also obtain the SHAP importance of each features
n STING_CRISPR, where the SHAP importance of the j th
eature is given by I j = 

1 
| D | 

∑ | D | 
i =1 φ

(i ) 
j . 

Each input feature in STING_CRISPR has the fol-
owing six properties: an associated Cas9 residue,
as9 domain, contiguous Cas9 domain, parent de-

criptor class, (neighbour) descriptor class, and neigh-
our aggregation method. For example, the feature
as9_733_neighbours_side_chain_angle_3_VD 
as properties Cas9 residue 733, Cas9 domain RuvC, con-
iguous Cas9 domain RuvC-II, parent descriptor class SCO,
escriptor class side chain orientation with VD (SCO-VD),
nd neighbour aggregation method VD. Since we can group
eatures in STING_CRISPR by a certain property, count the
umber of features in each feature group, and compute the
HAP importance I J = 

1 
| D | 

∑ | D | 
i =1 | 

∑ 

j∈ J φ
(i ) 
j | of each feature

roup J , we compute feature counts and SHAP importances
for each of the feature groups arising from each of the afore-
mentioned six properties, and subsequently use bar plots for
data visualization. 

Cas9 residues appearing far apart in the sequence space
may actually be spatially proximal in the Cas9 complex. In
light of this, to identify the residue clusters (i.e. hotspots)
found by our training procedure, we measure the pairwise
distances between two residues in STING_CRISPR averaged
across the 672 PDB snapshots, and subsequently use Seaborn’s
clustermap algorithm to create the clusters, while setting a
maximum distance of 12 Å for any two residues within the
same cluster. Based on these residue clusters, we compute the
feature counts and SHAP importance of each residue cluster,
with residues in STING_CRISPR not belonging to any residue
cluster placed into the ‘other’ residue group. To gain spatial in-
tuition, we use PyMOL [ 57 ] to visualize the residue clusters.
Specifically, we use the last PDB snapshot from the on-target
trajectory CMUT1 for visualization. For each residue-base
combination formed between the STING_CRISPR residues
and heteroduplex bases, we also count the number of PDB
snapshots where the residue’s α-carbon atom is 3 to 7 Å away
from the heteroduplex base’s C4’ atom, and use heatmaps to
visualize the counts. 

Evaluation of the structural impact of the mutations

The impact of the tsDNA mutations on the overall dynam-
ics of the system structure was evaluated by performing
a parametric analysis of the stability of the most relevant
residues / bases of the system. The considered parameters are
average and standard deviation of the RMSD with respect
to the initial conformation. Under normality assumption, the
Kullback–Leibler divergences between the RMSD distribu-
tions of the residues which emerged as the most informative
from the ML analysis as well as those of the bases involved
in the heteroduplex complex were calculated considering as a
reference the trajectory of the CMUT1 system, data shown in
the Supplementary material. This allows to immediately pin-
point the sites where the difference in behavior is maximal.
After doing this, a more detailed distinction was performed,
separating the sites differing because of being more mobile
from those differing because of being more stable. 

Results 

Structural determinants of cleavage activity 

Consistency with the latest experimental structures 
As more thoroughly described in the ‘Materials and meth-
ods’ section, our starting structure, referred to as CMUT1
(see Fig. 1 C), was derived from the closest entry of the se-
quence database to the available structures including also the
DNA and the SpCas9 (referred to as Cas9 onwards) counter-
parts. This structure is complete and conformationally con-
sistent with the catalytically active structure published in [ 35 ],
PDB code 6O0Y. In order to expand our analysis, we included
in our evaluations also the structure published in the work by
Bravo et al. [ 7 ] (PDB code 7S4X). In the latter work, catalyti-
cally active conformations of Cas9 in presence of mismatches
were determined through kinetics-guided cryo-EM. Therefore,
we also decided to check that the key structural features re-
ported in this work are reflected in our analysis. Four struc-
tural features of the 7S4X structure are shown by the authors
to be significant for its catalytic activity: 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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A

B

Figure 2. STING_CRISPR is an extra trees model with 30 STING features at 4 residue clusters. ( A ) Hyperparameter tuning of input feature set size in the 
ML pipeline after grid search with fiv e-f old cross-v alidation. T he solid rising blue line (left y -axis) indicates a v erage fiv e-f old Spearman test correlation, and 
the solid falling orange line (right y -axis) indicates average change in the average five-fold test Spearman correlation when increasing the input feature 
set size in increments of 5. Blac k dot ted horizontal line indicates the Spearman change threshold �ρS = 0.002, and the blue dotted vertical line indicates 
the final input feature size selected. ( B ) Extraction of the second ML model (left bottom red box with bolded text) from the hyperparameter-optimized 
ML pipeline with m 1 = XGBoost, m 2 = extra trees, and f = 30 features yields STING_CRISPR, an extra trees model with 30 STING features. Among the 
30 STING features, 17 of them form 4 residue clusters (defined below) found to be important in cleavage activity prediction for the studied 
sgRNA–tsDNA pairs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/7/2/lqaf054/8139710 by Em

brapa user on 21 M
ay 2025
• Kinkedness of the RNA / DNA heteroduplex (residues
B1–15 D1–20 in 7S4X; C14–30 B2–17 in CMUT1)—
this characteristic is shared; 

• Conformation of the L1 loop (residues A765–780 in
7S4X and in CMUT1)—the conformations are virtually
identical; 

• Conformation of the L2 loop (residues A906–918 in
7S4X and in CMUT1)—average heavy atom RMSD
against 250 ns CMUT1 MD trajectory: 3.8 Å; and 

• Conformation of the RuvC loop (residues A1010–1030
in 7S4X and in CMUT1)—average heavy atom RMSD
against 250 ns CMUT1 MD trajectory: 3.8 Å. 

Mismatch-induced dynamical effects 
We challenge the idea that a single PAM-distal mismatch be-
tween the sgRNA and the tsDNA always destabilizes the
system. This is done by comparing the RMSD distributions
along the dynamics of individual sites, i.e. protein residues
or sgRNA / tsDNA bases, with respect to the correspond-
ing distributions obtained from the dynamics of the refer-
ence structure CMUT1, which has no mismatch. Summariz-
ing the results, which are detailed in the Supplementary ma-
terial, we can say that point mutations in the tsDNA result 
in a local destabilization of the sgRNA bases in the PAM- 
distal region, where they are located, but seem also to sta- 
bilize some RNA bases in the PAM-proximal region and in- 
duce a remarkable stabilization, quantified by the RMSD stan- 
dard deviation along the trajectories, of some tsDNA bases,
again in the PAM-proximal region. This finding could ex- 
plain why some PAM-distal point mutations lead to increased 

cleavage activity. Furthermore, some degree of stabilization 

is observed in some Cas9 residues emerging as important 
from our ML approach, as shown in the stability analysis 
results included in the Supplementary material. The finding 
also corroborates with the positive correlation (Spearman: 
0.418, Pearson: 0.503) found between heteroduplex base pair 
distance sums, a quantity informative on the overall stabil- 
ity of the guide RNA–tsDNA heteroduplex, and CRISPR–
Cas9 cleavage activities (see Supplementary Fig. S8 ). In sum- 
mary, this analysis shows that the local destabilization induced 

by a single mismatch between the sgRNA and the tsDNA 

in the PAM-distal region can be compensated by the stabi- 
lization in other nearby positions. A possible explanation of 
such compensation is further elaborated in the ‘Discussion’ 
section. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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A

B C

Figure 3. Test performance of STING_CRISPR. ( A ) STING_CRISPR’s predicted cleavage activities for the hold-out test set containing the last 4 
snapshots from each of the 28 MD trajectories. Blue dots indicate experimental cleavage activity labels for the 28 interfaces. Guide–target interfaces 
listed on the x -axis are sorted by increasing experimental activity. ON = on-target interface. ( B ) STING_CRISPR’s squared error between predicted and 
actual CRISPR–Cas9 clea v age activity values for snapshots in the test set, categorized by being an on-target interface or a PAM-distal mismatch 
position. ( C ) S TING_CRISPR ’s test squared error between predicted and actual CRISPR–Cas9 cleavage activity values for the different off-target 
mismatch interface types. 
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est performance and model interpretation of 
TING_CRISPR 

n the hold-out test dataset of size 112, STING_CRISPR at-
ains a Spearman correlation of 0.819, a Pearson correlation
f 0.916, a mean squared error of 5.92 × 10 

−4 , and a mean
bsolute error of 1.68 × 10 

−2 , demonstrating high model
erformance and affirming that residue-resolved physico-
hemical / structural features can be utilized for CRISPR–Cas9
leavage activity prediction. Ordered by increasing cleavage
ctivity, we can see that there is minimal difference between
he predicted and actual cleavage activities across all guide–
arget interfaces in this study (Fig. 3 A) apart from base mu-
ations T14G, C18A, C18T, and A19G with extreme levels
f cleavage activity. Such an observation is corroborated by
igh test square errors in positions 14, 18, and 19 (Fig. 3 B)
nd mismatch interface types G:dA, G:dT, U:dG, and A:dG
Fig. 3 C). 

Using various physico-chemical and structural
escriptors, the 30 residue-resolved input fea-
ures of STING_CRISPR characterize 23 Cas9
esidues. The SHAP summary plot generated from
TING_CRISPR using all 672 conformations shows
as9_733_neighbours_side_chain_angle_3_VD 
s the most important feature in STING_CRISPR, where in-
reasing its feature value increases predicted cleavage activity
see Supplementary Fig. S2 ). Through hierarchical clustering
f pairwise residue distance calculations between the C- α
toms of these 23 residues (see Fig. 5 A), we see that 17 of the
3 residues form following 4 residue clusters: 
• Group 1 with residues 1016 and 1017; 
• Group 2 with residues 728, 730, 732, 733, and 734; 
• Group 3 with residues 837, 838, and 839; and 

• Group 4 with residues 136, 164, 317, 402, 408, 411, and
415, 

which are coloured red, orange, pink, and yellow, respec-
tively (see right part of Fig. 2 B and Fig. 5 F and G). Such lo-
calization of residue clusters likely indicates some biological,
functional, constitutive, or structural importance within those
regions. For completeness, we also group the remaining six
residues 268, 908, 919, 1010, 1025, and 1122 to form the
‘other’ residue group (coloured light blue). 

Using these five residue groups, we see high feature counts
and SHAP importances for Groups 2 and 4 (Fig. 5 B and
C), showing that Groups 2 and 4 significantly contribute to
STING_CRISPR’s predicted cleavage activity. As for the fea-
ture counts of 23 residues, we see that most residues only have
one feature, with residue 837 having the highest feature count
of 3 (Fig. 5 D). SHAP importances vary widely between the 23
residues, with residues 733 and 837 having the highest SHAP
importances. Specifically, residues 1016, 733, 837, and 415
have the highest SHAP importances in residue Groups 1–4,
respectively. 

The residue clusters are spatially located next to different
parts of the heteroduplex, and come from various Cas9 do-
mains (Figs 4 and 5 F and G and Supplementary Fig. S7 ).
Specifically, Group 1 consists of RuvC residues located in
the PAM-distal part of the heteroduplex, Group 2 consists of

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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Figure 4. PyMOL cartoon visualization of the sgRNA–dsDNA–Cas9 complex, taken from the last (i.e. 24th) snapshot of CMUT1’s MD trajectory. Shown 
as spheres, the four CRISPR–Cas9 residue clusters 1 36 / 1 64 / 317 / 402 / 408 / 411 / 41 5, 728 / 730 / 732–734, 837–839, and 1 0 16 / 1 0 17 are highlighted in 
y ello w (top right), orange (center bottom), pink (center top), and red (bottom left), respectively. Other parts of the Cas9 are visualized as grey ribbons. 
Shown as ribbons, the colour scheme is as follows for non-Cas9 components: PAM-distal sgRNA = teal, PAM-proximal sgRNA = blue, PAM-distal target 
DNA strand = limon, PAM-proximal target DNA strand = green, and non-target DNA strand = transparent purple. 
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RuvC residues located at the midde part of the heteroduplex,
Group 3 consists of HNH residues located at the catalytic site
which cuts the tsDNA, and Group 4 consists of Rec I residues
located on the sgRNA side of the PAM-proximal portion of
the heteroduplex. As for the other residues, residues 1010 and
1025 flank Group 1 on the sgRNA and tsDNA sides, respec-
tively. Located in the middle part of the heteroduplex, residue
919 is also spatially close to residue Group 2. Using a simi-
lar approach, we also see that the four residue clusters draw
features from different parent descriptor classes, which have
varying SHAP importances in the different residue clusters
(see Supplementary Fig. S6 ). 

To varying degrees, predictions made by STING_CRISPR
are influenced by the different parent descriptor classes and
Cas9 domains associated with the 30 input features. In terms
of parent descriptor classes, density, entropy density, and cross
presence order have the most features, and density, SCO, and
accessibility have the highest SHAP importances (Fig. 6 ). In
terms of Cas9 domains, RuvC is shown to have the highest
feature count and SHAP importance among the RuvC, HNH,
REC, and PIs. In a similar fashion, feature count and SHAP
importance analysis of the four neighbour aggregation meth-
ods show that SW and VD have high feature counts and SHAP
importances ( Supplementary Fig. S3 ). The same analysis but
for descriptor classes show that density with SW has highest
count, but SCO with VD and accessibility have the highest
SHAP importance. 

When considering all 672 atomistic model conformations,
all residues apart from 411 and 733 are surface residues,
but only residues 136, 164, 268, 402, 408, 728, 730, 919,
1016, and 1122 are interface residues according to Surfv,
NACCESS, and NSC ( Supplementary Fig. S4 ). In addition,
in the 672 conformations, most residues are surface residues 
( Supplementary Fig. S5 A), and on average there are around 12 

interfaces residues in a given conformation ( Supplementary 
Fig. S5 B). In terms of SHAP importances, we see that sur- 
face residues have a much higher SHAP importances than 

non-surface residues ( Supplementary Fig. S5 D), and that inter- 
face residues have less SHAP importance than non-interface 
residues ( Supplementary Fig. S5 E). Averaged across the 672 

PDB snapshots, 55.6%, 60.5%, and 52% of the residues 
among the four residue clusters are residues located at the 
interface between Cas9 and the R-loop complex (i.e. inter- 
face residues), according to SurfV, NACCESS, and NSC, re- 
spectively. When rerunning the training procedure to train on 

residues 3–1363 instead of just the HPRs, we find that both the 
feature count and the SHAP importance of HPRs are higher 
than those of non-HPRs ( Supplementary Fig. S5 C and F). 

Test performance when generalizing to unseen 

guide–target interfaces 

We also tried withholding snapshots from entire sgRNA–
target pair trajectories instead of the last four snapshots, as 
holding out sgRNA–target pairs would serve as a better test 
for evaluating the ML model’s ability to generalize to un- 
seen sgRNA–target pairs—an ability observed in many ex- 
isting ML-based off-target activity prediction tools. However,
the test performance varies across the five folds in five-fold 

cross-validation when a variety of ML models without fea- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf054#supplementary-data
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Figure 5. The ML pipeline identifies four residue clusters, namely Group 1 (residues 1 0 16 / 1 0 17, coloured red), Group 2 (residues 728 / 730 / 732–734, 
coloured orange), Group 3 (residues 837–839, coloured pink), and Group 4 (residues 1 36 / 1 64 / 317 / 402 / 408 / 411 / 41 5, coloured y ello w). T he fifth group 
‘other’ consists of residues identified by the pipeline that do not belong to the above clusters (residues 268 / 908 / 919 / 1 0 1 0 / 1 0 15 / 1122, coloured light 
blue). ( A ) Binarized hierarchically clustered heatmap for the 23 Cas9 residues identified by the ML pipeline. Heatmap cells for residue pairs whose C α

atoms are < 12 Å apart are coloured according to their associated residue groups, and black otherwise. Feature counts ( B ) and SHAP importances ( C ) of 
the five residue groups. Feature counts ( D ) and SHAP importances ( E ) of the 23 important Cas9 residues, with residues grouped and coloured by the five 
residue groups. PyMOL cartoon visualization of the PAM-distal ( F ) and PAM-proximal ( G ) portions of the sgRNA–dsDNA heteroduplex taken from the 
last (i.e. 24th) snapshot of CMUT1’s MD trajectory. Shown as labelled spheres, the 23 CRISPR–Cas9 important residues are coloured by their residue 
groups. Shown as ribbons, the colour scheme of other components is as follows: other parts of Cas9 = grey, PAM-distal sgRNA = teal, PAM-proximal 
sgRNA = blue, PAM-distal target DNA strand = limon, PAM-proximal target DNA strand = green, and non-target DNA strand = transparent purple. 
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ure selection (linear regression, ridge regression, XGBoost,
xtra trees, and LightGBM) are used (see Fig. 7 ). As seen in
he figure, all ML model types fail to generalize on fold 1. Ex-
mining the distribution of test squared errors per sgRNA–
arget pair in the LightGBM model, we observe variance in
redicted activities within a sgRNA–target pair MD trajec-
ory, indicating variability between snapshots within the tra-
ectory (see Fig. 8 ). Owing to poor test performances, we
o not proceed with SHAP interpretation of these ML mod-
ls. Details on methods can be found in the Supplementary
material under the section ‘Holding out trajectories as test
sets’. 

Discussion 

Structural plasticity of the heteroduplex: structural 
stability of mismatches 

According to our MD simulations, introducing a mismatch-
ing mutation in the PAM-distal region of the tsDNA does not
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Figure 6. (Top) S TING_CRISPR ’s feature counts categorized by STING descriptor classes ( A ) and CRISPR–Cas9 domains ( B ), respectively, sorted by 
decreasing count. (Bottom) STING_CRISPR’s SHAP importance values for STING descriptor classes ( C ) and CRISPR–Cas9 domains ( D ), respectively, 
sorted by decreasing SHAP importance. Only STING descriptor classes or Cas9 domains with non-zero count or SHAP importance are shown. 
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necessarily produce a major structural instability in the overall
structure of the heteroduplex nor in that of the Cas9 protein.
By using the analysis described in the Supplementary material,
we actually found that these mutations produce minor pertur-
bations in the dynamics of the sgRNA in the PAM-distal re-
gion, but also, unexpectedly, a stabilizing effect on some RNA
bases in the PAM-proximal region and on some residues of the
Cas9 protein. This is consistent both with the experimental
cleavage activity data and with the observations concerning
the heteroduplex base pair distance sums. We suspect such sta-
bilizing effect arises from a release of mechanical strain in the
heteroduplex, where the mechanical strain originates from dif-
fering helical parameters between RNA–DNA heteroduplexes
(closer to A-form than B-form) and A-form RNA or B-form
DNA duplexes [ 58 , 59 ]. 

Nanoenvironment approach 

At this point, it is imperative to emphasize that the con-
cept ‘nanoenvironment’ is referred hereto as a specific in-
ternal protein region, with well-defined characteristics and a
unique set of corresponding STING descriptors [ 43–46 ] that 
are able to select only the amino acid residues that make up 

that part of the protein region. Previously, we named such 

functionally distinct regions as protein districts, using a com- 
mon analogy of internal protein regions with city districts.
Previous work [ 43–47 , 60 ] has been successfully connected 

to the similar characterization of certain residues within a 
protein region with some functional properties (such as en- 
zyme activity or protein interfaces) of the system in the study.
In this work, we identified four specific hotspots (residues 
136 / 164 / 317 / 402 / 408 / 411 / 415; 730 / 732–734; 837–839;
and 1016–1017) which are borderline with the interface be- 
tween the Cas9 protein and the heteroduplex. Namely, ap- 
proximately half of the hotspot residues are part of the 
protein–heteroduplex interface [formed by the interface form- 
ing residues (IFRs)] and the other half belong to the immediate 
next layer leaning on the IFRs. Those hotspots are actually 
groups of amino acid residues to which specific STING de- 
scriptors [ 43–47 , 60 ] are attached. The localization of amino 

acid residues within hotspots is indicative of their functional 
importance in terms of modulating off-target cleavage activity.
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Figure 7. Fiv e-f old cross-v alidation Spearman (left) and Pearson (right) correlation perf ormance when using linear regression, ridge regression, XGB oost, 
extra trees, and LightGBM. Test sets for each cross-validation fold was constructed by binning snapshots associated with the trajectory with the n th 
lo w est clea v age activity into the test partition of f old n mod 5 , and into the training partition in the other f olds. Light blue horiz ontal line represents the 
mean correlation across the five folds. 
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o get the location of hotspots, however, it was first necessary
o obtain a list of features by the already described computa-
ional protocol. 

leavage activity prediction models and their 
nterpretability 

ome of the most successful models for CRISPR–Cas9 off-
arget activity prediction are based on DL and managed to
each high predictive performance in terms of classification
 9 , 10 , 18 , 28 ]. The building of sufficiently accurate regres-
ion models for the problem of off-target cleavage activity
rediction is still an open challenge in spite of the increas-
ng sophistication of DL approaches and encoding practices
pplied on the sgRNA–tsDNA (guide–target) sequence pair
 9 , 10 , 18 ]. A recent advance utilized structural information
f the guide–target sequence pair extracted from MD simu-
ations in order to construct RNA–DNA molecular interac-
ion fingerprints, i.e. structurally informed encodings of the
uide–target heteroduplex [ 61 ]. However, none of the previ-
us works leveraged the information from the entire CRISPR–
as9 complex, especially from the Cas9 protein. The current

tate of the field suggests that it has reached its possible best
erformance on this type of learning problem associated with
ainly describing a datapoint with a guide–target sequence
air or a structurally inspired heteroduplex encoding from it.
As an alternative to proposing another new learning model

n existing datasets based on guide–target sequence pairs,
ur work proposes a new learning approach / problem that
akes into account the whole sgRNA–dsDNA–Cas9 complex
n its entire physico-chemical / structural internal ‘reality’. This
s achieved by obtaining a set of physico-chemical / structural
eatures characterizing all guide–target proximal residues in
 given sgRNA–dsDNA–Cas9 complex that accommodates a
iven guide–target pair. Unlike Chen et al. [ 61 ], our physico-
hemically / structurally informed features are obtained from

D simulation of the entire CRISPR–Cas9 complex, which
ncludes the Cas9 protein in addition to the guide–target het-
roduplex and other parts of the R-loop. 
We work under the assumption that the 3D internal pro-
tein nanoenvironments, and features therein, of guide–target
pairs are able to provide an information-rich representation
of the guide–target pairs themselves. We therefore trained an
ML pipeline with a built-in feature selection step, i.e. scikit-
learn’s SelectFromModel, in order to simultaneously identify
the most important features informative for cleavage activity
prediction and train an ML model which predicts cleavage
activities. We then evaluate the ML model’s ability to predict
cleavage activities for unseen 3D protein nanoenvironments
(associated with guide–target pairs) in the test set. Our results
indicate that the trained model successfully captures the re-
lationship between 3D protein nanoenvironments and cleav-
age activities for the studied sgRNA–tsDNA pairs. In partic-
ular, the trained model is capable of predicting experimental
cleavage activities with an accuracy of 0.819 Spearman and
0.916 Pearson correlation coefficients. While this delivers a
high level of accuracy, the current model presented in this
study was only trained on a small subset of experimentally
available sgRNA–tsDNA pairs. Another limitation of our ap-
proach is that the activity prediction of any unseen sgRNA–
tsDNA pair would require performing a new MD trajectory.
Therefore, the current model is not expected to replace exist-
ing high-throughput methods aiming at predicting off-target
cleavage activity at the genomic scale for any sgRNA–tsDNA
pair. 

However, the advantage of our method consists in leverag-
ing often neglected factors such as features related to Cas9
residues influencing off-target activity. These features are de-
scriptors characterizing a particular residue. We found that
the parent descriptor classes in order of decreasing SHAP
importance are: density , SCO, accessibility , weighted con-
tact number, entropy density, electrostatic potential, sponge,
cross presence order, contact energy density, graph descrip-
tor, and solvation. Our analysis also identifies the most sig-
nificant residue hotspots 136 / 164 / 317 / 402 / 408 / 411 / 415,
730 / 732–734, 837–839, and 1016–1017 responsible for
modulating cleavage activity for the studied sgRNA–tsDNA
pairs. Our study highlights the importance of more general
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Figure 8. B o x plots comparing test squared errors betw een S TING_CRISPR and the ne w LightGBM model trained in Fig. 7 . T he x -axis lists the 
guide–target interfaces held-out in each of the five cross-validation folds. Circles represent outliers in the box plot. 
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haracteristics than mere residue identity. The most important
esidues identified in this work are in fact carriers of important
haracteristics rather than pure amino acid properties. Fur-
hermore, we found that general determinants of internal pro-
ein packing is of fundamental importance and this is obvious
rom the presence of descriptors such as density, sponge, and
eighted contact number. In addition, general geometry (ac-

essibility), physico-chemical features (electrostatic potential),
nd finally the evolutionary preservation of sequences (en-
ropy density) are pertinent and crucial for the determination
f cleavage activity for the studied sgRNA–tsDNA. Further
tudies are needed in order to establish whether our findings
till apply for any sgRNA–tsDNA pair such as ones contain-
ng multiple PAM-distal or PAM-proximal mismatches and
or any sgRNA. While these investigations are not in the scope
f our current proof-of-concept study, the agreement with ex-
erimental findings are encouraging. 
The identity of residues in some of the residue hotspots is

n concordance with recent experimental findings. For exam-
le, residue 837 has been hypothesized to aid in the position-
ng of the target DNA relative to the HNH domain [ 62 ] and
o function as a catalytic residue [ 63 , 64 ], although the lat-
er hypothesis has been questioned by more recent findings
 62 ]. Along with 837, residues 838 and 839 are of known im-
ortance as parts of the catalytically active site of the HNH
omain, coordinating the metal ions [ 62 , 65 ]. Indeed, the mu-
ation D839A was shown to compromise gene editing activ-
ty in site-directed mutagenesis experiments [ 62 ]. Proximal
o 402 and 408, residue 406 is part of the negative pocket
f the REC-I domain which is instrumental in RNA recruit-
ent [ 66 ]. Residues 1016 and 1017, together with residues
010 and 1025 detected by STING_CRISPR, are part of a
uvC loop which was shown to only stabilize PAM-distal mis-
atches in the heteroduplex rather than activate on-target in-

erfaces [ 7 ]. In addition to these residues, our analysis charac-
erizes Cas9 residues 268, 908, 919, and 1122 as important
esidues. Interestingly, residues 908 and 919 are part of the
2 loop, which interacts with the ntsDNA in order to dock
NH to the tsDNA, i.e. activate the HNH domain [ 67 ], and

eposition the ntsDNA in the RuvC cleavage site [ 7 ]. Residue
08 also interacts with the unwound DNA in cases of multi-
le PAM-distal mismatches, thereby hampering HNH cleav-
ge activation [ 68 ], though 908 is not shown to interact with
he PAM-distal region in the 672 PDB snapshots. Residue 268
etected by STING_CRISPR is next to residues 267 and 269,
oth of which were shown to form contact with target strand
hat kink the ntsDNA [ 69 ]. 

The approach we took in this paper would be also capa-
le of predicting the effect of certain residue mutations on
leavage activity for sgRNA–tsDNA pairs including, but not
imited to, the ones covered by this work. Such an approach
ould be similar to Venanzi et al. [ 70 ]’s approach in using MD

imulation-derived features for enyzme variant activity pre-
iction. In fact, the present model is already fully functional
n this regard since it has learned the relationship between the
rotein 3D nanoenvironments of guide–target pairs and cleav-
ge activities and is, therefore, capable of making a prediction
f cleavage activity based on the protein 3D nanoenvironment
f a guide–target pair irrespective of ‘how the protein 3D na-
oenvironment is realized’. Therefore our trained model al-
eady has the ability (by construction) to predict the effect
f any Cas9 residue mutation on (off-)target cleavage activ-
ity provided that the protein 3D nanoenvironment of corre-
sponding guide–target pair is computed consistently via MD.
This later task can be automated following the same steps out-
lined in Fig. 1 but using the initial systems in which Cas9
has the desired residue mutations. While the aim of the pa-
per was not to predict the effect of residue mutations on (off-)
target cleavage activity, our proposed approach also offers a
possible computational solution to tackle this important and
very timely problem. This type of computational approach
would pave the way for in silico design of optimal 3D protein
nanoenvironments of desired guide–target pairs (representing
optimal combination of mutations of Cas9) that would max-
imize on-target activity and minimize off-target effects. 

The current limitations of our approach include the neces-
sity of performing a MD trajectory in order to generate the
protein 3D nanoenvironment for a given sgRNA–tsDNA pair.
Therefore, our approach is not expected to compete with the
currently available state-of-the-art methods [ 9 , 13 , 17 , 61 , 71 ,
72 ] for predicting off-target activity for any sgRNA–tsDNA
pair. 

Limitations 

The current limitations of our approach include the necessity
of performing a MD trajectory in order to generate the protein
3D nanoenvironment for a given sgRNA–tsDNA pair. There-
fore, our approach is not expected to compete with the cur-
rently available state-of-the-art methods [ 9 , 13 , 17 , 61 , 71 , 72 ]
for predicting off-target activity for any sgRNA–tsDNA pair. 

The 23 Cas9 residues found in this study are important
only for the 28 ‘studied sgRNA–tsDNA pairs’, rather than
for all possible SpCas9 guide–target interfaces. While the 28
sgRNA–tsDNA pairs are all annotated with experimental (off-
)target cleavage activities measured in Jone Jr et al. [ 73 ], we
acknowledge that data from further experimental biochem-
ical assays could help to (in)validate the 23 Cas9 residues
identified in STING_CRISPR, thus allowing one to assess
the extent to which STING_CRISPR is able to identify Cas9
residues which significantly modulate cleavage activity (e.g.
via precision / recall scores). For example, one could perform
alanine scanning at the 23 Cas9 residues for all 28 studied
sgRNA–tsDNA pairs and measure experimental cleavage ac-
tivities for the 23*28 combinations. However, such an exper-
iment is beyond the scope of this study. 

Nonetheless, in the previous subsection, we have been able
to relate 8 of the 23 Cas9 residues to the existing literature,
which highlight the importance of these 8 residues. Further-
more, the assessment of Cas9 residue importance in cleavage
activity via ML model interpretation is unprecedented. Based
on the above two statements, we believe that this provides suf-
ficient evidence for STING_CRISPR to lay the foundations for
a new type of interpretable ML models which account for the
ways in which Cas9 residues affect cleavage activity. 

We also tried withholding snapshots from entire sgRNA–
target pair trajectories instead of the last four snapshots, as
holding out sgRNA–target pairs would serve as a better test
for evaluating the ML model’s ability to generalize to unseen
sgRNA–target pairs. However, the test performance varies
across the five folds in five-fold cross-validation when a va-
riety of ML models without feature selection (linear regres-
sion, ridge regression, XGBoost, extra trees, and LightGBM)
are used (see Fig. 7 ). Examining the distribution of test squared
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errors per sgRNA–target pair in the LightGBM model, we ob-
serve variance in predicted activities within a sgRNA–target
pair MD trajectory, indicating variability between snapshots
within the trajectory (see Fig. 8 ). 

Regarding model performance in Fig. 7 , we acknowledge
that all ML models fail to generalize in fold 1. This is likely
because the data used for ML model training does not con-
tain sgRNA–target mismatch interfaces which cover all base
pair positions and mismatch types. This issue could easily be
resolved by including trajectories of guide–target interfaces
with multiple mismatches in the ML dataset. In particular,
one would ensure that all heteroduplex base pair positions
are covered in the training set while making sure that there
are no overlapping guide–target interfaces between the train-
ing and test sets (to avoid data leakage). Nonetheless, such a
proposal is beyond the scope of this study due to computa-
tional resources. 

Conclusions 

Research efforts and applications using CRISPR–Cas9-based
genome engineering have been increasing since the discov-
ery of the CRISPR–Cas9-based ‘genetic scissors’, which has
transformed industrial biotechnology and modern agricul-
ture. CRISPR–Cas9-based genome engineering shows great
promise for curing diseases with an unparalleled efficiency
that would have been inconceivable at the beginning of the
century. However, its ability to transform medicine strongly
relies on the understanding of possible side effects caused by
the off-target activity of the CRISPR–Cas9 gene editing sys-
tem. This research challenge catalyzed tremendous efforts in
both experimental and computational sciences. As a result,
the most successful computational models, which are based
on deep neural networks or biological fingerprinting, man-
aged to deliver accurate results in the activity classification
of guide–target sequence pairs but interpreting these mod-
els does not deliver information on the importance of Cas9
residues in modulating cleavage activity. Therefore, building
accurate and explainable models that facilitate the design of
CRISPR–Cas9-based gene editing experiments is among the
greatest challenges of present-day computational biology. 

This work is one step forward towards meeting this chal-
lenge and introduces a reformulation of the learning task
for CRISPR–Cas9 off-target cleavage activity prediction with
the ultimate goal of building explainable ML models capa-
ble of predicting CRISPR–Cas9 off-target cleavage activity
with high accuracy. The contributions of this work are as
follows: 

(1) Successfully deriving a novel and powerful ‘physico-
chemical and structural’ information-enriched represen-
tation for guide–target sequence pairs consisting of 30
features (capturing the protein 3D nanoenvironment of
the guide–target pair); 

(2) Training an ML model to learn the relationship between
the said representation and the off-target cleavage activ-
ity; and 

(3) Shedding light on the structural and physico-chemical
determinants of CRISPR–Cas9 off-target cleavage activ-
ity and identifying the most important residues, whose
structural and physico-chemical descriptors modulate
(off-)target activity for the studied sgRNA–tsDNA pairs,
by interpreting the successful ML predictions. 
For the first time, our ML model STING_CRISPR is also 

capable of predicting the effect of CRISPR–Cas9 residue mu- 
tations on off-target cleavage activity, paving the way for fur- 
ther exploration and discoveries. 
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ata availability 

tructural stability analysis summary is reported in the Zen-
do repository (DOI: 10.5281 / zenodo.11473926). TSV files
ontaining STING descriptor values are reported in the
enodo repository (DOI: 10.5281 / zenodo.11472743). Sam-
le Python scripts for using Nanoenv-Cas9-WNA are avail-
ble at https:// github.com/ jeffmak/ crispr- cas9- nanoenv (Zen-
do; DOI: 10.5281 / zenodo.14210188). PDB snapshots aris-
ng from the 28 trajectories in this study are available as sup-
lementary information. 
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