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A B S T R A C T

Grasslands are vital for global food security, making reliable monitoring of forage mass (FM) essential for sus
tainable pasture management. The availability and quality of FM are key factors in determining the profitability 
of pasture-based farms. This study presents a replicable methodology for estimating FM using multi-sensor 
satellite data and an agrometeorological modeling framework. Conducted at the Brazilian Agricultural 
Research Corporation Southeast Livestock Center (Embrapa Pecuária Sudeste) in São Carlos, Brazil, the research 
integrates NASA’s Harmonized Landsat and Sentinel-2 (HLS) imagery with climate data processed through the 
Simple Algorithm for Evapotranspiration Retrieving (SAFER) and Monteith’s Light Use Efficiency (LUE) models. 
The SAFER model explained over 67 % of FM variability in three pasture-based livestock systems. A key factor in 
achieving accurate FM estimates was the differentiation between field green matter (GM) and total dry matter, as 
GM represents the most nutritious and consumable forage component. The model performed best in extensive 
systems, where minimal management intervention resulted in stable forage conditions. In integrated crop- 
livestock systems, the accuracy remained high, though fertilization and crop residue decomposition influenced 
FM estimates. In intensive systems, model performance was slightly lower due to higher management variability. 
This study contributes to the development of automated, scalable FM assessment methods, enabling systematic 
pasture monitoring and data-driven grazing management. The SAFER model allowed simultaneous processing of 
satellite imagery and climate data, increasing the accuracy of FM estimations. Future research should explore the 
use of higher-resolution imagery (e.g., CBERS-4A, PlanetScope) to better capture within-field variability and 
consider increasing the frequency of field sampling frequency (from 32 days to 15 or even 7 days) to further 
improve FM estimation accuracy, particularly in intensive systems.

1. Introduction

Grasslands play a vital role in global food security as they provide 
essential feed for ruminants raised for meat and milk production 
(Piipponen et al., 2022; UNCCD, 2024). In addition to forage, they 

provide a range of ecosystem services, such as water infiltration, wildlife 
habitat, and carbon sequestration (Place, 2024). Although grasslands 
cover more than 70 % of the global agricultural area (FAO, 2023), they 
have received less attention than croplands in terms of improving pro
ductivity, resilience, and climate change adaptation (Wang et al., 2022).
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Brazil holds a prominent position in global livestock production, 
ranking as the world’s second largest producer of beef, with a total 
production of 11.2 million tons, surpassed only by the United States with 
12.3 million tons (FAO, 2023). Brazil is also the fourth largest milk 
producer in the world, with an output of 36 million tons. These sub
stantial production highlights the scale and productivity of Brazil’s 
livestock sector, contributing significantly to the global food security 
agenda (Castro et al., 2022; Fraundorfer, 2022).

The Brazilian Agricultural Census (IBGE, 2017) reported a significant 
increase in cultivated pasturelands in Brazil, growing from 74 million 
hectares in 1985 to 112 million hectares in 2017. An automated map
ping procedure based on Landsat time series analysis, conducted by the 
MapBiomas Project (Souza et al., 2020), showed a comparable increase, 
rising from 103 million hectares to 163 million hectares over the same 
period.

The Brazilian livestock sector has been struggling with pasture 
degradation, which reduces carrying capacity due to soil erosion, ni
trogen leaching, and weed invasion, among others (Dias-Filho, 2017). 
Currently, most of Brazilian pasturelands is experiencing some level of 
degradation, with 32 % classified as moderately degraded and 27 % as 
severely degraded (Santos et al., 2022). Improvements can be achieved 
through practices such as pasture rotation, optimizing cost, and invest
ment planning, minimizing input waste and reducing unnecessary op
erations (Feltran-Barbieri and Féres, 2021).

The advent of new technologies has fostered the development of 
innovative practices in livestock production, mainly the integrated 
production systems, which offer potentially higher productivity and 
sustainability, as well as improved climate change resilience compared 
to specialized, intensive agricultural systems. By combining crop, live
stock, and forestry management on the same land and employing 
techniques such as crop rotation, intercropping, and successional sys
tems, integrated systems can enhance both crop yield and livestock 
productivity (Reis et al., 2020; Sekaran et al., 2021; Aquilani et al., 
2022).

In 2020, integrated livestock production systems in Brazil encom
passed 17.4 million hectares. Projections indicate a potential expansion 
of 22 − 29 million hectares by 2030 (Polidoro et al., 2021). The adoption 
of new technologies by farmers has led to significant improvements in 
productivity, animal stocking rates, livestock weight gain, and overall 
sustainability of farming systems (Herrero et al., 2020). These technol
ogies have also enhanced soil fertility and microbiological activity 
(Capristo et al., 2021), and reduced greenhouse gas emissions (Carvalho 
et al., 2022).

Monitoring pasture production is critical for sustainable pasture 
management (Phukubye et al., 2022). Accurate and timely assessments 
of pasture production are also critical for guiding farmers in imple
menting appropriate grazing management practices. Without proper 
grazing management, land degradation can occur, resulting in reduced 
forage quality, higher disease incidence, increased livestock mortality, 
and a significant decline in productivity. These consequences have sig
nificant socioeconomic impacts, including lower household incomes, 
higher poverty, and increased food insecurity (Slayi et al., 2024).

Traditionally, field data, primarily collected from farmer reports, 
have been used to manage forage biomass (Chen et al., 2021). However, 
pasture production monitoring based on field measurements is time- 
consuming and geographically constrained, mostly providing accurate 
assessments only for small areas, lacking representativeness for larger 
regions (Legg and Bradley, 2019).

Remote sensing allows an effective method for monitoring pasture 
production of large areas with relatively high frequency. Remote 
sensing-based methods for assessing pasture production include vege
tation indices, e.g., the Normalized Difference Vegetation Index (NDVI), 
to estimate biophysical parameters of grasslands, such as biomass or 
productivity; and factor analysis, where regional and temporal patterns 
and trends of pasture production are analyzed, considering the effects of 
climate variations (Reinermann et al., 2020).

The development of advanced remote sensing satellite systems with 
improved spatial and temporal resolutions (Zhang et al., 2022) presents 
good potential for monitoring pasture production (Gargiulo et al., 
2020). These technological advancements can contribute to the devel
opment of adapted management and conservation plans for pasture
lands in the context of climate change (Cheng et al., 2023). Thus, 
automated, large-scale monitoring systems are essential for enabling 
continuous observation of pasturelands (Reinermann et al., 2020).

The amount of available forage mass (FM) is crucial in determining 
the appropriate stocking rate for livestock (Almeida et al., 2023), as it 
influences both the stocking rate and grazing intensity, thereby opti
mizing the gain per unit of land area. The nutritional quality of the 
forage determines the maximum possible gain per animal. Both the 
quantity and quality of forage are directly related to animal performance 
(Rouquette Jr., 2016). Proper management of forage quantity and its 
nutritional value prevents overgrazing, which can cause serious prob
lems in rangeland ecosystems and threaten human livelihoods world
wide (Varga et al., 2021). Optimizing the use of forages as a high- 
quality, cost-effective feed source is key to achieving profitability in 
pasture-based farming systems (Beukes et al., 2019).

Reliable FM estimation is essential for effectively monitoring 
pasture-based livestock production systems. Remote sensing provides a 
feasible alternative, featuring a variety of techniques for FM estimation 
(Clementini et al., 2020; Chen et al., 2021). Regression models were 
among the earliest methodologies employed for estimating FM. Schaefer 
and Lamb (2016) employed regression analysis to field NDVI and LiDAR 
data to improve pasture biomass estimation. Sibanda et al. (2016)
compared FM estimation in fertilized and unfertilized grass plots using 
hyperspectral data resampled to Sentinel-2 Multispectral Imager (MSI) 
and Landsat 8 Operational Land Imager (OLI) resolutions. Schucknecht 
et al. (2017) mapped rangeland FM production using Moderate Reso
lution Imaging Spectroradiometer (MODIS) phenology-based cumula
tive NDVI. Batistoti et al. (2019) employed a regression analysis with 
field and unmanned aerial vehicle (UAV) data. Amies et al. (2021)
produced a national pasture productivity map for New Zealand using 
Sentinel-2 imagery and field measurements, developing a regression 
model with NDVI.

Mechanistic and dynamic models simulate the impacts of different 
management practices on pasture production and estimate pasture 
growth and nutritive value based on real-time soil, plant, and weather 
conditions. Silva et al. (2022) validated the DayCent process-based 
model for a typical Integrated Crop-Livestock System in Brazil from 
2018 to 2020. Xie et al. (2022) developed a novel physically-based 
method for estimating aboveground biomass (AGB) using PROSAIL 
model inversion. Santos et al. (2024) employed the CROPGRO Perennial 
Forage Model to estimate pasture primary production for a yield gap 
analysis of pasture-based beef cattle production in Brazil. Bender et al. 
(2024) developed a new forage module within the ECOSystem MOdel 
Simulator, tested under continuous and rotational stocking methods. 
This module, which considers both grazing and cutting regimes, was 
used to assess its performance in simulating forage dynamics under 
different management scenarios.

FM estimation has been explored in the context of machine learning 
(ML) applications. Reis et al. (2020) evaluated the use of spectral and 
textural data from PlanetScope imagery for FM estimation and moni
toring. Chen et al. (2021) developed a sequential neural network that 
integrates Sentinel-2 time-series data, field biomass observations, and 
climate variables. Rosa et al. (2021) tested an integrated method by 
combining UAV-acquired multispectral imagery, statistical models, and 
ML to predict pasture biomass. Freitas et al. (2022) explored the use of 
multispectral bands, vegetation indices, and Gray-Level Cooccurrence 
Matrix (GLCM) textures to estimate pasture FM using Random Forest 
(RF) classifier. Defalque et al. (2024) designed ML models to estimate 
biomass and dry matter from Brachiaria brizantha cv. Marandu pastures.

ML algorithms have increasingly focused on novel metaheuristic 
optimization algorithms inspired on nature or social behaviors. These 

G. Bayma et al.                                                                                                                                                                                                                                 Computers and Electronics in Agriculture 237 (2025) 110496 

2 



approaches improve optimization tasks by balancing exploration and 
exploitation, demonstrating superior performance over traditional 
methods in solving complex problems. The common thread among these 
methods is their application of bio-inspired mechanisms to optimization 
in ML and other computational fields. El-kenawy et al. (2024a) explored 
a new metaheuristic optimization method in ML and proposed an al
gorithm that improves the efficiency of problem solving. Abdollahzadeh 
et al. (2024) presented the Puma optimizer, inspired by the behavior of 
pumas, which improves optimization tasks in ML applications. El- 
Kenawy et al. (2024b) introduced the Football Optimization Algorithm, 
which exploits the dynamics of football teams to solve optimization 
problems more effectively than other algorithms.

This study explores a novel approach that integrates multi-sensor 
orbital imagery with agrometeorological modeling. We hypothesize 
that this integration will enable accurate and reliable FM estimation, 
thereby improving the monitoring of pasture-based livestock production 
systems. The objective of this study is to develop a replicable method
ology for estimating FM using multi-sensor satellite data. Specifically, 
we applied the Simple Algorithm for Evapotranspiration Retrieving 
(SAFER), Monteith’s Light Use Efficiency (LUE) model, NASA Harmo
nized Landsat and Sentinel-2 (HLS) surface reflectance imagery, and 
climate data to estimate FM for three pasture-based livestock production 
systems during both dry and rainy seasons.

2. Materials and methods

2.1. Study area

This study was conducted at the Brazilian Agricultural Research 
Corporation Southeast Livestock Center (Embrapa Pecuária Sudeste), 
located in the municipality of São Carlos, Brazil (latitude: 21◦ 57′ S; 
longitude: 47◦ 50′ W; elevation: 860 m) (Fig. 1). Its historical importance 
in the Brazilian agricultural research, especially in the livestock sector, 
can be highlighted by several key factors. For example, Brazilian Agri
cultural Research Corporation Southeast Livestock Center was the 
birthplace of the Canchim cattle breed, a milestone in the Brazilian 
livestock breeding. Its geographical location in the transition region 
between the Cerrado and Atlantic Forest biomes provides a unique op
portunity to study the interactions between livestock production and 
environmental dynamics. These biomes, which support extensive pas
turelands, further increase the relevance of the region for livestock 
research.

The climate is classified as tropical highland (Cwa), characterized by 
a temperate or subtropical hot summer with two distinct seasons. The 
rainy season extends from October to March, with an average temper
ature of 23.0 ◦C and average precipitation of 1100 mm. The dry season 
extends from April to September, with an average temperature of 
19.9 ◦C and average precipitation of 250 mm. The dominant soil type is 
the dystrophic Red-Yellow Oxisol with a medium clay texture 
(Pezzopane et al., 2019; Vinholis et al., 2021).

The assessed pastured-based production systems varied in their 
management practices and land use strategies. The extensive (EXT) 

Fig. 1. Location of the pasture-based livestock production systems assessed in the experimental area, including the extensive production system (EXT), intensive 
production system (INT), and integrated crop-livestock (ICL) production system. This figure also shows the in-situ data collection design for each production system. 
Source: adapted from Bayma-Silva et al. (2019).
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system involves continuous stocking, where livestock are allowed to 
graze freely over large areas without rotation. It is typically character
ized by low stocking densities and minimal inputs in terms of fertiliza
tion and pasture management (Oliveira et al., 2020). In contrast, the 
intensive (INT) system uses rotational stocking, where animals are 
moved between paddocks in a controlled manner. This system typically 
involves higher stocking densities, aiming to optimize forage utilization 
and improve pasture quality through regular rotation and chemical 
fertilization (Balbino et al., 2011; Baronti et al., 2022). The integrated 
crop-livestock (ICL) system combines rotation, intercropping, or suc
cession of crop and livestock activities within the same area. Pasture is 
managed with crop rotation and grazed using rotational stocking. The 
ICL system aims to boost productivity by alternating between crop 
production and livestock grazing, promoting synergies between the two 
components (Balbino et al., 2011; Vinholis et al., 2021; Soares et al., 
2024).

In the study area, the 24-year-old EXT production system does not 
use liming nor chemical fertilization and is planted with Urochloa (syn. 
Brachiaria) decumbens (Stapf) R. Webster. The INT production system, 
established in 2010, uses chemical fertilization and employs Piatã pal
isade grass (Urochloa brizantha (Hochst ex A. Rich.) Stapf cv. BRS 
Piatã). The ICL production system incorporates pasture with maize 
rotation. This system was also established in 2010. Each production 
system consisted of two contiguous plots of approximately 3 ha each. 
The INT and ICL plots were divided into six paddocks of 0.5 ha each. 
Details of the pasture production system management are shown in the 
Supplementary Material 1.

In the INT and ICL production systems, pasture management 
involved chemical fertilization during the rainy season and forage sup
plementation during the dry season. In late 2017 and early 2018, two 
paddocks within each ICL production system were cultivated with maize 
for silage, while the remaining paddocks were grazed under rotational 
stocking with 9 days of occupancy followed by 27 days without occu
pancy. After maize harvest, the paddocks were grazed under a rotational 
stocking regime with 6 days of occupancy and 30 days without occu
pancy. Additional details on pasture production system management 
can be found in Bayma-Silva et al. (2019).

2.2. In situ forage mass collection and laboratory analysis

We measured FM using the indirect double sampling method as 
outlined by Wilm et al. (1944) and applied by Silva et al. (2020a), 
Cezimbra et al. (2021), Bretas et al. (2023), and Bender et al. (2024). In 
our study, FM refers to the total dry mass or weight of forage present per 
unit area above ground level (Pedreira, 2002; Costa et al., 2017; 
Almeida et al., 2023). This method combines canopy height measure
ments with destructive FM sampling. Two key procedures were imple
mented: field teams were instructed to exclude inflorescences in height 
measurements, and continuous stocking was evaluated across different 
phases of rotational stocking (grazing, pre-grazing, post-grazing, and 
growing) on a bimonthly basis for regression analysis between height 
and FM.

Sampling points for canopy height measurements were planned 
based on a pixel grid derived from HLS satellite images (30 m × 30 m). 
The grid was established according to the spatial resolution of the sat
ellite imagery used in this study to accurately capture the spatial vari
ability of the pasture within each pixel of the evaluated production 
system.

The pixel centroids were marked with numbered wooden stakes, 
placed by triangulation using known distances from a digital planimetric 
map of the study area. For each projected pixel, we took 15 canopy 
height measurements, three at the center of the pixel and 12 at pe
ripheral regions, spaced 7 m from the center in the north, south, east, 
and west directions (Fig. 1). The decision to collect 15 height mea
surements per pixel ensures a comprehensive representation of the 
height distribution, accounts for spatial heterogeneity, and increases the 

reliability of the regression model for FM estimation.
We collected data within the pixel area, even if it extended beyond 

the paddock boundary. Heights were measured using a quadrant ruler 
and an acetate sheet, known as uncompressed height. We recorded the 
pasture height at the point where the acetate sheet was suspended from 
the canopy.

We estimated field FM from canopy height measurements using 
equations calibrated every two months to account for spatio-temporal 
variations, as canopy structure (height and FM) varies with the pheno
logical stage of the plants. Homogeneous regions within each paddock, 
characterized by low, medium, and high pasture canopy heights, were 
selected for destructive forage sampling.

We collected ten samples per paddock in the EXT production system 
and three samples per paddock in the INT production system for each 
canopy height group. In the EXT production system, sampling was 
conducted in one paddock, while in the INT production system, one 
paddock was sampled from each grazing phase (pre-grazing, grazing, 
post-grazing, and growing). The ICL production system was not sampled 
as it used the same forage species and rotational stocking strategies as 
the INT production system.

We used a 0.25 m2 quadrat for sampling. Canopy height was 
measured as previously described, and the samples within the quadrat 
were cut at ground level and weighed to determine total fresh mass 
(TFM). A subsample of the TFM (aliquot 1) was placed in a circulating 
air oven at 65 ◦C for 72 h to estimate total dry mass (TDM). Additionally, 
we separated a second subsample (aliquot 2) from each canopy height 
class into leaf blades and sheath/stem, referred to as green mass (GM) 
and dead mass (DM), respectively. Each fraction was weighed, dried, 
and reweighed. We applied the proportions of leaves, stems, and dead 
material obtained from the second aliquot to the TDM value per hectare 
to estimate the production of these fractions. Further details on in situ 
forage mass collection can be found in Bayma-Silva et al., 2019.

GM represents the actively growing, photosynthetically efficient 
portion of the forage, which is the most nutritious component of the 
animal’s diet. It is a more accurate indicator of pasture availability and 
quality, characterized by high protein content, digestibility and intake, 
and contributes to grass adaptation to grazing and tolerance to cutting 
(Wilson and Mannetje, 1978; Sousa-Baracho et al., 2024). This focus 
ensures better estimates of livestock nutrition, grazing capacity, and 
overall pasture productivity. GM was correlated with the SAFER model, 
which estimates biophysical parameters based on the NDVI (Rouse et al., 
1974). NDVI is effective for correlating field measurements of forage 
mass with SAFER model estimates due to its high sensitivity to leaf 
chlorophyll content.

Measurements were taken on a 32-day cycle, providing data on GM 
in kg ha− 1 month− 1. The frequency of FM collection was aligned with 
the forage growth cycle, covering the pre-grazing, grazing, and post- 
grazing phases in intensive systems to capture the dynamic changes in 
forage availability over time (Nogueira et al., 2022). However, data 
were not gathered in January and June 2018 and February and 
November 2019 due to operational issues (Table 1).

2.3. Modelling green mass (GM)

We applied the SAFER model, combined with Monteith’s LUE model 
(Monteith, 1972), to estimate FM, offering several significant advan
tages. A primary benefit of SAFER is that it does not require a thermal 
band, which allows for the use of a wider range of sensors without this 
band. Moreover, SAFER can be applied with data from various types of 
stations (agrometeorological, conventional, and automatic) without 
needing crop classification data or complex radiation physics. This 
flexibility is especially valuable for analyzing historical trends in energy 
balance components and large-scale water productivity over time, as it 
increases the volume of available data for processing. This is crucial 
given that automatic sensors correspond to a relatively recent techno
logical advancement (Teixeira et al., 2013). Subhashree et al. (2023)
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identified a research gap in incorporating climate data for predicting 
FM.

The SAFER model is based on the modeled ratio of actual evapo
transpiration (ETa) and reference evapotranspiration (ETo). It was 
developed and validated in Brazil using field data from four flux stations 
and Landsat imagery (Teixeira et al., 2013). The SAFER model has been 
widely used to estimate biophysical parameters of different types of land 
use and land cover classes, including pasture (Bayma-Silva et al., 2016), 
croplands (Leivas et al., 2015; Rampazo et al., 2021), and water pro
ductivity (Teixeira et al., 2021).

The SAFER model estimates biomass using both climatic parameters 
and remote sensing-derived inputs, as described by Teixeira (2010) and 
Teixeira et al. (2013). It requires surface reflectance and climate data as 
inputs. Surface reflectance data were obtained from NASA’s HLS project, 
which provides a consistent surface reflectance dataset acquired by the 
OLI and MSI sensors on board the Landsat 8 and Sentinel-2 satellites, 
respectively (Masek et al., 2021). This virtual constellation provides 
global coverage within a 30-meter resolution every 2 − 4 days. The 
project’s primary goal is to generate consistent time series observations 
for monitoring land surface changes (Claverie et al., 2018).

The HLS products employ the following processing steps: (i) spatial 
co-registration, performed using the Automated Registration and 
Orthorectification Package; (ii) atmospheric correction, applied using 
the Land Surface Reflectance Code (Vermote et al., 2016), which is 
based on the 6S radiative transfer model and validated through the 
CEOS Atmospheric Correction Inter-Comparison Exercise (ACIX) I and II 
initiatives (Doxani et al., 2018, 2023); (iii) cloud masking, generated by 
the F-mask algorithm (Zhu et al., 2015); (iv) view and illumination angle 
normalization, conducted using the c-factor global 12-month fixed 
bidirectional reflectance distribution function (BRDF) technique (Roy 
et al., 2017); and (v) bandpass adjustment, achieved through a linear fit 
between equivalent spectral bands, with OLI spectral bands serving as a 
reference for adjusting MSI spectral bands.

The HLS suite includes three products: S10, a MSI surface reflectance 
at native resolutions (10 m, 20 m, and 60 m); S30, a MSI harmonized 
surface reflectance resampled to 30 m and matched to the Landsat 8 
spectral response function; and L30, an OLI harmonized surface reflec
tance and top-of-atmosphere (TOA) brightness temperature resampled 
to 30 m in the Sentinel-2 tiling system. This product has been used in 
various studies, including vegetation classification (Ju and Bohrer, 
2022); daily evapotranspiration estimate (Xue et al., 2021), cropland 
abandonment analysis (Hong et al., 2023), and studies on savanna and 
pasture areas (Parreiras et al., 2025).

In this study, we selected the L30 and S30 Version 1.4 products from 
February 2018 to November 2019 to construct surface reflectance time 
series. The HLS time series was built using cloud-free images acquired 
concomitant with the field campaign dates. However, it was not possible 
to obtain images near field campaign date in November 2018 due to 
cloud cover (Table 2).

Input climate parameters included global solar radiation (RG), air 
temperature (T), and reference evapotranspiration (ETr), which were 
derived from maximum and minimum temperatures, relative humidity 

(maximum and minimum), and wind speed, following the Monteith 
radiation model (Monteith, 1972). The climatic data were obtained from 
an agrometeorological station located adjacent to the experimental area 
(World Meteorological Organization’s code: 86845).

We selected the HLS surface reflectance bands from the visible, red- 
edge, near-infrared (NIR), and shortwave infrared (SWIR) to calculate 
broadband, top-of-atmosphere planetary albedo (αTOA), as described by 
Teixeira et al. (2013). We computed the normalized difference ratio 
between near-infrared (ρNIR) and red (ρRED) (Rouse et al., 1974). The 
surface temperature (Ts) was obtained as a residual in the radiation 
balance. The SAFER model was executed using the Model Builder 
function available in ESRI’s ArcMap 10.0 software (Nuñez, 2017). The 
atmospheric correction was applied to the αTOA data to derive surface 
albedo (α0) (Eq. (1)): 

α0 = 0.61 × αTOA +0.08 (1) 

The NDVI was calculated using the reflectance values of the red (ρred) 
and near infrared (ρNIR) bands from HLS images (Rouse et al., 1974) (Eq. 
(2)). 

NDVI =
(ρNIR − ρred)

(ρNIR + ρred)
(2) 

The SAFER algorithm was applied with the Monteith’s LUE model to 
estimate biomass. Teixeira (2009) utilized the Monteith radiation model 
(Monteith, 1972) for biomass estimation. We calculated the ratio be
tween actual evapotranspiration and reference evapotranspiration (ETa/ 
ETo) as shown in Eq. (3): 
(

ETa

ET0

)

SAFER
=

{

exp
[

1.8 − 0.008 ×

(
T0

α0 × NDVI

)]}
ET0annual

5
(3) 

where: ET0 annual/5 is the correction factor when there is no local cali
bration of the SAFER algorithm and ET0 annual is the average annual 
reference evapotranspiration of the study site.

The actual evapotranspiration (ETa, mm d-1) was obtained according 
to Teixeira et al. (2015) (Eq. (4)): 

ETa = ET0×

(
ETa

ET0

)

SAFER
(4) 

Absorbed photosynthetically active radiation (APAR) was directly 
estimated as a fraction of the photosynthetically active radiation (fPAR), 
which depends on NDVI and PAR, itself derived as a fraction of global 
radiation (Teixeira et al., 2015) (Eq. (5)): 

APAR = (1.26 × NDVI − 0.16) × (0.44 × RG) (5) 

We calculated biomass (BIO), also referred to as green mass (GM), as 
the dry matter production per unit area over time using Monteith’s ra
diation model (Eq. (6)): 

BIO = 0.864 × εmax×Ef × APAR (6) 

where: εmax is the maximum efficiency in the use of radiation (3.0 for 
pastures) (Bastiaanssen and Ali, 2003); Ef is the evaporative fraction; 

Table 1 
Canopy height measurement and forage mass sampling schedule.

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2018 − 8 14 16 17 − 20 21 21 24 26 27
2019 28 − 18 2 3 6 8 8 9 10 13 −

Table 2 
HLS dataset image acquisition schedule.

Year Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

2018 − 9 16 20 15 − 19 21 22 22 − 6/31
2019 28 − 17 2 5 4 9 8 9 11 11 −
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and APAR (Eq. (5)) is the absorbed photosynthetically active radiation 
(W m− 2).

2.4. SAFER model performance evaluation

In the experimental area, the methodology allowed the estimation of 
available FM every 32 days, taking into consideration the phases of 
rotational stocking (grazing, pre-grazing, post-grazing, and regrowth). 
The SAFER model was used to estimate daily GM. This daily GM was 
then multiplied by the number of growth days in a given month, with 
pasture growth days defined as the interval between cattle removal and 
their return to the same paddock.

The FM available per hectare every 32 days was compared with the 
monthly accumulated GM per hectare estimated by the SAFER model. 
We combined satellite-based parameters with field observations to 
develop regression models for estimating GM more effectively. Regres
sion analysis is widely used in biomass estimation due to its effectiveness 
and simplicity (Chen et al., 2021). Thus, it was chosen due to its reduced 
sample size demands, when compared with machine learning methods, 
and its suitability for the scale of the dataset, making regression analysis 
suitable approach in this context.

Initially, we applied ordinary least square regression and carried out 
a residual analysis to check for normality and homoscedasticity of the 
residuals. The residuals were considered normal and homoscedastic. To 
assess the uncertainty of this model, we used bootstrap resampling with 

1001 interactions (Efron, 1992). The regression results were analyzed 
using the adjusted coefficient of determination (R2

adj) and the root mean 
square error (RMSE). The results were reported with a 95 % confidence 
interval and statistical significance defined at p < 0.05.

3. Results and discussion

3.1. Seasonal dynamics of NDVI and climate data

The initial analysis focused on evaluating NDVI within pasture-based 
livestock production systems and climatic data. Fig. 2 presents the 
monthly average values of NDVI, global solar radiation (RG), incident 
solar radiation at the top of the atmosphere (RA), Ta, ETo, and monthly 
cumulative precipitation of the study area.

NDVI and climate parameters exhibited strong seasonal variations, 
with lower values during the dry season (April to September) and higher 
values in the rainy season (October to March). NDVI values in 2018 were 
lower compared to 2019, especially during the rainy season. This trend 
is consistent with the ETo values, as they are highly correlated (Alam 
et al., 2018). This pattern can be explained by the lower dry season 
precipitation in 2018 compared to 2019, with a total accumulation of 
187.4 mm in 2018 versus 380.73 mm in 2019. This difference in dry 
season precipitation likely influenced the total rainfall at the beginning 
of the rainy season and consequently the NDVI values.

The mean NDVI values for the INT and ICL production systems were 

Fig. 2. Monthly average NDVI for extensive (EXT), intensive (INT), and intensive crop-livestock (ICL) production systems (a); solar radiation at the top of the at
mosphere (RA) and global solar radiation (RG) (b), surface temperature (Ta) (c), and reference evapotranspiration (ETo) (d) for the years 2018 and 2019. Light and 
dark gray areas represent the dry and rainy seasons, respectively.
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0.574 and 0.583, respectively, which were slightly higher than the value 
for the EXT system (0.522). This difference can be attributed to the 
impacts of livestock rotation, supplementation, and forage fertilization, 
all of which contribute to improved forage health and productivity in 
intensive production systems. These results are consistent with Blanco 
et al. (2009), who reported similar results when they compared NDVI 
data derived from the Landsat Thematic Mapper (TM) images from 
extensive and intensive (rotational) livestock production systems in 
Argentina. Furthermore, Bayma-Silva et al. (2016) applied the SAFER 
model to Landsat 8 imagery to estimate forage biophysical parameters 
and found that intensive (rotational) systems exhibited higher NDVI 
values compared to extensive systems.

3.2. Time series analysis of field green mass (GM)

In the analysis of the field GM time series, the INT production system 
showed high GM values over the two-year period, averaging 1712 ±
885 kg ha− 1 per month. Within this system, GM values reached 1804 ±
848 kg ha− 1 per month during the rainy season and 1651 ± 941 kg ha− 1 

per month during the dry season. The ICL system presented an average 
GM of 1935 ± 846 kg ha− 1 per month for the two-year period, 1953 ±
882 kg ha− 1 per month in the rainy season, and 1922 ± 857 kg ha− 1 per 
month in the dry season. The EXT system presented lower GM values, 
with an average of 1381 ± 901 kg ha− 1 per month over the two-year 
period, 1427 ± 752 kg ha− 1 per month in the rainy season, and 1346 
± 1030 kg ha per month in the dry season.

Over the two-year period, and across both the rainy and dry seasons, 
the field GM values for the EXT and ICL n systems differed by 332 kg 
ha− 1 per month, 377 kg ha− 1 per month, and 304 kg ha− 1 per month, 
respectively. These differences were higher when compared to the INT 
system, which showed variations of 555 kg ha− 1 per month, 526 kg ha− 1 

per month, and 576 kg ha− 1 per month for the two-year period, wet and 
dry seasons, respectively. The significant variation observed in field GM 
during the rainy season of 2018, compared to that from 2019, can likely 
be attributed to a two-fold increase in the animal stocking rate. In the 
rainy season of 2018, the stocking rate was 2.2 animal units per hectare, 
and it was reduced to 1.0 animal unit per hectare at the beginning of 
2019.

As expected, intensive production systems exhibited higher field GM 
compared to the extensive production system, especially during the dry 
period (Fig. 3). This finding is consistent with observations obtained by 
Na et al. (2018), who reported that FM was higher in INT (rotational) 
grazing systems, compared to the EXT grazing areas. Similarly, Pezzo
pane et al. (2019) found that field FM was higher in INT systems 
compared to the EXT system in the same experimental area between 
2013 and 2015. However, during the dry period, field FM was compa
rable with all pasture-based livestock production systems.

3.3. Relationship between field green mass (GM) and NDVI in rainy and 
dry seasons

Linear regression analysis between field GM and NDVI for all 
pasture-based livestock production systems (Fig. 4) showed a positive 
correlation. However, only the EXT system exhibited an adjusted R2 

greater than 0.5. The ICL production system showed a weaker rela
tionship between GM and NDVI (R2

adj = 0.344) compared to the INT 
production system (R2

adj = 0.381). This may be associated with FM 
variability resulting from the grazing frequency increased by crop 
integration within the ICL system. Grazing time within paddocks also 
contributed to greater variability in forage height and, consequently, all 
forage biophysical parameters. Grazing intensity has been identified as 
the most significant factor influencing forage mass dynamics (Numata 
et al., 2007).

In a study conducted by Reinermann et al. (2020), it was observed 
that NDVI was used as one of the model inputs in 62 % of the 253 studies 
that examined pasture production through biomass sampling and 
remote sensing data. However, numerous studies have reported 
nonlinear relationships between NDVI and vegetation parameters, often 
due to NDVI saturation in densely vegetated areas (Huete et al., 1985; 
Yan et al., 2022). This saturation effect can reduce the accuracy of FM 
estimates based on NDVI, potentially leading to misestimations. This 
limitation arises from increased light interception within the canopy, 
which can introduce bias in NDVI values (Garroutte et al., 2016; 
Mutanga et al., 2023). Chen et al. (2021) observed that discrepancies 
between field FM measurements and NDVI values suggest that NDVI 
alone may not provide a direct and reliable estimates of FM.

3.4. Relationship between field green mass (GM) and accumulated 
SAFER green mass (GM) in dry and rainy seasons

The two-year comparative analysis, covering both rainy and dry 
seasons, showed significant relationships between field GM and accu
mulated GM estimates from the SAFER model across all three pasture- 
based livestock production systems. The SAFER model proved to be a 
strong positive predictor of field data, with R2

adj values ranging from 
0.765 to 1.078 (p < 0.001 for all cases). The models accounted for a 
substantial proportion of the variance in the field data, with R2

adj values 
ranging from 0.670 to 0.856. The RMSE values indicated variability 
across all models, ranging from 342.4 to 485.9 kg ha− 1 per month 
(Fig. 5).

The EXT production system provided the most accurate estimate 
(R2

adj = 0.856) and an RMSE of 342.4 kg− 1 per month. In comparison, the 
ICL and INT production systems had lower R2

adj values (0.726 and 0.670, 
respectively) and higher RMSE values (ICL = 463.3 kg ha− 1 per month; 
INT = 485.9 kg ha− 1 per month). This can be explained to the higher 
need for intervention in forage, livestock and crop management. In 

Fig. 3. Field green biomass (GM) in the evaluated pasture-based livestock production systems. FM = Forage mass; EXT = extensive production system; INT =
intensive production system; and ICL = intensive crop-livestock production system. Light and dark gray areas represent the dry and rainy seasons, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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intensive systems, the rotation of livestock across different paddocks 
leads to increased variability in both forage height and mass availability 
(Hao et al., 2019; Cao et al., 2024).

Rosa et al. (2021) observed that the variability of post-grazing 
biomass was higher than that of pre-grazing pasture biomass in an 
intensive rotational farm. When comparing the results of the two 
intensive systems, we found that INT had lower performance. This result 
can be explained by the influence of cropping, as fertilization and crop 
residue decomposition improve soil quality and increase forage biomass 
(Silva et al., 2020; Fu et al., 2021).

The SAFER model demonstrated high performance in estimating GM 
for the EXT production system, with an R2

adj of 0.856 (ranging from 
0.772 to 0.951). This performance was superior in comparison with 
previous models, including those developed by Anderson et al. (2017)
(R2 values varying from 0.62 to 0.77), Yang et al. (2018) (R2 values 
between 0.75 and 0.85), Wang et al. (2019b) (R2 = 0.67), Zeng et al. 
(2019) (R2 from 0.69 to 0.86), and Amies et al. (R2 = 0.70), demon
strating SAFEŔs superior accuracy.

The superior accuracy of the SAFER model in the EXT system can be 
attributed to its continuous stocking management approach, which re
sults in a lower stocking rate, as shown in Supplementary Table 1. This 
reduced grazing pressure minimizes animal disturbance to the forage 
stand and canopy structure, promoting greater system stability. Conse
quently, reduced disturbance likely increases the consistency of vege
tation conditions, improving the modelś predictive performance.

For the INT production system, the SAFER model achieved an R2
adj of 

0.670, with a range between 0.456 and 0.830. This result is comparable 
to those reported by Chen et al. (2021) and Rosa et al. (2021), who 
obtained R2 values of 0.6 and 0.68, respectively. It also outperformed 
the R2 of 0.52 reported by Almeida et al. (2023), though it is lower than 
the value of 0.773 found by Defalque et al. (2024). The ICL production 
system presented an R2

adj of 0.726, with a range from 0.475 to 0.905, 
which also outperformed the models developed by Reis et al. (2020) (R2 

= 0.65), Silva et al. (2022) (R2 ranging from 0.61 to 0.73), and Freitas 
et al. (2022) (R2 = 0.70), demonstrating the superior accuracy of the 
SAFER model in estimating FM in an ICL production system.

Our findings are comparable to those reported in previous studies 
employing both regression analysis (Schmidt et al., 2016; Anderson 
et al., 2017; Amies et al, 2021; Almeida et al., 2023) and machine 
learning algorithms (Yang et al., 2018; Zeng et al., 2019; Reis et al., 
2020; Chen et al., 2021; Rosa et al., 2021; Freitas et al. 2002). While 
regression models are site-specific, the SAFER model’s performance is 
compatible with the state-of-the-art Machine Learning (ML) approaches, 
which utilize computational and statistical techniques for automated 
data analysis (Chen et al., 2021).

3.5. Relationship between field green mass (GM) and accumulated 
SAFER green mass (GM) in the dry and rainy seasons

The analysis of R2
adj values for the dry and rainy seasons indicated 

that the EXT production system consistently provided the most accurate 
estimates of FM. This system outperformed both the INT and ICL systems 

Fig. 4. Correlation between field green mass (GM) and NDVI in the evaluated livestock production systems. EXT = extensive production system; INT = intensive 
production system; and ICL = intensive crop-livestock production system. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 5. Correlation between field green mass (GM) and accumulated SAFER green mass (GM) in the evaluated livestock production systems in dry and rainy seasons. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in both dry and rainy seasons (Fig. 6). The linear regression analyses 
indicated a positive relationship between the field measurements and 
the SAFER model estimates. The data distribution was closer to the 
regression line during the dry season, compared to the rainy season, 
indicating that the modelś predictions were more precise in the dry 
season.

Previous studies have demonstrated that precipitation influences 
forage seed germination (Jongen et al., 2019), which may, in turn, affect 
forage productivity (Lai et al., 2022). Forage mass growth tends to 
decrease during the dry season, and root production is typically con
strained by water availability (Wang et al., 2019a), negatively impacting 
forage mass production (Cao et al., 2024). The stability of forage mass 
during the dry season enhances model prediction, as it reduces vari
ability and improves the accuracy of the estimates. In contrast, the wet 
season, characterized by rapid growth and dense forage, introduces 
complexities such as shadowing from the canopy layer (Barnetson et al., 
2020).

In the dry season, regression analyses indicated significant positive 
relationships between the SAFER model estimates and field data for all 
three production systems. The SAFER model exhibited strong predictive 
power, with coefficients ranging from 0.769 to 1.078 (p < 0.001). The 
models explained substantial proportions of the variance in field data, 
with R2

adj values ranging from 0.746 to 0.871. The RMSE values ranged 
from 338.7 to 431.3 kg ha− 1 per month.

The SAFER model performed best in the ICL production system, 
achieving an R2

adj of 0.871 (varying from 0.718 to 0.961), which was 
higher than the EXT system (R2

adj = 0.840, ranging from 0.741 to 0.957) 

and the INT system (R2
adj = 0.746, ranging from 0.510 to 0.908). The ICL 

system also presented the lowest RMSE (305.5 kg ha− 1 per month), 
compared to the EXT (367.4 kg ha− 1 per month) and INT (400 kg ha− 1 

per month) systems.
Despite the limited literature on FM estimation during the dry sea

son, our study’s performance, with an R2 of 0.746, surpasses previous 
such as those studies conducted by Punalekar et al. (2018) (R2 = 0.54) 
and Legg and Bradley (2019) (R2 = 0.61–0.75), which employed radi
ative transfer modelling with Sentinel-2 imagery and proximal ultra
sound sonar, respectively.

In the rainy season, the SAFER model exhibited strong predictive 
power across all three production systems, with R2

adj ranging from 0.795 
for the EXT production system (p < 0.001), 1.106 for the INT (p <
0.0068), and 1.168 for the ICL system (p < 0.0614). Although the p- 
value of 0.0614 for the ICL system is marginally non-significant, the 
positive coefficient and the strong relationship observed in the other 
systems suggest a potential association between SAFER estimates and 
field data. However, due to the small sample size (n = 8) for the ICL 
system, caution must be considered in interpreting the results for this 
system.

The SAFER model showed the best performance in the EXT pro
duction system with an R2

adj of 0.903 (ranging from 0.792 to 0.976), 
outperforming the INT system (R2

adj = 0.626, ranging from 0.347 to 
0.919) and the ICL system (R2

adj = 0.379, ranging from − 0.125 to 0.929). 
The RMSE values further reflect this performance, with the EXT 
achieving the lowest RMSE (196.1 kg ha− 1 per month), compared to the 
INT (464.1 kg ha− 1 per month) and ICL (576.4 kg ha− 1 per month) 

Fig. 6. Correlation between field green mass (GM) and accumulated SAFER green mass (GM) in the evaluated livestock production systems in the dry (a) and rainy 
(b) seasons. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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systems.
Seasonal dynamics have important implications in livestock man

agement. The main difference between the rainy and dry seasons lies in 
the increased attention required for forage and animal management 
during the dry season, mainly due to precipitation constraints. As 
detailed in the Supplementary Table 1, during the dry season (winter), 
supplemental feed was provided to the animals and paddock stocking 
rates were reduced to ensure optimal pasture utilization and maintain 
animal health. These seasonal dynamics highlight the importance of 
strategic adjustments in livestock management to preserve pasture 
quality and sustain animal productivity under more challenging 
conditions.

The SAFER model demonstrated higher predictive accuracy for the 
EXT production system when compared to other methodologies. Spe
cifically, it outperformed the regression tree models of John et al. (2018)
and the regression analysis of Schucknecht et al. (2017), both based on 
the 250-m spatial resolution, Moderate Resolution Imaging Spectror
adiometer (MODIS) data, with their reported R2 values of 0.68 and 0.47, 
respectively. The SAFER model achieved an R2adj of 0.903, evidencing 
its enhanced capability in capturing data variability and its suitability 
for individual farm applications, unlike the larger-scale approaches 
using MODIS data.

The use of Landsat 8 and Sentinel-2 data for analyzing pasture 
phenology, as noted by Wang et al. (2019b), demonstrated even higher 
accuracy. The combination of Landsat 8 and Sentinel-2 data achieved an 

R2 of 0.92, explaining more variation in phenological stages compared 
to MODIS data (R2 = 0.86). This indicates that Landsat 8 and Sentinel-2, 
with finer spatial resolution (30 m and 10 m, respectively), offer better 
key pasture phenological phases.

Our results for the INT system were comparable to those results re
ported by Schaefer and Lamb (2016) and Crabbe et al. (2019). Specif
ically, the SAFER model achieved performance similar to that of 
Schaefer and Lamb (2016), who employed regression analysis on field 
and LiDAR data, obtaining an R2 of 0.61. Likewise, our results were also 
aligned with Crabbe et al. (2019), who combined field and Sentinel-1 
data with regression analysis, achieving an R2 of 0.66. Nevertheless, 
in the rainy season, our results for the INT system did not reach the 
similar performance of Batistoti et al. (2019), who employed a regres
sion analysis approach using field and UAV data, achieving a higher R2 

of 0.74.
The boxplots illustrate the model performance for EXT, INT, and ICL 

systems (Fig. 7). The EXT system consistently showed the highest R2 and 
the lowest RMSE, indicating higher model accuracy. In contrast, both 
INT and ICL systems showed lower R2 and higher RMSE, with greater 
variability and outliers, suggesting increased prediction uncertainty. 
These results highlight the model’s superior reliability in extensive 
systems and the challenges it faces in more complex, integrated systems. 
Fig. 8 presents the GM time series values estimated from field data, 
SAFER and adjusted SAFER derived from the linear regression 
equations.

Fig. 7. R2 results combining rainy and dry seasons (a), only from dry season (b), and only from rainy season (c); and RMSE results from rainy and dry season (d), only 
from dry season (e), and only from rainy season (f).
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3.6. Research limitations and managerial implications

Although remote sensing data are highly effective for monitoring 
large-scale land use and land cover change, their application to range
lands remains complex. Accurately distinguishing pasture from other 
land uses and differentiating between pasture production systems is a 
significant challenge (Bolfe et al., 2023). Shahi et al. (2025) identified 
spectral variability due to differences in livestock production and 
pasture management practices as a major limitation. As a result, satellite 
data may not effectively differentiate systems with similar spectral sig
natures, potentially leading to misclassification.

The SAFER model, while a valuable tool for estimating environ
mental parameters, does not incorporate biophysical soil properties or 
animal management data. As a result, it may not adequately capture the 
complex interactions among soil characteristics, grazing dynamics, and 
pasture growth that govern overall system performance. The omission of 
these factors constrains the model’s ability to provide a comprehensive 
representation of FM in livestock production system dynamics.

The use of data from 2018–2019 may limit the applicability of the 
results to current conditions. Although more recent data were not 
available for this study, future research should prioritize integrating 
updated time series to improve the model’s robustness and relevance. 
Expanding the temporal scope would provide a deeper understanding of 
how climate variability influences forage dynamics.

Furthermore, although the SAFER model has demonstrated its 
effectiveness in estimating forage mass under intensive management 
systems, its suitability to varying climatic conditions or pasture types, 
such as those with different species composition, degradation levels, and 
seasonality sensitivity, has yet to be evaluated. Addressing these limi
tations could improve the model’s adaptability to different rangeland 
contexts and strengthen its contribution to broader monitoring efforts.

4. Conclusions

FM availability and quality are key determinants of stocking rates 
and livestock performance. Therefore, proper management is essential 
to prevent overgrazing, protecting rangeland ecosystems and supporting 
livelihoods. Maximizing the use of forage as a high-quality, cost-effec
tive feed source is essential for a profitable pasture-based farm.

This study demonstrated the effectiveness of integrating multi-sensor 
satellite data with the SAFER agrometeorological model to estimate FM 
across three pasture-based livestock production systems in Brazil. The 
SAFER model explained over 67 % of FM variability, highlighting its 
potential as a scalable and automated tool for systematic pasture 
monitoring and data-driven grazing management. By incorporating 
remote sensing and climatic data, the SAFER model enhances FM esti
mation by accounting for differences in management intensity, pasture 
dynamics, and seasonal phenology throughout the year.

A key factor in achieving accurate FM estimates was distinguishing 
between GM and TDM. Unlike TDM, which includes senescent and 
indigestible plant material, GM is directly related to forage quality, 
livestock intake and overall pasture productivity. By prioritizing GM, the 
SAFER model produced more accurate estimates of available forage, 
enhancing its applicability for livestock nutrition, grazing capacity 
assessment, and pasture management.

The model performed best in the EXT system, where minimal man
agement intervention led to more stable forage conditions and higher 
prediction accuracy. In intensive production systems, while SAFER also 
showed promising results for ICL systems, accuracy was slightly reduced 
in the INT system. In ICL systems, the influence of crop integration, such 
as fertilization and decomposition of crop residues, can improve soil 
quality and increase FM.

This research contributes to the development of systematic, auto
mated, and repeatable methods for FM assessment, supporting improved 

Fig. 8. Field, SAFER and adjusted SAFER (SAFER_adj) green mass (GM) time series in the evaluated livestock production systems. Light and dark gray areas represent 
the dry and rainy seasons, respectively.
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pasture monitoring and the formulation of optimized grazing strategies. 
The SAFER model, which uses accessible imagery and climate data, 
exhibits potential for application in tropical regions beyond Brazil. The 
widespread availability of input datasets facilitates the modelś adapt
ability in different geographical contexts. However, it is important to 
recognize that the accuracy of the model results depends heavily on the 
quality and accuracy of the input data, especially the climate data.

Future research could explore the use of higher resolution satellite 
imagery, such as the CBERS-4A and PlanetScope satellites to better 
capture spatial variability within paddocks. Additionally, increasing the 
frequency of field data collection by reducing the estimation interval 
from 32 days to 15 days, or even one week, may further improve FM 
estimation accuracy, particularly in intensive production systems.
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Writing – review & editing, Validation, Investigation. Antônio Her
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Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/207223/1/ 
ComunicadoTecnico-133.pdf Access 21 Apr. 2024 (in Portuguese).

Bender, F.D., Cuadra, S.V., Dias, H.B., Silva, L.E.A., Oliveira, M.P.G., Lamparelli, R.A.C., 
Cabral, O.M.R., Nogueira, S.F., Pezzopane, J.R.M., Bosi, C., Freitas, H.C., 
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Varga, K., Csízi, I., Monori, I., Valkó, O., 2021. Threats and challenges related to grazing 
paddocks: Recovery of extremely overgrazed grassland after grazing exclusion. Arid 
Land Res. Manag. 35, 346–357. https://doi.org/10.1080/15324982.2020.1869120.

Vermote, E., Justice, C., Claverie, M., Franch, B., 2016. Preliminary analysis of the 
performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. 
Environ. 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008.

Wang, J., Sun, J., Yu, Z., Li, Y., Tian, D., Wang, B., Li, Z., Niu, S., 2019a. Vegetation type 
controls root turnover in global grasslands. Glob. Ecol. Biogeogr. 28, 1045–1054. 
https://doi.org/10.1111/geb.12866.

Wang, J., Xiao, X., Bajgain, R., Starks, P., Steiner, J., Doughty, R.B., Chang, Q., 2019b. 
Estimating leaf area index and aboveground biomass of grazing pastures using 
Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 154, 
189–201. https://doi.org/10.1016/j.isprsjprs.2019.06.007.

Vinholis, M.D.M.B., Souza Filho, H.M.D., Shimata, I., Oliveira, P.P.A., Pedroso, A.D.F., 
2021. Economic viability of a crop-livestock integration system. Ciência Rural 51, 
e20190538. https://doi.org/10.1590/0103-8478cr20190538.

Wang, L., Jiao, W., MacBean, N., Rulli, M.C., Manzoni, S., Vico, G., D’Odorico, P., 2022. 
Dryland productivity under a changing climate. Nat. Clim. Change 12 (11), 981–994. 
https://doi.org/10.1038/s41558-022-01499-y.

Wilm, H.G., Costello, D.F., Klipple, G.E., 1944. Estimating forage yield by the double- 
sampling method. Agron. J. 36, 194–203. https://doi.org/10.2134/ 
agronj1944.00021962003600030003x.

Wilson, J.R., Mannetje, L., 1978. Senescence, digestibility and carbohydrate content of 
buffel grass and green panic leaves in swards. Aust. J. Agric. Res. 29, 503–516. 
https://doi.org/10.1071/AR9780503.

Xie, J., Wang, C., Ma, D., Chen, R., Xie, Q., Xu, B., 2022. Generating spatiotemporally 
continuous grassland aboveground biomass on the Tibetan Plateau through PROSAIL 
model inversion on Google Earth Engine. IEEE Trans. Geosci. Remote Sens., 60, 
1–14. https:// 10.1109/TGRS.2022.3227565.

Xue, J., Anderson, M.C., Gao, F., Hain, C., Yang, Y., Knipper, K.R., Kustas, W.P., Yang, Y., 
2021. Mapping daily evapotranspiration at field scale using the Harmonized Landsat 
and Sentinel-2 dataset, with sharpened VIIRS as a Sentinel-2 thermal proxy. Remote 
Sens. 13, 3420. https://doi.org/10.3390/rs13173420.

Yan, J., Zhang, G., Ling, H., Han, F., 2022. Comparison of time-integrated NDVI and 
annual maximum NDVI for assessing grassland dynamics. Ecol. Indic., 136, 108611. 
https://doi.org/10.1016/j.ecolind.2022.108611.

G. Bayma et al.                                                                                                                                                                                                                                 Computers and Electronics in Agriculture 237 (2025) 110496 

14 



Yang, S., Feng, Q., Liang, T., Liu, B., Zhang, W., Xie, H., 2018. Modeling grassland above- 
ground biomass based on artificial neural network and remote sensing in the Three- 
River Headwaters Region. Remote Sens. Environ. 204, 448–455. https://doi.org/ 
10.1016/j.rse.2017.10.011.

Zhang, B., Wu, Y., Zhao, B., Chanussot, J., Hong, D., Yao, J., Gao, L., 2022. Progress and 
challenges in intelligent remote sensing satellite systems. IEEE J. Sel. Top. Appl. 
Earth Obs. Remote Sens. 15, 1814–1822. https://doi.org/10.1109/ 
JSTARS.2022.3148139.

Zeng, N., Ren, X., He, H., Zhang, L., Zhao, D., Ge, R., Li, P., Niu, Z., 2019. Estimating 
grassland aboveground biomass on the Tibetan Plateau using a random forest 
algorithm. Ecol. Indic. 102, 479–487. https://doi.org/10.1016/j. 
ecolind.2019.02.023.

Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and expansion of the Fmask 
algorithm: Cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and 
Sentinel 2 images. Remote Sens. Environ. 159, 269–277. https://doi.org/10.1016/j. 
rse.2014.12.014.

G. Bayma et al.                                                                                                                                                                                                                                 Computers and Electronics in Agriculture 237 (2025) 110496 

15 


