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ABSTRACT
Considered a biostimulant, chitosan can affect the physiological responses of plants to water 
deficit, acting as an antitranspirant under agricultural stress. Currently, images obtained by 
Remotely Piloted Aircraft Systems (RPAS), together with machine learning techniques, aid in 
resolving agricultural problems, including water issues. Therefore, the objective of this study 
was to differentiate between coffee plants subjected to the foliar application of chitosan and 
those not subjected to it, based on spectral data extracted from RPAS-acquired images and 
classification via machine learning. For this purpose, the random forest (RF) classifier was 
applied to two coffee cultivars (Catucaí Amarelo 2SL and Catuaí Vermelho IAC 99) over two 
years of study (2021 and 2022). The images were obtained by a 3DR SOLO aircraft with a Parrot 
Sequoia sensor, processed in PIX4D Mapper software and analysed in QGIS and RStudio 
software. The results showed good performance metrics for differentiating between coffee 
plants subjected and not subjected to the foliar application of chitosan, indicating that this 
method is a valid approach for modelling the presence of the biostimulant in coffee plants, 
thus confirming that the model can efficiently support the practices of precision agriculture.
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Introduction

Chitosan is a substance with high biotechnological 
potential derived from the process of partial deacety-
lation of chitin (considered the second most abundant 
polymer in nature, after cellulose) present in large 
amounts in the exoskeletons of crustaceans, insects, 
and fungal cell walls (Huq et al., 2022). In turn, several 
properties inherent to materials of renewable origin, 
such as nontoxicity, nonallergy, biocompatibility, bio-
degradability, analgesic and coagulant properties, and 
antimicrobial action against fungi and bacteria, enable 
its application in biological systems (Pellá et al., 2018).

Chitosan has several characteristics that make it 
suitable for use in different applications, especially 
agricultural and environmental applications. Some of 
the applications include pesticides, herbicides, insecti-
cides, fertilizers, soil conditioning agents, plant disease 
control agents, antitranspirants, biostimulants and 
seed and nutrient coatings (Cheng et al., 2017; 
Kumaraswamy et al., 2018). It also promotes numer-
ous defense responses related to biotic and abiotic 
stresses, especially in the protection of plants against 
environmental stress. In plants, chitosan improves 
drought tolerance in plants by stimulating their 

physiological responses to water deficit, suggesting 
the potential of this biopolymer to act as an antitran-
spirant in agricultural situations of water deficit. 
Drought tolerance is induced via increased water use 
efficiency and greater defense against oxidative stress 
(Hidangmayum et al., 2019). Thus, when applied topi-
cally, chitosan improves stomatal conductance, 
increases the abscisic acid content and reduces tran-
spiration in plants without changing their height, leaf 
area, root or biomass (Román-Doval et al., 2023).

Agricultural studies on the use of chitosan have 
already demonstrated its ability to delay or prevent 
the spread of diseases, fungi, bacteria and viruses and 
to increase and stimulate the defense mechanisms of 
plants, such as beans (Abd El-Aziz & Khalil, 2020), 
cucumber (Gangireddygari et al., 2021), rice (Liu et al.,  
2012), sweet potato (Xing et al., 2018), pear (Meng 
et al., 2020), strawberry (Feliziani et al., 2015), grape-
vine (Reglinski et al., 2010), dragon fruit (Zahid et al.,  
2015), wheat (Masjedi et al., 2017), barley (Behboudi 
et al. 2018, Behboudi et al., 2018), sugarcane (Silveira 
et al., 2019), and others. However, in the context of 
coffee cultivation, there are few studies with the direct 
application of chitosan. The significance of this crop is 
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the enormous contribution to the world economy 
since Brazil is the largest producer and exporter of 
coffee in the world (Companhia Nacional de 
Abastecimento - CONAB, 2023). As such, given the 
needs described for coffee crops, the applicability of 
chitosan as a form of agricultural management is 
addressed, allowing us to circumvent the physiological 
and morphological disturbances that affect the devel-
opment and yield of coffee crops.

Thus, the use of techniques and technologies that 
demonstrate the responses of plants in the field allows 
for the accurate study of agricultural crops, intelligent 
decision making and increased profitability (Bento 
et al., 2022). The use of suborbital remote sensing 
with Remotely Piloted Aircraft Systems (RPAS) is 
recommended because they allow aerial imaging clo-
ser to the surface, ensuring greater spectral resolution, 
as well as the use of multispectral sensors, which 
ensure greater resolution of radiometric measurement 
and may also target smaller study areas, ensuring 
lower costs (Santos et al., 2020). RPAs are defined in 
summary as remotely piloted aircraft operated 
through interfaces such as computers, simulators, 
digital devices, or remote controls, with the pilot not 
being on board (Santos et al., 2020).

In recent years, the use of products obtained by RPAS 
combined with machine learning techniques has intro-
duced a new way of examining various sets of data 
serving different areas, such as precision agriculture 
(Calou et al., 2020). Machine learning allows solving 
nonlinear issues by employing datasets from various 
sources and exposing hidden information in the data 
initially provided (Liakos et al., 2018; Qiu et al., 2016). 
The use of different computational algorithms allows the 
generalization of patterns, allowing robust and flexible 
prediction models to be developed for increasingly 
diverse study objectives (Priya & Ramesh, 2020).

In the context of precision coffee farming, machine 
learning techniques have been used to study plant 
diseases (Marin, Ferraz, Santana, et al., 2021), produc-
tivity (Barbosa et al., 2021; Kouadio et al., 2018), leaf 
nitrogen (Marin, Ferraz, Guimarães, et al., 2021), 
identification and counting of plants (Santana et al.,  
2023) and weeds (Bento et al., 2023). However, the use 
of chitosan in the study of coffee plants subjected to 
foliar management has not yet been discussed in the 
literature, which is a gap that demands attention and 
directs new promising results of applicability. 
Therefore, this study aimed to evaluate the potential 
use of multispectral images obtained by RPAS 
together with the use of machine learning techniques 
to differentiate coffee plants subjected and not sub-
jected to the foliar application of chitosan.

Identifying plants that respond positively to the 
application of chitosan can lead to more precise 
adjustments in agricultural management. Plants trea-
ted with biostimulants such as chitosan tend to 

exhibit improvements in growth, root development, 
and photosynthesis, resulting in increased productiv-
ity. For coffee growers, this practice can translate 
into higher crop yields and better grain quality, 
directly impacting profits. Moreover, this approach 
simplifies the monitoring of established trials, 
enabling more consistent assessments of plant 
responses and facilitating long-term agricultural 
planning. The application of chitosan as it is a less 
invasive method, compared to the use of synthetic 
fertilizers or pesticides, generates a positive impact 
on the plants, which in turn benefits the soil, biodi-
versity, and agricultural ecosystems, while also meet-
ing the growing demand for more sustainable 
agricultural practices.

Materials and methods

Study area

The study area refers to a commercial coffee crop 
(Coffea arabica L.) located in the municipality of Ijaci, 
Minas Gerais, Brazil (501,780 and 502,320 m E and 
7,659,700 and 7,659,140 m N), in the projection system 
Universal Transverse Mercator (UTM), 23S zone, 
SIRGAS 2000 (Figure 1). The crop was planted in 
2008 and has a spacing of 3.6 metres between rows 
and 0.5 metres between plants, with two different cul-
tivars, Catucaí Amarelo (2SL) (subarea A) and Catuaí 
Vermelho (IAC 99) (subarea B), registered in the 
National Register of Cultivars – RNC, of the Ministry 
of Agriculture, Livestock and Food Supply – Mapa.

The experimental design consisted of randomized 
blocks, with different foliar application treatments 
(with/without chitosan) (Figure 1). The division con-
sists of two study lines per coffee cultivar, with 8 
blocks per study line, 4 blocks subjected to chitosan 
application and 4 blocks without chitosan application, 
with 6 replicates per block. Each replicate refers to 
a study plant; thus, each experimental unit is com-
posed of 8 total plants, with 6 plants being the focus of 
investigation. The lateral lines of each experimental 
line were also considered as borders.

The chitosan product that was powdered to prepare 
the solution (liquid) that was applied, using the com-
mercial active from Sigma Aldrich Chemicals (low 
molecular weight chitosan 448,869-250 G). Chitosan 
foliar applications were carried out with an electric 
knapsack sprayer, totaling three applications in the 
months of February (23 February 2021), March 
(30 March 2021) and May (4 May 2021). Chitosan was 
applied at a concentration of 300 mg.L.-1, solubilized in 
0.1% acetic acid, and the dilution of chitosan in acid was 
carried out on the same day of applications. The volume 
of mixture used during applications was 400 L.ha.-1, 
with suitable climatic conditions for the application.

2 N. LOPES BENTO ET AL.



Collection and processing of air data

Aerial imaging was performed in June 2020 and 2021 
using a 3DR SOLO Remotely Piloted Aircraft (3D 
Robotics, Berkeley, California) (Figure 2a), which, 
according to the manufacturer’s considerations, has 
a flight autonomy of approximately 20 minutes (con-
sidering the weight loaded on the vessel), maximum 
load capacity of 0.42 kg, maximum altitude of 122 m, 
range of 800 m and maximum speed of 24.58 m/s with 
navigation, altitude and other communications con-
trol by means of telemetry and in real time with con-
trol inputs via the Wi-Fi network.

The Parrot Sequoia multispectral sensor 
(MicaSense, Seattle, WA, USA) and the irradiance 
sensor (Sunshine Sensor) were embedded in the RPA 
for aerial imaging (Figure 2b). This sensor has an RGB 
reading range and 4 spectral sensors with spectral 

ranges of green (GRE − 550 to 590 nm), red (RED − 
660 to 700 nm), red edge (REG − 735 nm to 745 nm), 
infrared (NIR − 760 to 820 nm) and RGB (380 to 720  
nm), and its dimensions are 47 mm x 39.6 mm 
x 18.5 mm and the focal aperture is 61.9° HFOV 
(high-frequency oscillatory ventilation) (4 mm).

The flight plan was developed semiautomatically 
using Mission Planner software (Team ArduPilot, 
Geelong, Australia). Regarding the flight parameters, 
the aircraft launch and landing location (home point 
definition), wind direction, topographic conditions of 
the area, flight direction, flight height in metres and 
flight speed in m/s were considered. The overlap infor-
mation (overlap X sidelap), speed and flight height 
above ground level (AGL) were standardized at 80% 
X 80%, 5 m/s and 40 m, respectively.

Before and after the flights, images were captured 
from the radiometric calibration plate (MicaSense, 

Figure 1. Study area with separation of the subareas for the coffee cultivars (a) catucaí amarelo (2SL) and (b) Catuaí Vermelho (IAC 99).

Figure 2. (a) 3DR SOLO RPA; (b) parrot sequoia and sunshine sensor; and (c) radiometric calibration plate.
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Seattle, WA, USA) for later standardization of the 
reflectance values of the flights since the panel has 
a known reflectance curve and allows for accurate 
compensation of the incident light (Figure 2c). The 
flights took place at standardized times between 11:00 
am and 1:00 pm, a time that avoids shading of the 
plants due to the position of the sun at the zenith.

The aerial images were processed using Pix4D 
Mapper software (Pix4D, Lausanne, Switzerland). 
The workflow steps refer to the initial alignment of 
the images through triangulation and creation of link 
points, subsequently generating the dense point clouds 
and texture of the scenes, and finally orthorectifying 
the images to obtain the orthomosaic from the end of 
each spectral band for each study area and date. The 
generated orthomosaics had a ground sampling dis-
tance (GSD) of 0.052 m.

With the orthomosaic products in hand, the study 
blocks were individualized using QGIS 3.6.2 software 
(QGIS Development Team, Open Source Geospatial 
Foundation), with each experimental unit composed 
of 6 useful plants, enabling the extraction of the ortho-
mosaic pixel values for each block of plants for the 
subsequent spectral analyses.

Vegetation indices

The vegetation indices (VIs) were calculated based on 
the combination of spectral bands according to the 
mathematical equations described in Table 1. For this 
study, 26 different VIs were considered for identifying 
the indirect relationships of spectral response in coffee 

plants subjected to the different treatments and to 
serve as input data for the classification model. The 
VIs was calculated with the software QGIS 3.6.2 (QGIS 
Development Team, Open Source Geospatial 
Foundation) in a GIS environment through the set of 
functions in ArcToolbox in the Map Algebra tool.

Classification and validation

The training and validation stages of the classification 
model consisted of a) preprocessing and exploratory 
analysis of the data; b) sampling of classes of interest; 
c) classification procedure by the random forest (RF) 
algorithm; d) validation and verification of the perfor-
mance of the classifier; and e) forecasting in the total 
area, with steps shown in Figure 3 and procedures 
performed in QGIS 3.22.8 (QGIS Development 
Team, Open-Source Geospatial Foundation) and 
R Studio software (R Development Core Team, 
R project, Austria, Vienna). In this study, the data 
referring to the 26 VIs and 4 individual spectral 
bands of the sensor used to capture the images were 
considered as input data to the classification process.

Two classes of interest were considered for the clas-
sification process: coffee plants subjected to chitosan 
application (CQ) and coffee plants not subjected to 
chitosan application (SQ). The training samples were 
selected based on the sketch of the study area, based on 
the correct positioning of the plants subjected to the 
different treatments, using the software QGIS 3.22.8 
(QGIS Development Team, Open Source Geospatial 
Foundation). The samples were initially collected in 

Table 1. Vegetation indices used, followed by their abbreviations, equations and references.
Vegetation Indices Abbreviations Equations[1] References

Chlorophyll Index Green CIg ((RNIR/RG −1) Gitelson et al. (2003)
Difference Vegetation Index DVI (RNIR+RR) Perry and Lautenschlager (1984)
Excess Red Vegetation Index EXR 1.44(RR−RG) Meyer et al. (1998)
Green Difference Vegetation Index GDVI (RNIR+RG) Wu (2014)
Green Normalized Difference Vegetation Index GNDVI (RNIR−RG)/(RNIR+RG) Shanahan et al. (2001)
Green Optimal Soil Adjusted Vegetation Index GOSAVI (1 + 0.16)(RNIR−RG)/(RNIR+RG +0.16) Rondeaux et al. (1996)
Green Re-normalized Different Vegetation Index GRDVI (RNIR−RG)/√(RNIR+RG) Cao Qiang et al. (2013)
Green Red NDVI GRNDVI (RNIR)–(RG+RR)/(RNIR)+(RG+RR) Wang et al. (2007)
Green-Red Ratio Index GRRI (RG)/(RR) Gamon and Surfus (1999)
Green Ratio Vegetation Index GRVI (RNIR/RG) Tucker (1979)
First Modified Chlorophyll Absorption Ratio Index MCARI1 1.2(2.5((RNIR–RG)–1.3(RNIR–RG))) Haboudane (2004)
Modified Double Difference Index MDD (RNIR−RREG)-(RREG−RG) Lu et al. (2017)
Modified Normalized Difference Index MNDI (RNIR−RREG)/(RNIR−RG) Cao Qiang et al. (2013)
Modified Photochemical Reflectance Index MPRI (RG−RR)/(RG+RR) Yang et al. (2008)
Modifed Simple Ratio MSR (RNIR/RR)−1/√(RNIR/RR)+1 Chen (1996)
Modified Simple Ratio Green MSR_G (RNIR/RG)−1/√(RNIR/RG)+1 Cao Qiang et al. (2013)
Meris Terrestrial Chlorophyll Index MTCI (RNIR−RREG)/(RREG+RR) J. Dash and Curran (2004)
Normalized Different Index NDI (RG−RR)/(RG+RR +0.01) Mao et al. (2003)
Normalized Difference Red Edge Index NDRE (RNIR−RREG)/(RNIR+RREG) Buschmann and Nagel (1993)
Normalized Difference Vegetation Index NDVI (RNIR−RR)/(RNIR+RR) Rouse et al. (1974)
Normalized Green Index NGI RG/(RNIR +RREG+RG) Sripada et al. (2006)
Normalized NIR Index NNIR RNIR/(RNIR+RREG+RG) Sripada et al. (2006)
Normalized Red Edge Index NREI RREG/(RNIR+RREG+RG) Cao Qiang et al. (2013)
Normalized Red Index NRI RR/(RNIR+RREG+RRED) Bausch and Duke (1996)
Renormalized Difference Vegetation Index RDVI (RNIR−RR)/√(RNIR+RR) Roujean and Breon (1995)
Ratio Vegetation Index RVI RNIR/RR Richardson and Wiegand (1977)

Legend: [1] RNIR, reflectance values obtained by the sensor in the near infrared range. RREG, reflectance in the red edge range. RR, reflectance in the red band. 
RG, reflectance in the green band.
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shapefile format based on regions of interest (ROIs). 
The pixels belonging to the ROIs were added as sam-
ples, increasing the number of samples, totaling 51,409 
samples for the cultivar Catucaí Amarelo (2SL) and 
54,942 samples for the cultivar Catuaí Vermelho (IAC 
99), using R Studio software (R Development Core 
Team, R project, New Zealand).

Subsequently, using R Studio software, the samples 
were randomly divided into training and validation 
samples at proportions of 70% and 30%, respectively. 
The training samples were used in the classification for 
separating information from the reflectance spectrum 
using the random forest (RF) machine learning algo-
rithm (Breiman, 2001) in R Studio software. For this 
analysis, the hyperparameters were defined as follows: 
the number of decision trees (ntree) was set to 100, and 
the number of variables tested at each split (mtry) was 
defined as the square root of the total number of input 
variables (Gislason et al., 2006). Additionally, an analy-
sis based on the Gini index was performed to describe 
the importance of each input variable for the classifica-
tion process. The remaining hyperparameters were set 
to their default values: nodesize = 1 (minimum size of 
terminal nodes); maxnodes = no defined limit (maxi-
mum number of nodes); sampsize = total number of 
samples in the dataset (sampling size); replace = true 
(sampling with replacement); proximity = false (proxi-
mity matrix not computed); classwt = null (no class 
weights); and cutoff = 1/number of classes (default cut-
off for classification).

The results were validated using the study’s percen-
tage of the validation sample in direct comparison to 
the reference data. For this, we used information 
obtained through the confusion matrix according to 
metrics of global accuracy, sensitivity, specificity and 
area under the ROC curve. Finally, the classifier 

algorithm was used to predict the total area of the 
study classes; therefore, it was possible to identify the 
blocks of coffee plants subjected and not subjected to 
the foliar application of chitosan.

Results

The performance metrics are described in Table 2 and 
refer to the overall accuracy, sensitivity, specificity and 
area under the ROC curve according to the classifica-
tion proposed by the algorithm for the two coffee 
cultivars studied, Catucaí Amarelo (2SL) and Catuaí 
Vermelho (IAC 99), and the results of this analysis 
consider the study classes in general, considering the 
two study classes, coffee plants subjected to chitosan 
application (CQ) and coffee plants not subjected to 
chitosan application (SQ). In general, satisfactory 
values of the performance metrics analyzed were 
found, which indicate good performance of the classi-
fier for differentiating the study classes.

The results of the validation of the classification 
algorithm for the two coffee classes and cultivars stu-
died were verified using confusion matrices, as 
described in Table 3. The results of this analysis con-
sider the study classes individually. Based on the 
values previously presented via performance metrics, 
the confusion matrix showed low errors between the 
classified thematic classes, with approximately 18% for 
SQ and 22% for CQ for the cultivar Catucaí Amarelo 
(2SL) and 15% for SQ and 22% for cultivar Catuaí 
Vermelho (IAC 99).

Using the RF classifier, it was possible to describe 
the importance of each variable for the classification 
process by means of the mean decrease in the Gini, as 
shown in Figure 4. For the cultivar Catucaí Amarelo 
(2SL), the 3 most important variables in the 

Figure 3. Flowchart of the classification process with the methodological steps used.

Table 2. Performance metrics for the RF classification algorithms for the coffee 
cultivars A) catucaí amarelo (2SL) and B) Catuaí Vermelho (IAC 99).

Overall Accuracy Sensitivity Specificity AUC

A) 0.8025 0.8230 0.7822 0.8087
B) 0.8169 0.8516 0.7812 0.8237
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classification were the REG spectral band VIs MNDI 
and NNIR, and for the cultivar Catuaí Vermelho (IAC 
99), the 3 most important variables in the classification 
were VIs MDD, NDRE and the NIR spectral band.

The map of the distribution of classes with the classi-
fier RF, which describes the prediction of classes by the 
classifier algorithm for the plant blocks of the two coffee 
cultivars, is presented in Figure 5, where A) Catucaí 
Amarelo (2SL) and B) Catuaí Vermelho (IAC 99).

Discussion

As shown in Table 2, the performance metrics of over-
all accuracy, sensitivity, specificity and area under the 
ROC curve allowed reliable discrimination of the 
study classes. The global accuracy metric allowed us 
to verify the estimate of the global correctness ratio of 
the classifier algorithm, while the sensitivity metric 
refers to the proportion of true positives among the 
instances classified as positive, and the specificity 
metric refers to the proportion of false negatives 

among the instances classified as negative. Finally, 
the metric referring to the area under the ROC curve 
refers to the fit between sensitivity and specificity (De 
Castro & Ferrari, 2017; Mariano & Paz, 2020).

Notably, values of performance metrics between 70 
and 100% represent satisfactory results from moderate 
to high for classification (Kuhn & Johnson, 2013), as 
observed in this study, with values always above 78%. 
For the area under the ROC curve, the performance is 
represented in the range of normalized limits between 
0 and 1 (James et al. 2013, Kuhn & Johnson, 2013). 
Values closer to 1 highlight better performance, as 
observed in this study with values above 0.80. Thus, 
it can be said that all performance metrics are within 
the quality limits as defined by the classification cri-
teria. It should be noted that pixels classified as erro-
neous classes are checked whenever the classification 
does not reach 100% accuracy in the individual analy-
sis of the classes.

The RF algorithm has some specificities that opti-
mize the classification procedures since it calculates 
the average of the decision trees that compose it, 
which minimizes the variation component of the 
model, bringing it closer to an ideal model. When 
developing trees, independent decisions and obtain-
ing a majority vote reduces the fit errors and 
increases the correctness of the proposed classes 
(Mehta et al., 2019), a fact evidenced in this study. 
In addition, this algorithm can list the attributes that 
contribute to decision making and is often used as 
a feature selection technique, a fact considered 
essential for data analysis because it allows reducing 
the complexity/dimensionality of the classification 
system (M. Dash & Liu, 1997). Other characteristics 
that make RF beneficial to classification applications 
stand out, such as the lower interference of outliers 
and data with noise, allowing data with different 

Table 3. Confusion matrices for the RF machine learning 
algorithm for the coffee cultivars A) catucaí amarelo (2SL) 
and B) Catuaí Vermelho (IAC 99).

Reference

A) Classes SQ QC Total

SQ QC Total

Prediction SQ 6307 1690 7997
QC 1356 6069 7425
Total 7663 7759 15422

Reference

B) Classes SQ QC Total

Prediction SQ 5422 1351 6773
QC 945 4825 5770
Total 6367 6176 12543

Legend: SQ - without chitosan; CQ - with chitosan.

Figure 4. Importance variables by mean decrease in gini in the spectral bands for the coffee cultivars (a) catucaí amarelo (2SL) and 
(b) Catuaí Vermelho (IAC 99).
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statistical distributions, large-scale data and data 
from various sources, along with having higher pre-
cision when compared to other classification algo-
rithms such as support vector machine and 
maximum likelihood (De Almeida Furtado et al.,  
2016; Mahdianpari et al., 2017).

The RF classification errors observed in this study 
may be associated with the characteristics of the plants 
when subjected to foliar application of chitosan and 
consequently with the reflectances presented in their 
spectral responses. When chitosan is applied foliar to 
plants, it promotes changes in the plant’s internal 
structure, producing defense and protection reactions 
by activating mechanisms of production and/or inhi-
bition of elements and compounds present (Berger 
et al., 2011). Plants under stress conditions, especially 
water stress, inhibit the growth of roots and stems and 
reduce photosynthesis, which may directly affect the 
leaf size and proportion and consequently changes in 
the leaf area index (LAI), thus decreasing the uptake 
and activity in the photosynthetically active area (Xing 
& Wu 2012) and altering the spectral responses of 
plants. Therefore, the adoption of antitranspirant 
methods, especially the foliar application of chitosan, 
promotes changes in the plant structure, which was 
captured via spectral analysis and direct application of 
image classification.

It was observed in this study that in addition to the 
use of the individual spectral bands of the sensor, the 
use of VIs demonstrated improvements in the classi-
fication procedure, resulting in spectral differences 
that were captured by the RF algorithm for the 

analysed study classes. This occurs mainly because 
the VIs emphasizes characteristics related to biological 
variables, such as chlorophyll content and biomass, 
which are important for differentiating the classes of 
the study. According to Figure 4, for the cultivar 
Catucaí Amarelo (2SL) in addition to the REG band, 
the VIs MNDI and NNIR had greater weight in the 
classification process, and for the cultivar Catuaí 
Vermelho (IAC 99) in addition to the NIR spectral 
band, the VIs MDD and NDRE had greater weight in 
the classification process.

The active presence of the NIR and REG spectral 
bands are strongly weighted in the proposed classifi-
cation, whether used individually or in combination 
according to VIs. The NIR spectral region is influ-
enced mainly by the internal structure of the leaves 
due to the interaction of incident energy with the 
structure of the spongy mesophyll of the leaves 
(Knipling, 1970). The same occurs in the REG spec-
tral region, located in the sensitive interval between 
the RED and NIR spectral bands (spectral band of 
low and high reflectance in plants, respectively), 
allowing the identification of changes in the levels 
of chlorophyll in the vegetation affected by stress 
factors imposed by agricultural practices (Barnes 
et al., 2017; Cao et al., 2019). Thus, it is noteworthy 
that the water content of vegetation, according to 
water stress, alters the reflectance in various regions 
of the electromagnetic spectrum. In this study it was 
observed especially in the REG and NIR spectral 
bands, since it promotes significant changes and 
adaptations of plants, thus affecting its entire 

Figure 5. Prediction map with the RF classifier for the blocks of plants subjected and not subjected to foliar application of chitosan 
for the coffee cultivars (a) catucaí amarelo (2SL) and (b) Catuaí Vermelho (IAC 99).
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functioning, development, and spectral responses, as 
demonstrated in studies by Le et al. (2023) and Fiorio 
et al. (2018).

The prediction map presented in Figure 5 describes 
the distribution of study classes according to the RF 
classifier, highlighting the fact that the algorithm 
obtained high accuracy for the proposed classification 
by correctly identifying the distribution for the blocks of 
plants subjected and not subjected to foliar application 
of chitosan. In general, satisfactory and accurate results 
of the proposed classification are due to the use of high 
spatial resolution images obtained by RPAS, as well as 
the use of a considerable amount of input variables to 
the classifier algorithm, which covers spectral bands 
important for the study of crops, suggesting that meth-
ods which incorporate the spectral characteristics of 
plants are valuable for classifying different characteris-
tics of plants in the field (Chicchón Apaza et al., 2019).

Notably, the application of classification procedures 
by machine learning is of fundamental importance in the 
agricultural sector, as it allows the analysis of increasingly 
complex and numerous data from different origins and 
sources, producing accurate and reliable results, with 
smaller risks of errors when properly applied and when 
performance analyses are performed (Osco et al., 2020). 
Thus, the results described in this study confirm the 
possibility of identifying areas subjected to different foliar 
chitosan applications by means of images obtained from 
RPAS and machine learning via random forest. Knowing 
the spatial distribution of areas with different manage-
ment practices is essential for a proper understanding of 
the development of agricultural in the field, as well as for 
anticipating returns in productivity and profitability of 
crops. The advantage of identifying plants under leaf 
chitosan management with images based on RPAS is 
the fast, economical, and non-destructive way of mon-
itoring agricultural crops. However, traditional agro-
nomic methods should not be completely replaced but 
rather combined with new technologies and computa-
tional remote sensing techniques. Studies on the classifi-
cation of plants with different management practices of 
foliar application of chitosan using the techniques pre-
sented in this study are not reported in the literature, 
indicating a need to model the presence of the biostimu-
lant in coffee plants.

Conclusions

The results presented in this study showed that the 
random forest machine learning method, applied to 
individualized spectral bands and vegetation indices 
from multispectral images obtained by RPAS, offers 
an adequate approach to classify coffee cultivars sub-
jected and not subjected to foliar application of chit-
osan. The model indicated that the spectral bands of 
the red edge and near infrared, both individually and 

in combination with vegetation indices, were quite 
efficient for the proposed classification.
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