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Abstract: Artificial intelligence (AI) techniques, particularly machine learning and deep
learning, have shown great promise in advancing wheat crop monitoring and management.
However, the application of AI in this domain faces persistent challenges that hinder its
full potential. Key limitations include the high variability of agricultural environments,
which complicates data acquisition and model generalization; the scarcity and limited
diversity of labeled datasets; and the substantial computational demands associated with
training and deploying deep learning models. Additionally, difficulties in ground-truth
generation, cloud contamination in remote sensing imagery, coarse spatial resolution,
and the “black-box” nature of deep learning models pose significant barriers. Although
strategies such as data augmentation, semi-supervised learning, and crowdsourcing have
been explored, they are often insufficient to fully overcome these obstacles. This review
provides a comprehensive synthesis of recent advancements in AI for wheat applications,
critically examines the major unresolved challenges, and highlights promising directions for
future research aimed at bridging the gap between academic development and real-world
agricultural practices.
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1. Introduction
Wheat (Triticum aestivum L.) is one of the most important staple crops worldwide,

providing a significant portion of daily caloric intake for millions of people. Given its global
significance, optimizing wheat production is crucial to ensuring food security. However,
challenges such as climate change, pest infestations, and resource inefficiencies continue
to impact wheat yields and quality [1,2]. As the demand for wheat continues to grow,
innovative solutions that leverage modern technology are needed to enhance productivity
while promoting sustainable agricultural practices.

Most potential technological solutions for agriculture are inherently data driven, that
is, they can only be effective if data covering the whole variety of conditions found for
that specific application are available. Although sensors to collect data from crop fields
have been available for many decades, this kind of technology has experienced accelerated
evolution and growth since the turn of the twenty-first century [3]. Soil and meteoro-
logical sensors are now sensitive and affordable enough for a detailed characterization
and modeling of the cultivation process [4]. Digital cameras can be utilized to monitor
diseases, pests, nutrient deficiencies, and other stress factors, which are major contributors
to agricultural losses [5]. Meanwhile, advanced multispectral and hyperspectral cameras
are enabling the early detection of issues, allowing for timely intervention to prevent signif-
icant yield losses [6]. Drones have revolutionized data collection, enabling the coverage
of vast areas while capturing high-resolution images with efficiency and precision [7].
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A growing number of satellites now continuously monitor the Earth, with increasing revisit
frequencies and ever-improving sensor resolution and sensitivity [8]. Internet of Things
(IoT) technologies have enabled the seamless interconnection of devices, allowing them
to communicate and exchange data autonomously over the internet, without the need
for human intervention [9]. As a result, the volume of collected data has been rapidly
increasing, even in previously inaccessible areas where data collection was once logistically
impractical. Extracting meaningful insights from these diverse data types is a complex
challenge, but artificial intelligence techniques and models have proven highly effective in
overcoming it [10].

Artificial intelligence (AI) has emerged as a transformative tool in addressing these
challenges. Recent advancements in AI-driven agriculture have led to notable progress in
key areas such as disease detection, yield prediction, weed management, and phenotyp-
ing [11]. For example, ref. [12] developed a deep learning model achieving high accuracy
in early detection of wheat rust based on hyperspectral imaging. Similarly, ref. [13] demon-
strated that convolutional neural networks (CNNs) could outperform traditional machine
learning models in predicting wheat yield from UAV-acquired imagery. These and other
studies underscore the growing reliability and precision of AI-driven approaches in wheat
production monitoring.

Emerging deep learning models, including self-supervised learning and attention-
based architectures, are proving to be highly effective in automating large-scale wheat
monitoring and optimizing crop management decisions [14]. The integration of multispec-
tral and hyperspectral imaging, UAV-based monitoring, and remote sensing technologies
has further strengthened AI applications in precision wheat farming [15]. Additionally,
the integration of transfer learning, multi-source data fusion [16], and hybrid AI mod-
els has contributed to overcoming challenges associated with data scarcity and model
generalization [17].

Despite recent advancements, the application of artificial intelligence to wheat man-
agement and monitoring still faces a range of persistent challenges that extend beyond
data-related issues. Among the foremost limitations are the high computational demands
of training and deploying complex models, which can hinder adoption in settings with
limited infrastructure [18]. Additionally, enhancing model interpretability remains a crucial
concern, as current deep learning architectures often function as “black boxes”, limiting
their usability in decision-making processes that require transparency and trust [19–21].
The dynamic nature of agricultural environments adds another layer of complexity—fields
are unstructured and influenced by constantly changing variables such as weather condi-
tions, light incidence, phenological stages, and the presence of pests or diseases.

Amid these broader issues, data limitations continue to be a major bottleneck. Unlike
more stable domains like urban environments, agricultural systems demand datasets that
are not only large in volume but also diverse enough to capture complex interactions among
environmental and biological factors [5]. This challenge is particularly acute for digital
imagery, where the cost and logistics of acquiring representative samples under varied con-
ditions are considerable. While fixed sensor networks may partially alleviate this burden,
alternative strategies are still necessary. Methods such as semi-supervised learning, domain
adaptation, and improved annotation techniques have shown promise, but they cannot
entirely substitute for robust, well-curated datasets. To address this gap, innovative ap-
proaches based on crowdsourcing and citizen science have demonstrated potential [11,22].
These participatory methods can contribute valuable, real-world data at scale, though fur-
ther refinement is needed to ensure quality, standardization, and integration into existing
AI workflows. A holistic response to these challenges requires coordinated progress across
model development, data infrastructure, and interdisciplinary collaboration.



Agronomy 2025, 15, 1157 3 of 50

Thus, although substantial progress has been made in applying machine learning
and deep learning techniques to wheat crop monitoring and management, significant
gaps remain. Existing studies often rely on limited, site-specific datasets, which restrict
the generalizability of the proposed models across diverse agroecological environments.
Moreover, challenges such as data scarcity, ground-truthing difficulties, limited temporal
resolution, and the lack of interpretable AI models continue to hinder practical deployment
in real-world agricultural settings. While recent works have explored advanced methods
such as data augmentation, transfer learning, and multi-source fusion, these approaches
have yet to fully bridge the gap between controlled experimental results and scalable field
applications. This review aims to critically examine these persistent challenges, synthesize
emerging strategies, and identify directions for future research to advance the robust
integration of AI in wheat production systems.

Numerous studies in the literature address one or more of the challenges and re-
search gaps outlined above, as well as various application-specific difficulties. However,
the diversity of methodologies and approaches can make it difficult to determine which
solutions are most appropriate for specific problems. To help organize the growing body
of scientific knowledge and provide a clearer view of the current landscape, this article
presents a comprehensive review of state-of-the-art artificial intelligence applications in
wheat monitoring and management. It examines recent advances, highlights persistent
challenges, and outlines promising directions for future research and integration. By as-
sessing the capabilities and limitations of current AI models, this review seeks to bridge
the gap between academic research and practical implementation in agricultural settings,
ultimately contributing to improved food security and the promotion of more sustainable
wheat production practices.

The remainder of this article is organized as follows. Section 2 defines the key terms
and acronyms used throughout the review. Section 3 examines the state-of-the-art AI appli-
cations in various stages of wheat cultivation. Section 4 provides an in-depth discussion of
the main technical and practical challenges, as well as unresolved research gaps. Section 5
concludes with final remarks and reflections on future directions.

2. Definitions and Acronyms
Some terms considered particularly important in the context of this work are defined

in this section. Most definitions have been adapted from [23]. A list of acronyms used in
this article, along with their respective meanings, is provided in Abbreviations.

Artificial intelligence: It is a computational, data-driven approach capable of performing
tasks that typically require human intelligence, such as detecting, tracking, or classifying
plant diseases autonomously.

Big data: This is a term used to describe large, complex, and high-volume datasets that
exceed the capabilities of traditional data processing methods.

Data annotation: This is the process of adding metadata to a dataset, such as marking
symptom locations in an image. This task is typically performed manually by human
specialists using image analysis software.

Data fusion: This is the process in which different types of data are combined in order
to provide results that could not be achieved using single data sources.

Deep learning: This is a specialized subset of machine learning that utilizes artificial
neural networks with multiple processing layers to extract features from data and recognize
patterns of interest. Deep learning is particularly suited for large datasets with complex
features and unknown relationships.

Domain adaptation: This is a subfield of transfer learning in machine learning where a
model trained on one source domain (the dataset on which the model is originally trained)
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is adapted to perform well on a different but related target domain (the dataset on which
the model needs to perform but has different characteristics).

Ensemble learning: This is a machine learning technique that combines multiple models,
often called “base learners” or “weak learners”, to create a more accurate and robust
predictive model.

Feature: This is a measurable property of a data sample, such as color, texture, shape,
reflectance intensity, index values, or spatial information.

Hyperspectral imaging: This is the process of using a spectral imaging sensor to capture
and analyze reflectance information across the electromagnetic spectrum, generating a
unique spectral signature for each pixel in the specimen’s image. Hyperspectral imaging
typically evaluates hundreds of narrow wavebands, extending beyond the visible spectrum
to provide detailed spectral insights.

Image augmentation: This is the process of applying image processing techniques to
modify existing images, thereby generating additional training data for a model.

Imaging: This is the use of sensors to capture images across specific ranges of the
electromagnetic spectrum. Imaging sensors include RGB (red-green-blue), multispectral,
hyperspectral, and thermal cameras.

Internet of Things: This is a network of interconnected physical devices embedded with
sensors, software, and communication technologies that enable them to collect, exchange,
and analyze data over the internet without human intervention.

Interpretability: This refers to the degree to which a human can understand and explain
how an AI model makes its decisions.

Machine learning: This is a subset of artificial intelligence (AI) that enables algorithms
to learn patterns of plant diseases by extracting features from large datasets. Machine
learning models are often trained using annotated data and, once developed, can predict
outcomes for new, unseen data.

Model: This is a representation of the knowledge learned by a machine learning
algorithm from training data.

Model generalization: This is the ability of a machine learning model to perform well on
new, unseen data after being trained on a given dataset.

Multimodality: It refers to the ability of a system, particularly in artificial intelligence
(AI) and machine learning, to process, integrate, and interpret multiple types of data or
sensory inputs simultaneously.

Multispectral imaging: This is a sensor-based technique for capturing and processing
reflectance information from multiple wavebands of the electromagnetic spectrum. Typ-
ically, up to 10 wavebands in the visible or near-infrared range are analyzed to support
disease detection.

Overfitting: This is a phenomenon where a model performs well on training data but
fails to generalize to new, unseen test data.

Proximal sensing: This is the acquisition of optical information from a crop speci-
men under controlled conditions, without direct physical contact, but at relatively close
distances—typically conducted in a greenhouse or laboratory setting.

Remote sensing: This is the acquisition of optical information from an object in the
field or landscape through a noninvasive, contactless approach, using sensors such as the
human eye or artificial spectral sensors.

Segmentation: This is the process of dividing a digital image into multiple distinct seg-
ments or classes, based on similar pixel characteristics such as hue, saturation, and intensity.
This can be performed automatically using algorithms or manually by human annotators.



Agronomy 2025, 15, 1157 5 of 50

Semi-supervised learning: This is a hybrid approach combining supervised and unsu-
pervised learning, where a small portion of labeled data are used for initial training, while
the remaining process relies on unlabeled data.

Supervised learning: This is a machine learning approach where a model is trained
on labeled data to predict either categorical labels (classification) or numerical values
(regression) for new data.

Transfer learning: This refers to a machine learning technique where a model trained
on one task or dataset (source domain) is adapted to perform well on a different but related
task or dataset (target domain).

Unsupervised learning: This is a machine learning technique that identifies patterns and
structures in unlabeled data without predefined categories.

3. Literature Review
The article selection process was conducted in March 2025 using Scopus and Google

Scholar, two comprehensive bibliographic databases. The search employed a Boolean
expression: wheat AND (artificial intelligence OR deep learning OR machine learning).
Conference papers were immediately excluded, based on the rationale that such publica-
tions often lack rigorous peer review. This initial search returned approximately 320 articles.

To refine this large set, two exclusion criteria were systematically applied:
Thematic Focus: Studies were included only if they focused exclusively on wheat or,

at most, included one additional crop.
Methodological Relevance: Articles in which artificial intelligence or machine learning

techniques were not the primary focus of the investigation were excluded.
Applying these criteria, 96 articles were excluded for not meeting the thematic focus,

and 31 for not prioritizing AI/ML methodologies. After this screening process, 193 articles
remained. An additional eight relevant articles were identified through manual exami-
nation of the reference lists of these papers, leading to a final selection of 201 articles for
in-depth review. Although no formal quality assessment (e.g., minimum dataset size or
standardized validation procedures) was applied during selection, studies were critically
evaluated regarding dataset characteristics, validation strategies, and model robustness
as discussed in the Results and Discussion sections.

The selected articles were categorized into seven main research areas: yield predic-
tion (46 articles), disease management (44 articles), other stresses and damages (22 arti-
cles), phenotyping/genetic selection (21 articles), spike/ear/head detection (31 articles),
grain/kernel classification (18 articles), and other applications (19 articles). It is worth
noting that additional articles not included in the selected set are cited throughout the text
whenever they provide relevant clarification or support for specific aspects discussed.

3.1. Yield Prediction and LAI/Biomass Estimation

Table 1 presents all articles focused on yield prediction and LAI/biomass estima-
tion, outlining each reference alongside its key challenges, limitations, tested techniques,
and best-reported accuracy(ies).
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Table 1. References related to yield prediction.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Ahmed et al. [2] Data limitations, complexity of feature selec-
tion, computational complexity, environmen-
tal variability, model generalization

Dependence on satellite-derived data, re-
gional constraints, potential overfitting, com-
putational cost

GWO-
CEEMDAN-
KRR

0.998

Ahmed and
Hussain [24]

Limited availability of high-quality data, lack
of soil data, variability in environmental con-
ditions, computational complexity, general-
ization of the model

Dependence on limited data sources, exclu-
sion of critical variables, lack of standardized
data preprocessing methods, challenges in
handling large-scale agricultural data

12 models 0.99

Bali and Singla
[25]

Complexity of climate factors, challenging
data preprocessing, computational complex-
ity, limited availability of methods for com-
parison

Limited geographic scope, dependence on
historical data, potential overfitting, need for
real-time data integration

RNN-LSTM N/A

Bhojani and
Bhatt [26]

Problems selecting the best activation func-
tion, handling climate variability, optimizing
the neural networks, and preprocessing data

Limited geographic scope, lack of compari-
son with deep learning models, manual se-
lection of random weights and bias values,
effect of soil and fertilization not considered

MLP 0.90

Bian et al. [27] Variability in growth stages, need for exten-
sive preprocessing, need for careful tuning of
hyperparameters, validation across different
scales

Limited study region, lack of climate and
soil data, single UAV sensor type, destruc-
tive sampling for validation

GPR, SVR, RFR,
DT, Lasso,
GBRT

0.88

Cao et al. [28] Quantifying the contribution of each data
source, balancing spatial vs. temporal vari-
ability, computational complexity of ML mod-
els, data processing and normalization

Limited generalization beyond China, exclu-
sion of certain biophysical factors, depen-
dence on historical data trends, need for more
frequent updates

RR, RF,
LightGBM

0.75

Cao et al. [29] Need for extensive preprocessing, high spa-
tiotemporal variability, computational com-
plexity, handling different spatial scales

Limited generalization beyond China, deep
learning requires more training data, high
computational cost for DL models, yield pre-
diction at the field scale

RF, DNN,
1D-DNN, LSTM

0.66–0.89

Cao et al. [30] High similarity between different wheat va-
rieties, limited accuracy of single CNN mod-
els, computational complexity of DL models,
need for a large dataset

Model limited to durum wheat grains, re-
liance on image features only, potential over-
fitting in deep learning models, lack of real-
time testing

CNN, SVM,
LDA, kNN

0.92

Cheng et al. [31] Complexity of wheat growth dynamics,
trade-offs between spatial and spectral res-
olution, data preprocessing and feature selec-
tion, high computational demand

Limited geographic scope and generalizabil-
ity, dependence on satellite data quality, lack
of real-time environmental factors, computa-
tional complexity of DL models

LSTM, RF,
GBDT, SVR

0.96

Fei et al. [32] Variability in wheat growth conditions, high-
dimensional UAV data processing, machine
learning model selection and tuning, limited
availability of high-quality ground-truth data

Limited geographic scope, lack of external
validation, focus on UAV-based sensors only,
potential overfitting of ML models

SVM, DNN, RR,
RF, ensemble

0.69

Haider et al.
[33]

Limited data availability and quality, difficul-
ties choosing of the best prediction model,
high computational complexity, influence of
external factors

Limited external factors considered, depen-
dence on data preprocessing, scalability is-
sues

ARIMA, RNN,
LSTM

0.81

Huang et al.
[34]

Limitation in quantifying model uncertainty,
limited remote sensing data availability, com-
putational complexity of Bayesian data assim-
ilation

Limited generalization of the proposed
model, high computational complexity, de-
pendency on high-quality, heavily prepro-
cessed remote sensing data

EnKF 0.57

Kheir et al. [35] High degree of data complexity and variabil-
ity, crop model limitations, feature selection
was challenging, need for significant compu-
tational resources for training

(a) Crop model training on limited data, over-
estimation in earlier decades, lack of real-time
deployment, model not validated in different
regions

RFR, ANN,
SVR, kNN

1.00

Khoshnevisan
et al. [36]

Complexity of energy consumption data,
highly complex selection of the best AI model
configuration, complex data collection and
preprocessing, high computational cost

Limited scope in geographical region, poor
computational scalability, dependence on his-
torical data, limited comparison with other
ML models

ANFIS, ANN 0.97

Li et al. [37] Complex backgrounds in field images, lim-
ited data for training, network depth and
overfitting issues

Dependency on RGB images, lack of valida-
tion across wheat varieties, LAI underestima-
tion for high-density wheat canopies

CNN 0.82
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Table 1. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Li et al. [38] Complex interactions between variables, data
limitations, variability in vegetation indices,
need for large datasets and computational
resources

Limited generalization across different wheat
varieties, lack of real-time yield monitoring,
model performance varies by region, influ-
ence of management practices not considered

RF, SVM 0.74

Liu et al. [39] Limitations of vegetation indices, data vari-
ability, need for extensive hyperparameter
tuning, need for data cleaning and feature
scaling, extreme weather events

Incomplete crop management data, small
training dataset, limited generalization across
regions, real-world deployment challenges

SVR, LSTM,
XGBoost, RF,
RR, Lasso

0.85–0.87

Liu et al. [40] Variability in remote sensing data, lack of
large-scale labeled datasets, high computa-
tional complexity, model generalization is-
sues

Dependence on satellite data availability, lim-
ited temporal coverage, sensitivity to envi-
ronmental factors, high computational cost

LSTM, CNN,
RF, SVR, RR

0.88

Mostafaeipour
et al. [20]

Limited data availability and quality, high
environmental variability, limited model in-
terpretability

Potential generalization issues, high compu-
tational power requirements, important fac-
tors may not be properly represented

RF, SVM, ANN 0.96

Nevavuori et al.
[41]

Variability in yield data, high computational
complexity of CNNs, unexpected results
from the RGB vs. NDVI data comparison

Limited geographic scope, dataset size and
diversity, lack of multi-year data

CNN 0.91

Paudel et al.
[21]

Limited interpretability of DL models, lack
of standardized feature engineering, impact
of data availability and quality, challenges in
capturing extreme events

Inability to capture extreme weather effects,
performance depends on data size, limited In-
tegration with domain knowledge, high com-
putational costs

LSTM, GBDT,
1D-CNN

N/A

Romero et al.
[42]

Complexity of yield determination, need for
extensive data cleaning and preprocessing,
limited generalization to new environments

Limited data scope, sensitivity of yield com-
ponents to environmental factors, limited
model interpretability, absence of external
validation

Rule classifier,
kNN, DT

0.57–0.93

Ruan et al. [43] Need for careful preprocessing and feature
selection, complex feature selection and ag-
gregation, high computational complexity of
ensemble learning models

Dependence on historical weather data, lim-
ited generalizability, overestimation of low
yields, some relevant agronomic factors are
not considered

11 ML models 0.83–0.85

Salehnia et al.
[44]

High variability in climate data, low effective-
ness of some attributes, high computational
complexity, need for substantial data prepro-
cessing and detrending

Limited spatial scope, use of limited climate
variables, lack of external validation, depen-
dence on historical data

GA, ACO,
K-Means

0.37–0.54

Schreiber et al.
[45]

High variability in crop growth, high tem-
poral and spatial variability, temporal color
pattern changes, ensuring that the models
could generalize across different conditions

Lower accuracy in later growth stages, use of
only RGB images, limited scalability to very
large farms, limited dataset

ANN, CNN 0.90

Sharma et al.
[46]

Varying lighting conditions, complex crop
variability, high computational demand, com-
plex data preprocessing

Limited generalization, need for considerable
computational resources, set of employed fea-
tures may not be robust for all conditions,
testing performed on a limited dataset

ANN, GA 0.98

Shen et al. [47] Complexity of crop yield prediction, com-
plexity of combining multispectral and ther-
mal data, high computational complexity, in-
sufficient data for proper validation

Lack of data obtained under uncontrolled en-
vironmental conditions, limited sensor diver-
sity, potential overfitting

LSTM,
LSTM-RF

0.78

Srivastava et al.
[48]

Difficulty in acquiring comprehensive
datasets, data inconsistencies across spa-
tial and temporal dimensions, difficulty
interpreting models

Lacks of model interpretability, data limited
to specific geographical and climatic condi-
tions

kNN, RF,
XGBoost, Lasso,
RR, RT, SVR,
DNN, CNN

0.81

Sun et al. [49] High data complexity, difficulty integrating
multispectral and LiDAR data, complex fea-
ture extraction, limited training data, high
computational requirements

Limited model generalization, data encom-
passes a single growth cycle, manual data col-
lection introduces subjectivity, lack of early-
stage predictions, high computational cost

Several DL
models

0.83–0.85

Tanabe et al.
[50]

Challenging determination of the optimal
wheat growth stage, high data heterogene-
ity, limited training data, need for significant
computational power

Limited model generalization, limited to
single-year predictions, no external valida-
tion, no integration of weather data, limited
impact of multi-temporal data

CNN, linear
regression

0.61
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Table 1. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Tian et al. [51] Nonlinearity in crop growth modeling, vari-
ability in weather and soil conditions, lim-
ited spatial and temporal data, high compu-
tational complexity

Limited model generalization, absence of
weather and soil data, assumption that
growth stages remain the same every year,
high computational requirements

BPNN, IPSO-BP 0.34

Tian et al. [52] Spectral similarity between garlic and winter
wheat, cloud cover in optical imagery, inte-
gration of optical and Radar data, balancing
accuracy and computational efficiency

Dependence on satellite data availability, lack
of historical data analysis, no inclusion of cli-
mate and soil data, potential confusion with
other Winter crops

RF 0.97

Tripathi et al.
[53]

Complexity in soil health estimation, variabil-
ity in satellite data, limited historical valida-
tion, high computational complexity, impact
of soil parameters on yield

Limited generalization, lack of validation for
previous years, dependence on satellite data,
no explicit use of weather data, yield under-
estimation for high-productivity fields

DL-MLP, RF,
DT, SVR, kNN

0.68

Wang et al. [54] Challenging combination of multi-source
data, high variability in wheat yield, high
computational complexity, scaling the model
to large regions

No consideration of management prac-
tices, coarse spatial resolution for some
inputs, limited generalization, overestima-
tion/underestimation in certain areas

OLS, Lasso,
SVM, RF,
AdaBoost, DNN

0.86

Wang et al. [55] Data integration complexity, yield variabil-
ity across regions, computational demands
of deep learning, need for yield detrending,
uncertainty quantification was challenging

Limited inclusion of socioeconomic factors,
yield detrending challenges, no real-time
yield prediction, data limitations in rainfed
regions, fixed spatial scale limits applicability

LSTM-CNN, RF,
SVM, Lasso

0.77

Wang et al. [56] Data quality and availability, limited model
interpretability, high computational complex-
ity, high climate variability

Limited generalizability, time-consuming hy-
perparameter tuning, data fusion limitations,
high cost of time-series data acquisition

Attention
Mechanism,
CNN, LSTM,
RNN

0.83

Wang et al. [57] Time-series data complexity, high computa-
tional requirements, inter-annual yield vari-
ability, feature selection and model tuning,
limited high-resolution data

Limited generalization to other crops and re-
gions, yield underestimation in high-yielding
areas, no integration of weather and soil data,
temporal resolution constraints

GRU,
CNN-GRU

0.64

Wolanin et al.
[58]

Complex interactions in yield prediction, lack
of interpretability, limited high-resolution
data, variability in crop responses across dif-
ferent years, high computational demand

Limited generalization beyond one region,
dependence on available satellite and meteo-
rological data, poor performance in extreme
weather years, no real-time forecasting

CNN, RF, RR 0.83–0.87

Wu et al. [59] Impact of soil background, feature selection
and data fusion, need for extensive prepro-
cessing, complexity of data fusion, high com-
putational demands, limited generalization

Limited temporal scope, dependency on
high-resolution UAV data, model generaliza-
tion, high computational costs, lack of real-
time application

SVR, RFR, MLR 0.81

Xie and Huang
[60]

Data integration complexity, time-series data
processing, high computational demand,
challenging model generalization, difficult
validation and accuracy assessment

Limited spatial resolution, single study re-
gion, use of pre-simulated data, no real-time
prediction, only LAI-based estimation

LSTM,
1D-CNN, RF

0.77

Yang et al. [61] High condition variability, limited ground-
truth data, complexity of data processing, in-
tegration of empirical and mechanistic mod-
els, errors in parameter retrieval

Limited geographic scope, not tested for
large-scale applications, no comparison with
other models, uncertainty from crop growth
model simulations

CW-RF,
empirical

0.91

Yang et al. [16] Variability in environmental conditions, inte-
gration of multiple sensors, selection of opti-
mal ML model, computational cost of ensem-
ble learning

Limited study area, dependence on UAV
data, lack of deep learning comparisons, no
real-time testing

Ensemble,
XGBoost, RF,
PLS, RR, kNN

0.73

Zhang et al. [62] Data collection complexity, high-dimensional
data processing, difficult model selection,
generalization issues

Limited generalization due to single experi-
mental field, relatively small dataset, the im-
pact of some environmental factors was not
explicitly considered

PLSR, SVR,
XGBoost

0.89

Zhou et al. [63] Models tended to overfit, alternative models
did not succeed, uneven fertilizer spreading
introduced noise, accuracy of UAV-derived
data was influenced by spatial resolution

Model not precise enough to detect small
treatment effects, limited generalizability due
to nonlinearities

LR, SVR, RF,
ANN

0.73

Zhou et al. [64] Limited scalability due to complex vari-
able interactions, large uncertainties for
large-scale yield prediction, problems with
collinearity and assumptions of stationarity

Limited model interpretability, some prod-
ucts had low resolution, model reliability
needs improvement, more data are required
for accuracy improvement

RF, SVM, Lasso 0.67–0.78
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Yield prediction, along with the related tasks of LAI and biomass estimation, remains
one of the most extensively studied applications of AI in wheat-related research. Several fac-
tors contribute to this focus. The widespread availability of satellite-derived data, including
long-term time series spanning several decades, provides a rich foundation for developing
and validating AI models. Additionally, the use of unmanned aerial vehicles (UAVs) for
data collection in this context is becoming increasingly common [16,27,32,45,50,59,61–63].
This abundance and accessibility of data make yield prediction a particularly attractive and
feasible problem for AI-based approaches.

AI excels at extracting meaningful insights from complex, high-dimensional agricul-
tural datasets, enabling it to capture subtle patterns and relationships that might be difficult
to detect using traditional analytical methods [51]. This capability makes AI particularly
well suited for tasks like yield prediction, where multiple interacting variables must be
considered. Additionally, wheat yield data are highly nonlinear [58,63], requiring tech-
niques capable of effectively modeling nonlinear relationships [33,51,53]. However, while
many AI techniques are inherently well suited for this purpose, selecting the optimal model
architecture, parameters, and activation functions can be challenging [57]. In extreme cases
of nonlinearity, even sophisticated AI techniques may struggle to capture the underlying
patterns accurately [26].

Another challenge associated with AI models is the difficulty in interpreting and
explaining their outputs [58], largely due to their inherent “black-box” nature [48,56].
Although a deep understanding of the model’s internal workings is not strictly required
for its application, the lack of transparency makes it harder to identify weaknesses and
refine aspects that do not perform as expected [42,64]. Ensemble learning models pose
a particular challenge for interpretability, as their potential to improve accuracy often
comes at the cost of reduced transparency, limiting their practical applicability [16,43].
In response, some researchers have sought to enhance interpretability [48], though many
note that domain experts often find certain relationships identified by these models to be
counterintuitive [21].

The difficulty of yield prediction varies significantly depending on both the type of
data used and the representativity of the datasets in the experiments. Studies focused
on a single geographic area tend to achieve higher accuracy but at the expense of lower
generalizability [2,16,20,21,24–32,34–36,39–44,48–50,53,54,57–62]. Generalization between
different wheat varieties can also be difficult to achieve [38,45,46,51]. Additionally, the time
series length used in the experiments is often insufficient to fully capture the seasonal
variability of crops, as agricultural conditions can vary significantly across different growing
seasons [24,40]. As a result, the accuracy levels reported in the literature vary widely,
reflecting differences in data sources, environmental conditions, and modeling approaches.

Poor generalization capabilities are often a direct consequence of overfitting. As dis-
cussed earlier, if the dataset used for model development fails to capture the full variability
of the problem [20,29,46,61], the model may fit the training data distribution too closely but
struggle to generalize when applied to unseen data with different distributions [30,47,63].
This issue is further exacerbated in complex models with a large number of parame-
ters [25,32,35], as their increased degrees of freedom allow them to memorize training data
rather than learning meaningful patterns [32]. Striking a balance between dataset represen-
tativity, model complexity, and predictive accuracy remains a significant challenge [43] and
a major limitation in many studies [2].

If factors such as dataset representativeness and overfitting are not properly addressed,
the reliability of the reported results may be compromised. Some studies [2,35] report
extremely high accuracy values in their experiments. While these results are impressive,
they raise concerns regarding the realism and generalizability of the models. Such high



Agronomy 2025, 15, 1157 10 of 50

performance often suggests potential overfitting, particularly when models are trained
and tested on limited or insufficiently diverse datasets. In many cases, datasets may be
collected from homogeneous environments, or validation may be conducted using simple
train/test splits without employing more robust methods like k-fold cross-validation or
independent external testing. Consequently, the reported accuracies may not translate
effectively to broader, more variable agricultural conditions. It is therefore critical to
interpret these results cautiously, recognizing that reported metrics may not fully reflect
model performance under real-world, field-scale applications. Future research should
prioritize rigorous validation protocols and the use of diverse, multi-location datasets to
ensure the development of more generalizable and reproducible AI models.

Although deep learning has been steadily replacing traditional AI techniques in many
domains, shallow neural networks and other machine learning models still predominate
in yield and biomass prediction [16,26,43,61], with some exceptions [25,37,41]. This is
primarily because satellite-derived data, which have been widely used for decades, have
already been successfully processed using well-established traditional methods [39]. Addi-
tionally, time-series analysis with deep learning remains challenging in certain scenarios,
particularly when the number of available samples is relatively low [21,24,39]. Another
challenge in applying deep learning techniques to yield estimation is the limited avail-
ability of large, annotated yield datasets that can serve as reliable references for model
development [40,48,49,56,60,61,64].

One of the challenges associated with traditional machine learning models is their
reliance on carefully designed feature extraction for optimal performance [49]. In many
cases, standard features such as vegetation indices are insufficient for producing reliable
estimates [31,38,41], particularly due to the variability introduced by different crop growth
stages [27,57] and to limited sensitivity to photosynthesis [39]. As a result, there is often a
need to develop custom features tailored to the specific conditions of the dataset in order to
improve model accuracy [33]. However, these tailor-made features can be highly sensitive
to even minor variations in data distribution, which can compromise model robustness and
make the entire process more challenging [2]. Additionally, when the number of features
is too high, the dataset may include a significant amount of redundancy and irrelevant
variables, which can negatively impact model performance. In such cases, effective feature
selection or combination becomes essential to reduce dimensionality, eliminate noise,
and enhance model accuracy [35,42,59].

One way to avoid complex feature engineering is through the use of deep learning
techniques, which can implicitly learn and extract relevant features to characterize the data
under analysis. While this approach is often practical and efficient, the inherent “black-box”
nature of deep learning models poses challenges. It becomes difficult to verify whether the
extracted features are scientifically meaningful, and manual fine-tuning of the models is
often hindered [21].

In many cases, obtaining high-quality, long-term satellite and climatic data for a
specific region is challenging due to missing values, inconsistencies [24,48], and data
corruption caused by factors such as cloud cover [31,40,52,53] and noise [2,53]. Additionally,
limited satellite coverage and low revisit frequency are common issues that not only hinder
the use of data-intensive techniques but also significantly restrict the generalizability of
models [56]. Other types of data, such as historical production records and agronomic field
data, may also exhibit inconsistencies, which can negatively affect model performance if
left unaddressed [42]. As such, the application of correction or normalization techniques is
often necessary to ensure data quality and reliability [33].

Data inconsistencies and fluctuations can often be partially mitigated through prepro-
cessing techniques [32,34,50,61]. However, challenges such as handling missing values and
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normalizing datasets may never be fully resolved, as these issues can persist depending
on the quality and variability of the data [25,46]. While some preprocessing techniques
are standardized and validated across diverse conditions, others are specifically tailored
to the dataset used in individual studies [46]. This case-specific approach may limit the
direct applicability of preprocessing methods to different regions or crops [24], further
exacerbating the lack of generalizability. Moreover, preprocessing is often applied without
prior evaluation of its effects, which can be problematic. In many cases, results may actually
improve without preprocessing, highlighting the need for careful assessment before its
implementation [5].

Wheat yield is highly sensitive to climate variability [20,26,32,38,42,57,58], including
factors such as drought, rainfall, and temperature fluctuations, which are inherently difficult
to predict [25,35,43]. In addition, variations in soil properties and management practices
can exert a substantial influence on yield [16,30,31,35,63]. Even government policies,
such as subsidies, land use regulations, and water access restrictions, can significantly
affect crop productivity [33]. This adds complexity to modeling efforts and can result in
large estimation errors under certain conditions [2,21,24,64], especially if some of those
variables are not explicitly incorporated to the model [44,52–54,60]. The challenge is
further compounded by the fact that certain climatic variables exhibit weak or nonlinear
correlations with wheat yield [44].

The variability issue can be mitigated when long-term temporal datasets are available
(which is not always the case [41,42,49,50,59]), as they increase the likelihood of capturing
rare or extreme events [39], thereby enhancing the model’s robustness and adaptability to
such variations. However, if the temporal resolution of the data is too coarse [57], it may fail
to capture short-term yield fluctuations [34], potentially overlooking critical growth stages
or environmental events that significantly impact crop performance [28]. Additionally,
with longer time series, the influence of technological advancements becomes significant,
necessitating preprocessing and detrending to ensure data consistency [44,55]. In any case,
incorporating a diverse set of variables, rather than relying on a single data type, can
significantly enhance model robustness by providing a more comprehensive representation
of the crop system and its interactions with environmental factors [28,54]. Failing to adopt
a more systemic perspective may compromise model performance, as essential components
of the system can be overlooked or inadequately represented [38,50,51,53,57,62].

Integrating multiple data sources presents a significant challenge [30,54,55], partic-
ularly when datasets differ in temporal and spatial resolutions [28,40,43,45,49,59]. Ad-
dressing these inconsistencies often requires extensive preprocessing and feature engineer-
ing [29,31,39,43,47,60], which can be both time-consuming and error-prone [30]. As a result,
some studies opt to use a more limited set of variables [31,33,43], which may be insufficient
to fully capture the complexity and variability of the crop [25–27,39,40]. Emerging research
areas such as data fusion [16,52,56,65] and multimodality [66] are already making signifi-
cant strides in tackling these challenges [32], enabling more effective and comprehensive
data integration.

While a significant portion of satellite data still lacks the spatial resolution necessary
for fine-grained yield estimation [54,55,57,58,60], high-resolution imagery (with a GSD bet-
ter than 20 m) is becoming increasingly accessible. However, as resolution improves, so do
the associated computational demands [52]. The computational power required for model
training is a frequently cited bottleneck in the literature [2,16,24,36,38,53–56,60]. As com-
putational infrastructure continues to advance, the development of increasingly larger AI
models poses challenges for institutions without dedicated data centers or with limited
resources to afford cloud services capable of supporting such demands [52]. However, it
is important to note that while many models require substantial computational resources
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for training, their inference phase is often much less demanding. In some cases, these
models can even run efficiently on portable devices with limited computational power,
making them more accessible for real-world applications. On the other hand, models
that are computationally expensive during inference may face significant constraints for
real-time or mobile deployment [2,21,33,34,40,46,58]. This limitation often necessitates
further research and development to optimize model efficiency and make the technology
practical and deployable.

3.2. Disease Management

Table 2 presents all articles focused on disease management, following a structure
similar to that of Table 1 for consistency and ease of comparison.

Table 2. References related to disease management.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Aboneh et al. [1] High computational complexity, lack of struc-
tured datasets, high variability of images,
limited number of training samples, limited
awareness and technological adoption

Dependence on image quality, limited
datasets, lack of real-time implementation,
limited model comparisons, poor generaliza-
tion to other crops

CNN 0.96

Akbar et al. [67] Difficulty gathering a dataset of enough size
and quality, training required extensive com-
putational resources, risk of overfitting, diffi-
culty making the system real-time

Limited dataset, focus on only two diseases,
potentially poor generalizability, IoT imple-
mentation is complex

CNN 0.97

Azimi et al. [68] Extensive manual data collection, high data
variability, highly complex feature selection,
high computational complexity

Limited dataset variability, subjective manual
feature extraction, lack of real-time detection,
results obtained under controlled greenhouse
conditions, DL models were not explored

SVM, DT, kNN,
NB

1.00

Bao et al. [69] Complex backgrounds in field images, high
computational costs, limited availability of
disease images, resolution loss during down-
sampling

Limited dataset may lead to poor general-
ization, early disease detection difficulty, re-
liance on a single type of sensor, real time
performance needs improvement

CNN 0.94

Bao et al. [70] Complex backgrounds in field images, lim-
ited image dataset, difficulty choosing fea-
tures, optimization of the metric learning
model

Limited data collection area, difficulty in
identifying mild disease cases, dependence
on a single type of sensor, high computational
costs

E-MMC, SVM,
BPNN

0.94

Deng et al. [71] Variability in disease progression, vary-
ing spatial and spectral resolutions, time-
consuming manual annotation, challenging
early disease detection

Lack of temporal generalization, challenges
in very early disease detection, need for vali-
dation in other regions, limited comparison
with other methods

RustQNet 0.80

Fahim-Ul-Islam
et al. [72]

Data privacy and security, computational con-
straints, disease variability and image quality,
difficulty ensuring model generalization

Limited dataset diversity, high computa-
tional cost, dependence on pretrained models

Transformer
Federated
Learning

0.98–0.99

Fang et al. [73] Symptom diversity, high computational costs,
high levels of data variability, optimization
for mobile deployment is difficult

Limited dataset size and diversity, lack of
hyperspectral and multispectral data, chal-
lenges with disease co-occurrence, limited
field deployment testing

CNN 0.99

Gao et al. [74] Complexity of wheat spike segmentation,
variability in disease symptoms, labor-
intensive data acquisition and annotation,
high computational complexity

Limited generalization across varieties, lack
of hyperspectral data integration, challenges
with early-stage and late-stage infections

BlendMask
(DL)

0.78–0.85

Genaev et al.
[75]

Difficulties building the dataset, complexity
of wheat disease symptoms, challenges bal-
ancing accuracy vs. model efficiency, high
computational demand

Limited dataset diversity, absence of multi-
spectral data, difficulty in distinguishing co-
infections, need for more field validation

CNN 0.94

Gonçalves et al.
[76]

High variability in image conditions, time-
consuming annotation, difficulties with gen-
eralization, high computational costs

Limited dataset size, tendency to overesti-
mate severity, need for extensive computing
resources, low robustness to noise and poor
annotations

CNN 0.95–0.98
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Table 2. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Goyal et al. [77] Complexity of wheat disease symptoms, lim-
ited availability of labeled wheat disease im-
ages, significant class imbalance, high com-
putational complexity

Limited dataset diversity, high dependency
on image quality, high computational de-
mand

CNN 0.98

Haider et al.
[78]

Dataset was small and of poor quality, train-
ing suffered from high loss and overfitting,
symptom similarity between classes, high
computational requirements

Potential generalization issues, limited dis-
ease coverage, poor model performance on
rare diseases, challenging real-time deploy-
ment

CNN 0.97

Hayit et al. [79] Variability in disease symptoms, labor-
intensive annotation, model training was
complex, overfitting difficult to prevent, high
computational costs

Potential generalization issues, class imbal-
ance had a negative impact, computational
requirements hinder real-time deployment

CNN 0.91

Jiang et al. [80] Limited dataset required extensive augmenta-
tion, symptom similarities between diseases,
high computational requirements

Potential generalization issues, dependence
on transfer learning, computational require-
ments hinder real-time deployment

CNN 0.97–0.99

Jiang et al. [81] High image variability, small dataset and
disease imbalance, high symptom similarity,
computational constraints for deployment

Potential generalization issues, dependency
on one type of sensor, small dataset increase
overfitting risk, real-time application is chal-
lenging

CNN 0.90–0.95

Jin et al. [82] High-dimensionality and redundancy in hy-
perspectral data, variability due to environ-
mental factors, noisy and complex field con-
ditions, large class imbalance, overfitting risk

Limited to pixel-level classification, high mis-
classification rates, high sensitivity to noise,
manual ROI labeling required

CNN, SVM 0.74

Khan et al. [83] Lack of diverse datasets, challenges in field
image acquisition, challenging disease seg-
mentation, challenging selection of optimal
feature extractors and classifiers

Limited dataset, high overfitting risk, real-
world deployment challenges, high sensitiv-
ity to environmental factors

CNN 0.97

Lin et al. [84] High similarity between disease, visual inter-
ferences in field conditions, high computa-
tional complexity, lack of large-scale datasets

Limited geographic coverage, deploying the
model on edge devices is a challenge, model
generalization needs further testing, limited
real-world testing

CNN 0.90

Liu et al. [85] Complexity of symptoms, canopy-scale detec-
tion difficulty, inconsistent feature response,
limited sensitivity in early stages

Inability to detect early disease stage, data
encompasses a single year and single cultivar

MLR 0.90

Lu et al. [86] Real-world image complexity, dataset repre-
sentativity limitations, computationally ex-
pensive training, similarity between diseases

Potential generalization challenges, difficulty
in detecting small or overlapping disease ar-
eas, model deployment on edge devices still
challenging, absence of multi-crop training

CNN 0.98

Dainelli et al.
[87]

Lack of high-quality in-field image datasets,
challenging image acquisition and annota-
tion, difficulties with poor lighting or low
connectivity, social and adoption barriers

Limited dataset coverage, incomplete threat
representation, poor performance in real-
world conditions, need for more field-
condition data

CNN 0.77

Maqsood et al.
[88]

Low-resolution images, noise and variabil-
ity in field images, high computational com-
plexity, challenges balancing model accuracy
across disease classes

Limited dataset size, untested generalization
to other wheat varieties, challenging real-
time implementation

CNN 0.75–0.83

Mi et al. [89] Slight differences between severity levels,
challenges in field image collection, high com-
putational costs, difficulties generalizing to
different wheat varieties

Lack of automated leaf extraction, focus on
only one disease, real-time deployment is
challenging, untested model generalization

CNN 0.98

Nigam et al.
[90]

Lack of large-scale public datasets, high simi-
larity between diseases, high computational
costs

Limited dataset size and scope, real-time de-
ployment depends on further optimizations,
model developed under controlled condi-
tions

CNN 0.99

Pan et al. [91] Poor performance by machine learning
methods, manual image labeling was time-
consuming and error-prone, ensuring gener-
alization was challenging

Limited generalization scope, dependence on
UAV and high-resolution data, weakly super-
vised learning decreases accuracy

PSPNet, U-Net,
FCN, BPNN,
SVM, RF

0.96

Pan et al. [92] Difficulty in differentiating diseases, dataset
limitations and class imbalance, high compu-
tational complexity

Limited dataset size and geographic scope,
high computational cost, real-world valida-
tion needed

Ensemble
Learning

0.92



Agronomy 2025, 15, 1157 14 of 50

Table 2. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Qiu et al. [93] Variability in wheat spikes and disease symp-
toms, laborious data collection and annota-
tion, challenging balance between model ac-
curacy and computational efficiency

Limited dataset size, challenges with partial
or occluded spikes, influence of wheat awns
on detection, lack of testing with field condi-
tions

R-CNN 0.80

Rangarajan et al.
[94]

High data dimensionality, need for standard-
izing image acquisition conditions, high com-
putational costs

Limited dataset scope, challenges with real-
time implementation, spectral data compres-
sion affects accuracy, lack of external valida-
tion

CNN 1.00

Schirrmann
et al. [95]

Highly heterogeneous background, image
quality was affected by environmental fac-
tors, difficulties identifying early symptoms

Poor accuracy in early stages of the disease,
no tests focused on model transferability to
different fields or crops, image annotation
was prone to error

CNN 0.77–0.90

Shafi et al. [96] Manual data collection and labeling, high
variability in disease symptoms, problems
with image quality, small dataset limited
model performance

Small dataset limits the model’s generalizabil-
ity, high computational demands limited the
experiments, limited classification categories,
high dependency on feature engineering

DT, RF,
XGBoost,
LightGBM,
CatBoost

0.90–0.92

Su et al. [97] Complexity of wheat spike segmentation,
variability in infection patterns, labor-
intensive manual data annotation, high com-
putational costs

High dependence on data annotation, lim-
ited generalization to different environments,
limited model interpretability, limited appli-
cation in field conditions

Dual
Mask-RCNN

0.77

Su et al. [98] Symptom variations with environmental con-
ditions, limitations of RGB imaging, labor-
intensive labeling, significant computational
demands, high level of false positives

Limited generalization, dependence on spe-
cific spectral bands, potential overfitting,
high computational cost

U-Net, RF 0.90

Weng et al. [99] Low DON concentrations are hard to detect,
interference from wheat components, com-
plex sample preparation, signal variability,
need for large datasets and fine-tuning

Limited generalization across wheat varieties,
no comparison with traditional methods, low
stability due to environmental factors, possi-
bility of overestimating DON levels

Weng et al.
[100]

Challenging band selection, high data vari-
ability, high feature extraction complexity,
high computational complexity

Limited generalization, overlap of wheat ker-
nels in practical applications, hyperspectral
imaging equipment cost

CNN, kNN, RF 0.98

Xiao et al. [101] Interference from environmental factors,
spectral feature selection complexity, need for
high-precision UAV imaging, need for gener-
alization across wheat varieties

Limited temporal coverage, data collected
from a single region, dependency on high
cost hyperspectral cameras, no real-time dis-
ease monitoring

Logistic
Regression
Model

0.90

Xu et al. [102] Variability in wheat leaf appearance, fine-
grained disease differences, high computa-
tional demand, datasets lack diversity, need
for high-quality image acquisition

Limited to five disease classes, suboptimal
performance in diverse environments, accu-
racy decreases with multiple simultaneous
diseases

CNN 0.98–1.00

Zhang et al.
[103]

Complex field environment, difficult wheat
ear segmentation, need for parameter tuning
in neural networks, labor-intensive annota-
tion

Dependence on RGB images with limited
spectral information, high computational
complexity

FCN, PCNN,
IABC

0.98

Zhang et al.
[104]

Variability in spectral profiles, high spatial
resolution complexity, high computational
complexity, limited training data, laborious
comparison with traditional methods

Uncertain generalization capabilities, depen-
dence on hyperspectral data, trade-off be-
tween accuracy and processing time, poor
late-stage detection performance

CNN, RF 0.85

Zhang et al.
[105]

High dimensionality of hyperspectral data,
feature selection complexity, variability in dis-
ease symptoms, limited data for model train-
ing

Untested generalization across different envi-
ronments, dependence on expensive equip-
ment, high computational cost, potential
overfitting

PLSR, SVR, RF,
CNN

0.97

Zhang et al.
[106]

Complexity of wheat ear segmentation, oc-
clusion of wheat ears, variability in disease
symptoms, laborious selection of relevant fea-
tures, limited availability of annotated data

High dependence on digital imaging condi-
tions, single experimental site, limited com-
parison with other models, no real-time field
deployment

K-means + RF 0.86

Zhang et al.
[107]

Irregular boundaries make segmentation dif-
ficult, limited dataset size, high computa-
tional complexity

Small training dataset, lack of transformer-
based models

UNet 0.97
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Table 2. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Zhang et al.
[108]

Difficulty distinguishing overlapping wheat
ears, high computational cost, high field en-
vironment complexity

Small training dataset, manual annotation
introduces subjectivity, limited validation
scope

YOLOv5, RF 0.91

Zhang et al.
[109]

High computational costs, difficulties differ-
entiating between severity levels, high field
environment variability

Geographically limited dataset, poor early
detection, limited generalization to differ-
ent wheat varieties and environmental condi-
tions

UNet 0.97

In contrast to yield prediction, which still sees widespread use of traditional machine
learning approaches, disease detection is overwhelmingly dominated by deep learning
techniques, particularly convolutional neural networks (CNNs), with only a few notable
exceptions [70,83,96,101]. For most crops, disease detection and management relies heavily
on leaf images, as leaves are typically where the earliest and most visible symptoms
appear [110]. However, in the case of wheat, the narrow shape and positioning of leaves
make them difficult to image effectively. As a result, many approaches instead focus
on kernel [82,99,100,111] or ear (spike) images [68,69,74,93,94,97,101,103,105,106,108,111],
which sometimes provide more accessible and informative visual cues for detecting diseases.
Most studies focused on wheat imagery have utilized ground-based image collection,
which offers high resolution and close-range detail. However, an increasing number of
studies have also explored the use of the UAV-based method [71,85,91,98,101,104,107,109],
broadening the scope of data sources for wheat analysis.

Deep learning techniques are inherently data intensive, requiring large, diverse
datasets that capture the full variability of the problem to achieve reliable performance [5].
With the exception of highly specific applications constrained to a narrow set of conditions,
building truly representative datasets for disease detection and recognition has proven
largely unfeasible [1,74,76,79,84,86,96,97,106]. As a result, many studies rely on limited
datasets for both training and testing, often producing overly optimistic and unrealistic
performance results [68–70,88,102,107]. For example, Azimi et al. [68] reported a perfect
accuracy of 1.00 in their classification tasks. However, their model was trained and tested
on a relatively small dataset collected under controlled conditions, which limits environ-
mental variability and may inflate performance metrics. Similarly, ref. [94] also achieved an
accuracy of 1.00, but the lack of external validation across diverse geographic regions raises
concerns regarding model generalizability. These results suggest that overly optimistic
performance metrics may stem from methodological oversights, such as insufficient dataset
diversity, inadequate validation protocols, or overfitting to training data. A more critical
evaluation of dataset composition and validation strategies is essential to assess the true
robustness and practical applicability of AI models in wheat research.

To address the lack of data, data augmentation is commonly applied, particularly in the
case of digital images [1,69,72–74,78,108,109,111? ]. While this strategy can help mitigate
data scarcity, even advanced techniques like Generative Adversarial Networks (GANs)
and Frequency Domain Adaptation (FDA) generate synthetic data that may introduce
biases and unrealistic artifacts, ultimately limiting their effectiveness [75]. Given these
constraints, the results reported in the literature must be interpreted with caution and
considered in light of the experimental context in which they were obtained, as they are
unlikely to reflect the true accuracy achievable under real-world conditions [5]. While some
studies acknowledge these limitations, many fail to report this critical caveat, which can
undermine the credibility and generalizability of their findings.
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Most disease detection and recognition efforts rely on digital images of symptoms
that are either visibly apparent or detectable through spectrum-based sensors [95,112].
A major challenge in this context is the wide variety of plant disorders, many of which
produce similar physiological and visual alterations [73,78,80,81,84,86,90,102,111]. Ideally,
a dataset should include examples of all relevant disorders to enable accurate discrimination.
However, despite significant strides made by some studies to achieve this goal [? ], attaining
truly comprehensive coverage remains virtually unfeasible. As a result, most studies are
limited to a narrow subset of disorders, often ignoring other potential causes of the observed
symptoms [1,69,70,74,78,80,83,95,96]. This leads to models that are constrained to select
from the known classes, even when the input belongs to an unseen or unrelated category,
potentially yielding inaccurate predictions [72,90,95].

Some researchers have attempted to address this by introducing an “other”, or “I
do not know”, class to capture unknown or unmodeled conditions, but defining and rep-
resenting this class meaningfully in the training data remains a significant challenge [?
]. This issue is somewhat less critical when the focus is on a single disease, turning
the problem into a binary classification between the target disease and all other con-
ditions [68,71,74,89,91,94,97,106,107,111]. Still, this approach is not without limitations,
as many non-target disorders may exhibit symptoms that overlap with the class of interest,
leading to potential misclassifications [104].

To address the limitations of traditional classification methods, more advanced tech-
niques, such as few-shot learning and one-shot learning, have been explored for their
potential to recognize previously unseen classes with limited labeled examples. These ap-
proaches have shown promise in plant disease monitoring and detection [113,114], offering
a pathway toward more adaptable diagnostic systems. However, in the specific context of
wheat diseases, the existing literature remains scarce; only a handful of conference proceed-
ings mention the use of such methods, and to date, no peer-reviewed journal articles have
demonstrated their successful application. As a result, the problem of generalizing to un-
seen disease classes in wheat remains a fundamental and unresolved challenge, for which
no robust or scalable solutions have yet been established.

Almost all studies included in this review assume the presence of only a single disease
at the time of detection. However, in real-world scenarios, it is common for multiple dis-
eases or disorders to co-occur, leading to overlapping symptoms and increased diagnostic
complexity [81,86,89,95]. Under such conditions, model behavior can become unpredictable,
and error rates typically rise [73,75,78,92,96,102? ]. One potential approach to address this
issue is to shift the focus from diagnosing the entire plant organ to analyzing individual
lesions or symptomatic regions, enabling multi-label classification [110]. However, this
strategy introduces significant challenges, particularly the need for accurate localization
and segmentation of each lesion prior to classification, steps that are often complex and
computationally demanding. Some authors have attempted to treat different combinations
of diseases as distinct classes; however, the limited number of samples representing these
combinations resulted in relatively low classification accuracy [75].

The primary goal of plant disease recognition technologies is to enable the earli-
est possible detection of problems, allowing for timely interventions that can minimize
crop losses [81,91,95,101,107]. Conventional RGB sensors have become widely available,
and even low-end consumer-grade devices are capable of capturing images with suffi-
cient quality and resolution. As a result, RGB imaging has been extensively employed in
disease detection efforts [1,67,69,70,73–76,80,81,86,90,102,103]. However, a significant limi-
tation of RGB-based methods is that visible symptoms often appear only after substantial
damage has already occurred, at which point preventive measures may no longer be effec-
tive [69]. This has driven growing interest in more advanced sensing technologies [112],
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including spectrometry [99], multispectral [71,85,98,107,115], thermal [85], and particularly
hyperspectral sensors [82], which offer high spectral resolution capable of detecting subtle
physiological changes in plants before visual symptoms manifest [94,95,101,104,105,116].

Numerous studies have demonstrated the potential of hyperspectral imaging for
early-stage disease detection; however, even in these cases, detection accuracy typically
improves at later stages of disease development [104]. In addition, the high cost of these
sensors remains a major barrier to widespread adoption [94,100,105]. The challenge is
even more pronounced when such sensors are mounted on unmanned aerial vehicles
(UAVs) [95,101,104], as the risk of damage or accidents is relatively high and obtaining
insurance coverage for such equipment is often difficult [117]. An alternative approach
involves deploying hyperspectral sensors on satellites, which eliminates some logistical
risks. However, the ground sampling distance (GSD) of current hyperspectral satellite
platforms is still too coarse for early stress detection, limiting their utility to cases where
the affected area is already sufficiently large to be detected from orbit [91].

In many cases, relying on a single type of sensor does not provide sufficient informa-
tion to fully resolve complex agricultural problems. Combining multiple sensor types offers
a promising solution, and recent studies have successfully applied multimodal learning
and data fusion techniques to improve the detection and recognition of wheat diseases.
However, integrating heterogeneous data remains a technically challenging task, often
requiring sophisticated preprocessing, normalization, and the development of custom
features to ensure compatibility and effectiveness across data sources [71].

With the predominance of deep learning techniques in plant disease detection and
recognition, computational requirements have become a critical consideration, particu-
larly during the training phase. Many of the challenges discussed in the context of yield
prediction also apply here and will not be reiterated. However, a key distinction lies in
the operational requirements of each task. Unlike yield prediction, which typically does
not demand real-time processing, disease recognition often requires rapid responses, espe-
cially for field-based applications such as smartphone apps for symptom identification [72].
In such scenarios, it is essential to consider the use of lightweight models optimized for fast
inference, even if this comes at the expense of a modest reduction in accuracy. Prioritizing
efficiency and responsiveness is crucial when deploying AI tools in real-world agricultural
settings where timely decision-making can significantly impact outcomes [1,74,89,92,102?
].

3.3. Other Stresses and Damages

Table 3 presents all the articles that focus on plant stresses other than diseases.

Table 3. References related to other stresses and damages.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Weed Management

de Camargo
et al. [17]

High computational cost, difficult balance be-
tween accuracy and speed, handling of large
images, differentiating between similar weed
species

Limited generalizability, exclusion of multi-
spectral data, potential misclassification of
unknown species, manual thresholding in op-
timization

CNN, UNet 0.94

El-Kenawy et al.
[118]

Complexity of infield weed classification,
high computational cost, feature selection dif-
ficulties, ensuring model generalization

Limited dataset diversity, focus on image-
based classification only, potential for overfit-
ting due to ensemble learning, computational
complexity of feature selection

NN, SVM, KNN 0.98

Jabir and Falih
[119]

Variation in weed appearance, annotation
was labor-intensive, optimization for deploy-
ment on edge devices, balancing accuracy vs.
speed

Limited dataset and generalization, real-
world implementation issues, model com-
plexity and computational constraints

YOLOv5 0.94
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Table 3. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Li et al. [120] Complex backgrounds and overlapping
weeds, domain adaptation and generaliza-
tion issues, computational cost and real-time
deployment, dataset limitations

Limited dataset size and regional focus, small
and medium weed detection difficulties, high
computational complexity, lack of tests under
real-world field conditions

NLB attention
mechanism

0.93

Mishra et al.
[121]

Variation in weed growth due to soil types,
similarity between weed and crop, need for
large dataset, high computational complexity

Limited generalization to other weed species,
model high complexity for real-time applica-
tions, high impact of environmental condi-
tions, segmentation is done manually

Inception V4,
EfficientNet-B7

0.97

Su et al. [122] Difficulty obtaining large, well-labeled
datasets, complicated annotation process,
high computational cost

Data augmentation has limited impact, small
difference between the methods tested

Bonnet DNN 0.98

Su et al. [123] Visual similarity of ryegrass and wheat, mis-
classification by off-the-shelf algorithms, real-
time processing constraints

Specific only to ryegrass in wheat fields,
method requires a large dataset for training,
method requires powerful GPUs for training
and inference

Bonnet, SegNet,
PSPNet,
DeepLabV3,
UNet

0.95

Su et al. [124] Spectral similarity between weed and wheat,
limited labelled data, UAV flight constraints,
high computational complexity

No early-season mapping, generalization to
other crops or conditions requires further val-
idation, limited temporal analysis

RF 0.94

Wang et al.
[125]

Weed and wheat similarities, poor recogni-
tion of small weed, occlusion and complex
field environments, need for computational
efficiency

Limited dataset scope, not yet optimized for
UAV deployment, potential false positives
on background elements, herbicide decision-
making not integrated

YOLOv7 0.98

Zhuang et al.
[126]

Low recall in object detection models, high
weed density issues, similarity in appearance
between weeds and wheat

Ineffectiveness of object detection models,
variability in image sizes affects accuracy,
need for more robust deep learning architec-
tures

CenterNet,
Faster R-CNN,
TridentNet,
VFNet,
YOLOv3

0.68–0.99

Zou et al. [127] Optimization of network complexity, selec-
tion of the best neural network structure, dif-
ficulty ensuring generalization

Use of images with simple characteristics,
limited number of output classes, no multi-
class weed classification

ResNet50,
MobileNet,
VGG16, VGG19

0.98

Pest Management

Chen et al. [128] Complex background in field images, small
object detection, computational costs of deep
learning models, balancing accuracy and pro-
cessing speed

Limited generalization to other crops/pests,
performance degradation in low-quality im-
ages, lack of real-time deployment, manual
labeling of training data

CNN, RPN 0.94

Fuentes et al.
[129]

Limited e-nose development for crop protec-
tion, variability in infestation patterns, sen-
sor calibration and data integration, compu-
tational complexity in real-time detection

Limited field validation, dependence on sen-
sor sensitivity, lack of large-scale deployment,
potential cross-detection of other stress fac-
tors

ANN 0.97–0.99

Li et al. [130] Complex backgrounds, pest variability in
scale and orientation, limited data for model
training, computational complexity

Dependency on data augmentation, limited
number pest categories, lack of real-time de-
ployment evaluation, fixed image resolutions
in training

CNN, GAN 0.83

Li et al. [131] Small size and complexity of wheat mites,
limited dataset, background complexity, high
computational complexity, difficult optimiza-
tion of key parameters

Small dataset and limited generalization, lim-
ited to wheat mites, fixed imaging conditions,
lack of real-time testing, model depth and
computation constraints

CNN, RPN 0.89

Evapotranspiration/Drought Monitoring

Elbeltagi et al.
[132]

Limited availability of climatic data, complex-
ity of modeling using AI techniques, difficult
model calibration and validation

Model trained and validated using only three
climatic variables, need for significant com-
putational resources

DNN 0.94–0.99

Shen et al. [133] Complexity of drought factors, data integra-
tion issues, high computational requirements,
difficult generalization and validation

Limited comparison with other models, de-
pendency on TRMM data, fixed input vari-
ables, scalability concerns

DNN 0.89

Herbicide/Pesticide Stress

Chu et al. [134] Lack of early visual symptoms, trade-off be-
tween spectral resolution and computation,
high computational requirements, limited
datasets, generalization challenges

Limited to controlled greenhouse conditions,
focus on three herbicide types, dependence
on specific spectral Regions, potential overfit-
ting

SCNN 0.96
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Table 3. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Weng et al.
[135]

Large-scale data handling, feature extraction
complexity, high data variability, selection of
optimal model

Limited dataset, high computational inten-
sity, lack of generalization

CNN, FCN,
PCANet

0.96–1.00

Lodging

Yang et al. [136] Low accuracy of traditional methods, high
computational cost, variability in field condi-
tions, selection of input data

Limited study area, dependency on UAV
data, not tested for large-scale implemen-
tation, limited comparison with other tech-
niques

Mobile U-Net,
FCN

0.89

Zhang et al.
[137]

Variation in wheat growth stages, imbalanced
data, high computational complexity, differ-
ent imaging modalities, feature extraction op-
timization

Dependence on UAV data, limited general-
ization, poor multispectral image availability,
potential overfitting

DeepLabv3+,
UNet

0.82–0.92

Zhang et al.
[138]

Low spatial and temporal resolution of satel-
lite imagery, UAV data requires extensive pre-
processing, complex feature extraction and
selection

The study was conducted in a single exper-
imental field, need for significant computa-
tional resources

RF, NN, SVM,
CNN

0.85–0.93

The techniques and methods found in the literature addressing plant stresses share
many similarities, meaning that several observations made in the section on plant dis-
eases are also applicable here. Nevertheless, certain stress-specific approaches warrant
distinct discussion.

In the context of weed detection and management, a major challenge lies in distinguish-
ing weeds from wheat when their visual characteristics are highly similar [118,119,121,123],
and even their spectral signatures can be closely related [124]. Additional complexity
arises from plant overlapping and occlusion, which significantly hampers accurate detec-
tion [120,121,123,125,126]. To enhance model accuracy and prepare for future herbicide-
specific recommendations, some studies have opted to create separate classes for each
weed species [17,119,120,123,125], with a few works considering up to ten species [121].
However, this strategy presents challenges, especially in detecting and classifying weed
species not included in the training set [17]. Moreover, class imbalance can negatively
impact the recall of underrepresented classes [17,121,123].

Due to limitations in the datasets used during experiments, such as restricted di-
versity in conditions, geography, and species, generalizing to unseen data remains dif-
ficult [118]. To address this, several authors have adopted data augmentation tech-
niques [17,119,120,125], with some employing advanced augmentation strategies [122].
Although conventional RGB sensors are the most commonly used [17], some studies have
explored multispectral imaging as an alternative for enhancing spectral discrimination [124].
Data collection is typically performed using ground-based cameras [119–122,125,126] or
UAV-mounted systems [17,118,124], while satellite imagery is generally avoided due to its
insufficient spatial resolution for weed-level analysis.

Although substantial progress has been made in weed detection using AI techniques,
the majority of studies focus on post-emergence weeds, where plants are already well
developed and easier to distinguish. Early-stage weed detection, however, is critical for
timely management interventions and minimizing crop losses. This remains a significant
challenge due to the small size of seedlings, spectral and morphological similarity to crop
plants, and limited availability of annotated datasets. Addressing these challenges through
improved imaging techniques, data augmentation, and transfer learning approaches rep-
resents a key opportunity for future research. A few studies have tackled the problem of
early weed detection [126], although performance tends to be limited for seedling recog-
nition [120,121]. In contrast, better results have been observed when the task involves
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semantic segmentation rather than classification [122]. Notably, among the reviewed litera-
ture, only one study deliberately did not employ deep learning techniques, Su et al. [124]
opted for alternative approaches due to a lack of sufficient labeled data.

Pest management and recognition present a distinct set of challenges. Agricultural
pests are typically small and may appear in a variety of poses and orientations, making
accurate detection difficult for most models [128,130,131]. This results in high variability,
and because many datasets fail to capture the full spectrum of visual variations, data
augmentation is commonly employed to improve model generalization [130,131].

The use of traps specifically designed to attract target pest species is a common practice
in agricultural monitoring. However, within the scope of this review, no study employing
such traps for image-based pest detection was identified. Instead, all reviewed works
focused on the direct imaging of pests on plant organs, such as leaves and stems [128,130].
One possible reason for this is that traps often accumulate non-target objects, such as other
insects, debris, spores, or plant material, which can complicate detection, particularly when
the target pests are very small [139].

Most studies concentrate on the detection of a single pest species [128], though some
propose methods capable of classifying multiple species [130]. While the latter approach
offers richer and more informative outputs, it also introduces the risk of misclassification
when species not seen during training are present during inference.

Although the majority of pest detection methods rely on conventional RGB imag-
ing [128], some studies have explored alternative sensing technologies that aim to detect
indirect physiological responses of plants to pest presence. These include near-infrared
spectroscopy and electronic nose (E-nose) systems [129]. Rather than detecting the pest
itself, these approaches attempt to identify plant-level changes, such as variations in volatile
organic compound (VOC) emissions, that may indicate pest activity. However, e-nose sys-
tems face specific challenges: different plant cultivars emit distinct VOC profiles, and the
compounds released may not be pest specific, as they can also reflect responses to other
biotic or abiotic stressors [129].

Only two studies listed in Table 3 address evapotranspiration estimation and
drought monitoring, yet a few domain-specific challenges can be identified in this
context. Climatic data are a crucial input for estimating evapotranspiration; however,
such data are often limited in spatial and temporal availability, and the parameters
commonly used in modeling may be insufficient to account for the full complexity of
factors influencing evapotranspiration dynamics [132]. Moreover, drought is a multifac-
torial phenomenon influenced by a combination of variables such as precipitation, soil
moisture, and vegetation conditions, which complicates the development of a unified
predictive model. To address this, studies frequently rely on multi-source data integra-
tion, which demands extensive preprocessing and harmonization to ensure consistency
across spatial resolutions, formats, and temporal coverage [133].

One of the main challenges in detecting herbicide and pesticide stress is that symptoms
often manifest only at later stages, making early identification difficult with traditional
methods. To address this, many studies employ sensors capable of capturing the re-
flectance spectrum of the target, enabling the detection of physiological changes at earlier
stages. Common approaches include near-infrared hyperspectral imaging [134] and surface-
enhanced Raman spectroscopy (SERS) [135]. Another limitation is that some studies are
conducted under controlled conditions, which can hinder the applicability of their models
in real-world scenarios [134]. Notably, both studies reviewed here used deep learning
algorithms for stress detection [134,135].

The final wheat disorder addressed in this study is lodging, which affects the plant
at a structural level. Because lodging is a broad, canopy-level phenomenon, UAV-based
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imaging is commonly used for its detection [136–138]. To improve accuracy under complex
field conditions, some studies have combined digital imagery with additional data sources
such as Digital Surface Models (DSM) [136]. Multispectral imagery has also been employed,
often outperforming RGB sensors in detecting lodging [137,138].

A major limitation in this area of research is the difficulty in collecting large, diverse
datasets, which often restricts studies to a single geographic region and wheat variety,
limiting model generalization [136–138]. Another challenge is that lodging manifests
differently depending on the plant’s growth stage, adding further complexity to detection
efforts [137]. In most cases, healthy plant data are far more abundant than lodging data,
necessitating the use of data augmentation [136,138] or class-balancing techniques such as
the Tversky loss function [137]. Notably, all studies reviewed in this context have adopted
deep learning approaches for lodging detection [136–138].

3.4. Phenotyping and Genetic Selection

Table 4 presents all the articles that focus on phenotyping and genetic selection.

Table 4. References related to phenotyping and genetic selection.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Apolo-Apolo
et al. [140]

High data collection complexity, risk of poor
model generalization, high computational de-
mands, high environmental variability

Limited dataset size, dependence on visual
features, potential overfitting, lack of compar-
ison with alternative sensors

CNN, MLP 0.87–0.90

Crossa et al.
[141]

Complex hyperparameter optimization, high
computational complexity, complex geno-
type × environment interaction modeling, too
small genomic datasets

Limited dataset scope, hyperparameters may
not have been fully optimized, single-trait
focus may be too limited

DL, ANN, AK,
GK

0.72

Ghahremani
et al. [142]

Occlusion in 2D images, high computational
cost, boundary classification is a challenge,
small datasets

Limited dataset, flawed delimitation of the
objects, significant computational constraints

Pattern-Net,
TasselNetV2+,
Faster RCNN

0.92

González-
Camacho et al.
[143]

Limited training samples, genotyping errors,
complexity of rust resistance, ordinal nature
of resistance scales, high training times, diffi-
cult feature selection

Dataset limited to a few wheat populations,
high model performance variability, limited
scalability and interpretability, need for large
computational resources

Parametric
linear
regression, ML
models

0.71–0.80

Guo et al. [144] Fine-tuning of models is complex, high varia-
tion of prediction accuracies, computational
efficiency is difficult to achieve

Deep learning models do not always perform
well, stratified cross-validation did not signif-
icantly improve accuracy

Deep learning
models

0.03–0.85

Hesami et al.
[145]

Variability in wheat genotypes, nonlinear
and complex interactions between phytohor-
mones, complexity of model training

Potentially poor model generalization, high
computational complexity, limited experi-
mental validation

GRNN, GA 0.78

Khan et al. [146] Absence of NIR band in RGB images, high
variability in environmental conditions, high
model training complexity, high computa-
tional demand

Potentially limited generalization, RGB-
based VI estimation was limited, lack of real-
time deployment, need for more robust fea-
ture engineering

DNN 0.99

Moghimi et al.
[147]

Variability in yield within experimental plots,
noise and artifacts in hyperspectral images,
computational complexity of DL models, lim-
itations in plot size optimization

Limited generalization across environments,
high impact of environmental variability, lim-
ited dataset size, UAV and sensor relatively
limited

DNN 0.79

Montesinos-
López et al.
[148]

Complexity of multi-trait genomic selection,
computational cost of the models, challeng-
ing genotype-environment interactions, lim-
ited data quality and availability

Uncertain generalization across crops and
traits, limited interpretability of the models,
need for extensive hyperparameter optimiza-
tion

DL, Bayesian
Multi-Trait

0.14–1.00

Montesinos-
López et al.
[149]

Handling mixed phenotypes, difficult hyper-
parameter optimization, high computational
costs

Modest gains in prediction accuracy, limited
evaluation of genotype-environment interac-
tion, limited field validation

Multi-Trait and
Univariate DL

0.72

Montesinos-
López et al.
[150]

Difficulty in modeling ordinal traits, com-
plex hyperparameter tuning, high compu-
tational requirement, poor generalization
across datasets

No significant improvement using ML mod-
els, limited model generalization, difficulty
dealing with genotype-environment interac-
tions

TGBLUP, MLP,
SVM

0.45–0.70
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Table 4. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Montesinos-
López et al.
[151]

Complex genotype × environment interac-
tion, complexity of multi-trait analysis, com-
plex hyperparameter selection, small sample
size

Small dataset size, overfitting in multi-trait
models, genomic selection model perfor-
mance variability, high computational costs

GBLUP,
Multi-Trait and
Univariate DL

N/A

Roth et al. [152] Difficult balance between accuracy and scal-
ability, phenotyping early growth stages is
challenging, difficult trait assessment, high
computational complexity

Lack of dense point clouds, high sensitivity
to variability in plant emergence, potential
bias in growth stage estimation

SVM, RF 0.77–0.86

Sandhu et al.
[153]

Difficult dealing with lower heritability traits,
high data dimensionality, varying perfor-
mance across environments

High computational complexity, lack of exter-
nal validation, limited interpretability, high
dependence on secondary traits

RF, MLP, CNN,
SVM, GBLUP

0.67–0.72

Sandhu et al.
[154]

Cost of quality trait evaluation, complexity of
genotype x environment interaction, limited
datasets

Potentially limited generalizability, high com-
putational burden

Nine
parametric, ML
and DL models

0.27–0.81

Sandhu et al.
[155]

Complex hyperparameter optimization, high
risk of overfitting, high computational costs

Trait-specific optimization limits generaliz-
ability, lack of biological interpretability, need
for large datasets

MLP, CNN,
RRBLUP

0.24–0.57

Wang et al.
[156]

Field conditions are difficult and varied, opti-
mization of computational efficiency is diffi-
cult, clustered objects are difficult to separate,
manual annotation is costly

Images taken with fixed camera angle,
dataset is too small, no integration with other
types of data, high error levels under some
conditions

FCN, CNN 0.98

Yasrab et al.
[157]

Complexity of root systems, errors in early
image processing stages, balancing model ac-
curacy with computational efficiency, gener-
alization across plant species

Dependency on high-quality training data,
limited testing on real-world field images,
overfitting in small datasets, high error rates
with overlapping roots

CNN 0.95-0.99

Zenkl et al.
[158]

High lighting variability, changing soil prop-
erties, high scene complexity, annotation in-
consistencies

Severely limited dataset, high human anno-
tation variability, limited external validation,
no multispectral data

SVM, RF, CNN 0.86–0.95

Zhang et al.
[159]

Difficulty handling large-scale phenotypic
data, complex integration of different imag-
ing techniques, complexity of drought trait

Limited field validation, hyperspectral data
are expensive and computationally complex,
small dataset size may produce a biased
model

RF, CNN 0.70–0.82

Zhu et al. [160] Difficulty distinguishing objects of interest,
variability in magnifications affected the
stomatal index calculation

Stomata and epidermal cells were treated as
independent tasks, single task CNNs may not
be the best option for the problem

Faster R-CNN,
U-Net

0.89–0.98

Phenotyping and genotyping are complementary approaches that, when combined,
provide powerful insights into the genetic control and environmental expression of plant
traits. This integrated perspective is crucial for advancing crop productivity, resilience,
and sustainability. Accordingly, this subsection groups together studies that address either
or both dimensions.

Studies focused on phenotyping often face challenges similar to those encountered
in yield prediction and stress management. A recurrent issue is the difficulty in con-
structing truly representative datasets. This limitation undermines model generaliza-
tion, particularly under high variability conditions [140,146]. Class imbalance is another
common challenge [156], which frequently motivates the use of data augmentation tech-
niques [142,146,157–160]. Occlusions further complicate image-based phenotyping, leading
to errors in trait estimation [142,157]. Hyperparameter tuning is also cited as a non-trivial
hurdle [145].

Among the sensors used for phenotyping, RGB cameras are the most preva-
lent [140,146,152,156–158], but others such as microscopy [160], multispectral cameras [146],
multispectral radiometers [153], and hyperspectral sensors [147,159] are also employed.
Hyperspectral imaging, in particular, is effective for detecting physiological traits invisible
to the naked eye, although it may suffer from noise due to atmospheric and sensor-related
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artifacts [147]. In some studies, data are collected in controlled environments using lab or
field experiments rather than onboard sensors [145].

Ground-based phenotyping remains the most common practice [140,142,153,156–158],
although the use of UAVs has expanded since the early 2010s [146]. Nonetheless, de-
termining optimal flight altitude and camera configurations is challenging, especially
for hyperspectral setups [147]. Additionally, the ground sampling distance (GSD) from
UAVs may be insufficient for capturing early-stage plant traits, which are vital for genetic
selection [152]. Satellite imagery currently lacks the spatial resolution needed for most
phenotyping applications [152].

Ground-truth generation is another major constraint, particularly when destructive
sampling or complex measurements are involved [140]. Moreover, some agronomic
indicators like yield lack the spatial precision required for robust model training and
evaluation [147]. Annotation challenges are widespread, especially for high-volume
datasets [156,160] and traits that involve subjective interpretation [142,158,159]. When
field visits are necessary, logistical constraints often limit the number of measurements,
prompting the use of interpolation techniques [152].

The traits targeted in phenotyping studies include grain yield [147], leaf area in-
dex [140], plant biomass [146], ear counting and length [142], flowering time [156], root
characteristics [157], plant counting, height, and tillering [152,159], shoot regeneration
frequency [145], awn morphology [156], vegetative cover [158], drought responses [159],
stomatal index [160], and stem elongation onset [152].

Genotyping brings its own set of challenges, largely due to the nature of genomic data,
which require specialized processing methods. Model tuning in this domain may be more
complex than in image-based tasks, due to fewer reference studies, smaller datasets [151],
and the intrinsic complexity of the data, which demands meticulous selection of model
architecture and parameters [141,143,148,155]. Some studies must handle a mix of binary,
ordinal, and continuous variables [149,150]. Additionally, certain traits are influenced by
both major and minor genes, which can lead to underfitting or overfitting [143].

Data quality is another concern in genotyping. Missing data are common and need
to be managed through filtering [141,153] or manual imputation [150]. Furthermore,
effective genomic selection requires accounting for genotype-by-environment interac-
tions [141,148–150], a non-trivial modeling challenge. Ground-truth acquisition can also be
problematic due to subjective evaluation [143,149].

Traits studied in genotyping-based research include grain yield [141,143,148,149,155],
plant height [148,149,155], disease resistance [143,149], days to heading and matu-
rity [148–150,155], grain color and protein content [149,155], lodging [149], and anthesis-
silking interval [148]. While many studies address one trait at a time, multi-trait models
have been proposed to enhance genomic prediction [148], although they are more suscepti-
ble to overfitting [151].

Some studies integrate phenotyping and genotyping for a comprehensive trait charac-
terization [144,150,151,153,154,159]. For example, Guo et al. [144] combined manual pheno-
typing with genotyping-by-sequencing to assess grain yield and related traits. Montesinos-
López et al. [150,151] integrated SNP and phenotypic data to predict multiple agronomic
traits. Zhang et al. [159] combined high-throughput phenotyping with GWAS to improve
drought resistance and yield predictions.

As with other domains in agricultural research, both phenotyping and genotyping
are increasingly leveraging deep learning [140–144,146–149,153,156–160], though shallow
neural networks [145,150] and conventional machine learning approaches [152] remain in
use for specific data types.
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3.5. Spike Detection

Table 5 presents all the articles that focus on spike (ear) detection.

Table 5. References related to spike detection.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Alkhudaydi
et al. [161]

Complex field conditions, large and noisy
datasets, high computational complexity, dif-
ficult generalization across growth stages,
lack of balanced datasets

Limited success in early growth stages, high
false positive rates, segmentation strongly af-
fected by environmental variability, high de-
pendence on high-quality data

FCN 0.76

Dandrifosse
et al. [162]

High variability in wheat growth stages,
lighting and shadow effects, difficult conver-
sion of ear count to density, differences in
fertilization scenarios

Limited dataset scope, underestimated ear
densities, relatively high segmentation error
rates

YOLOv5,
DeepMAC

0.86–0.93

David et al.
[163]

High variability in image conditions, differ-
ences in genotypes and growth stages, dif-
ficulties in image labeling, difficulties with
occluded wheat heads and dense plantings

Geographic bias in the dataset, flawed de-
tection of overlapping heads, dataset with
limited temporal variability, baseline model
performance was limited

YOLOv3, Faster
R-CNN

0.77

David et al.
[164]

High variability in wheat growth stages,
dataset labeling challenges, geographic and
environmental differences, non-trivial model
evaluation

Bias toward developed countries, bounding
box annotations instead of segmentation, dif-
ficulty dealing with overlapping wheat heads

Faster R-CNN,
ensemble DL

0.70

Fourati et al.
[165]

High density of wheat heads, high data vari-
ability, accuracy affected by environmental
factors, high computational complexity

Limited dataset variability, potential bias due
to geographical limitations, evaluation metric
limitations

Faster R-CNN,
EfficientDet

0.74

Genaev et al.
[166]

Variations in spike characteristics increase
complexity, need for large training datasets,
different imaging angles can cause distor-
tions

Exclusive focus on morphometric features,
limited number of wheat varieties considered

Machine
learning,
regression

0.97

Gong et al. [167] Available datasets are small, trade-off be-
tween speed and accuracy, high variability
in field conditions, presence of small or oc-
cluded wheat heads

Only one dataset used, potentially poor gen-
eralization, high computational complexity

YOLO, Faster
R-CNN

0.94

Hasan et al.
[168]

Complex field imaging conditions, labor-
intensive data annotation, high variability in
spike characteristics

Potentially poor generalization, model too
sensitive to growth stages, high computa-
tional complexity

R-CNN, CNN 0.93

He et al. [169] Wheat spike overlapping and motion blur,
wheatear variability, high computational de-
mand

Potential generalization issues, small objects
are often missed, high computational com-
plexity for inference

Improved
YOLOv4

0.97

Khaki et al. [13] Variability in wheat head appearance, lack
of data diversity, difficulty balancing accu-
racy and efficiency, difficulties with real-time
deployment

Limited generalization across wheat varieties,
absence of real-world testing, point-level an-
notations affected accuracy, computational
constraints on edge devices

WheatNet 0.96

Li et al. [170] Background complexity and visual similarity,
differences in wheat growth stages, data lim-
itations, computational and processing con-
straints

Performance drops in some growth stages,
lack of real-time deployment, influence of
environmental factors not fully studied

CNN 0.97–0.98

Li and Wu [171] Complex backgrounds and occlusions, small
target detection, feature extraction limitations

Dependence on specific data augmentation
techniques, limited generalization, high com-
putational demand

Faster-RCNN,
YOLO, SSD

0.94

Ma et al. [172] Complexity of wheat canopy images, trade-
off between model complexity and efficiency,
difficult generalization across different culti-
vars

Limited dataset, low performance in complex
field conditions, models are computationally
expensive

EarSegNet,
DeepLabv3+

0.87

Ma et al. [173] Difficult segmentation in complex field con-
ditions, high computational cost, balancing
model complexity and efficiency

Dataset diversity limitations, sensitivity to
small-scale variability, high computational
cost, relatively poor performance with UAV
images

DCNN, FCN,
RF

0.84

Madec et al.
[174]

Variability in field conditions, selection of
the optimal spatial resolution, high computa-
tional complexity, labeling subjectivity

Poor generalization capability, errors due to
small object size, relatively poor performance
with UAV images, low accuracy of manual
annotations

Faster-RCNN,
TasselNet

0.85
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Table 5. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Misra et al.
[175]

Variability in image conditions, complexity
of wheat spikes, need for large amounts of
labeled data for training, high computational
cost

Potentially poor generalization, counting er-
rors due to overlapping spikes, real-time de-
ployment needs further optimization, limited
dataset

SpikeSegNet 0.99

Qing et al. [176] High-density and overlapping wheat spikes,
balancing accuracy and computational effi-
ciency, challenging model optimization and
feature extraction

Limited generalization across varieties, high
computational cost, absence os field valida-
tion and real-time testing

YOLO-
FastestV2

0.81

Sadeghi-Tehran
et al. [177]

Variability in environmental conditions, over-
lapping spikes, dataset diversity limitations

Field measurement uncertainties caused in-
consistencies, lower spatial resolutions de-
graded performance, ultra-wide-angle lenses
introduced perspective distortions

DeepCount 0.57–0.97

Shen et al. [178] Variation in wheat characteristics, occlusion
and overlapping wheat heads, complex back-
grounds and illumination changes, hardware
limitations

Accuracy is affected by varying illumination
and backgrounds, poor accuracy in detecting
occluded heads, limited generalizability, high
computational complexity

YOLO, Faster
RCNN

0.94

Sun et al. [179] High-density targets, scale variation of wheat
heads, varying lighting conditions, overlap-
ping wheat heads, limited training data

Potentially poor generalization, no multi-
temporal analysis, high computational com-
plexity, image overlapping can lead to dupli-
cate counts

WHCnet, SSD,
Cascade
R-CNN,
YOLOv4

0.96

Velumani et al.
[180]

Variability in environmental conditions,
dataset imbalance and annotation challenges,
image noise and artifacts, limited scalability
to large fields

Dependence on fixed camera systems, small
sampling area, no real-time prediction, poten-
tial overfitting

CNN 0.98

Wang et al.
[181]

Difficult field conditions, challenges process-
ing high-resolution images, clustered wheat
ears are difficult to separate, labor-intensive
manual annotation

Fixed camera angle and small field of view,
limited dataset, high error levels when con-
ditions are not ideal, no real-time large-scale
field deployment

FCN, Harris
Corner
Detection

0.98

Wang et al.
[182]

Ear occlusions and overlap, variability in
lighting and wheat maturity, excessive data
imbalance, difficult optimization of feature
fusion

Dataset captured under specific conditions,
dependence on pretrained models, not fully
real-time, modest improvement in compari-
son with previous approaches

YOLOv3, SSD,
Faster R-CNN,
EfficientDet-D1

0.94

Wang et al.
[183]

Time-series data complexity, high computa-
tional requirements, inter-annual yield vari-
ability, difficult hyperparameter optimiza-
tion, limited high-resolution data

Limited generalization to other crops and re-
gions, yield underestimation in high-yielding
areas, temporal resolution constraints

CNN, GRU 0.64

Xiong et al.
[184]

Variability in wheat appearance, high-density
wheat fields make it difficult to separate in-
dividual spikes, image quality issues, occlu-
sions and partial spikes

Limited geographic scope, fixed camera po-
sitioning, possible overfitting, not tested in
real-time UAV deployment

TasselNet, CNN 0.91

Xu et al. [185] Variability in wheat ear appearance, image
processing complexity, influence of lighting
conditions, balancing accuracy and efficiency

Limited generalization across wheat varieties,
dependence on image acquisition conditions,
optimal performance only at late grain-filling
stage

CNN 0.96

Yang et al. [186] Occlusions and overlapping wheat ears, back-
ground noise interference, variability in image
conditions, bounding box localization errors

Limited dataset diversity, fixed image reso-
lution, not tested on real-time UAV deploy-
ment, no detection of small wheat ears

CBAM-
YOLOv4,
YOLOv3,
YOLOv4

0.89-0.98

Zang et al. [187] Spike occlusion and overlap, densely packed
spikes, impact of image resolution and envi-
ronmental factors

High density and visual similarity decrease
accuracy, only one object can be detected per
grid cell, model depends on image resolution,
potentially limited generalizability

Faster R-CNN,
YOLO

0.72

Zhao et al. [188] Small-sized and densely packed wheat
spikes, background noise in images, limita-
tions of existing object detection methods

Dependence on high-quality labeled data,
limited scalability to different environments,
high computational complexity, high sensi-
tivity to image resolution

Faster R-CNN,
RetinaNet, SSD,
YOLOv3,
YOLOv5

0.94

Zhao et al. [189] Small and densely packed spikes, occlusions
and overlapping spikes, variability in spike ori-
entation, complex field background interference

Dependence on high-quality UAV images,
high computational complexity, limited gen-
eralizability, need for manual labeling in
training

Seven detection
models

0.90
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In this review, all studies focused on spike detection and counting rely on digital
RGB imagery combined with deep learning techniques. Minor deviations from the stan-
dard include the use of stereo RGB images [162] and ultra-wide-angle lenses [177]. Due
to limited dataset diversity, data augmentation is commonly employed [13,165,167,169–
173,178–180,182,186–189]. Most datasets were built with ground-based images due to
the relatively small size of wheat spikes, although UAV imagery has also been widely
adopted [13,169,173,176,179,188,189]. A notable portion of the literature relies on the Global
Wheat Head Detection (GWHD) dataset [165,167,169,178,179,182,186], which was specifi-
cally developed for spike detection tasks [163,164].

Spike detection differs from other detection tasks discussed earlier in several key ways: it
is almost always conducted in-field (with a few exceptions [166,175]), the objects of interest are
almost always present, and occlusion is significantly more frequent and problematic [13,161–
169,171–179,181–184,186–189]. Accordingly, individual spike separation becomes a central
challenge in most works [171], with varying levels of success. While many authors have
attempted to overcome occlusion through model fine-tuning [13,171,173,179,182,188], others
seek improvements at the image acquisition stage [168].

Another major hurdle is the heterogeneity in spike density [165,184]. In some cases,
a single image patch may contain between 0 and 120 spikes [163], while in others, up to
10,000 spikes may appear in one image [184]. Such variation introduces difficulties in both
annotation and model training/inference.

Due to the complexity of annotation, multiple strategies are found in the literature.
The most commonly used are bounding boxes, which offer a straightforward method for
object counting and are comparatively easier to annotate [182]. However, they remain
labor intensive and prone to subjectivity and error [164,170,174,179,186–189]. Furthermore,
bounding boxes do not easily accommodate occlusions, nor do they enable extraction of
more detailed morphological information [163,165,178]. To increase annotation reliability,
some authors employed multiple experts and repeated labeling for each image to produce
a robust ground-truth [186].

Despite being simpler than segmentation, bounding box annotation may still pose a
heavy workload. This has led some researchers to explore point-level annotation, where
each spike is marked with a single point, usually at the center [13,184]. This approach
reduces annotation time and is effective for object counting, though it can reduce the
accuracy of object localization.

A third approach involves pixel-level segmentation of the spikes, and occasionally
awns [166], which allows for precise delineation and facilitates the extraction of additional
traits [162,172]. However, this method is highly labor intensive and subjective, even when
supported by computational tools [161,166,172,173,175,177,181,183]. Some authors have com-
bined bounding boxes for detection with segmentation for refinement, achieving enhanced
performance [162]. The literature suggests that segmentation is more accurate, particularly
under occlusion [161,162,177], but the annotation effort remains a limiting factor.

A fourth, less common approach divides images into patches and performs binary
classification (“spikes present” or “spikes absent”) [180]. This technique, used for automatic
estimation of the wheat-heading date, is noted to be more robust and easier to annotate
than bounding box or segmentation methods in phenological studies.

Although it is desirable to detect viable spikes as early as possible [170,173,175,180],
many models struggle during the booting and heading stages, primarily due to confusion
with background elements and limited training samples [161,163,170]. Conversely, spike
detection at maturity can also be problematic, as ears bend under grain weight and become
harder to identify [162,164].
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3.6. Grain Classification

Table 6 presents all the articles that focus on grain classification.

Table 6. References related to grain classification.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Çelik et al. [14] High similarity between different durum
wheat grains, limited performance of single
CNN models, need for a large dataset

Potentially limited generalizability, reliance
on image features only, potential overfitting,
lack of real-time testing

Hybrid CNN
Model

0.92

Gao et al. [190] Difficulty separating touching wheat kernels,
equipment dependency, feature redundancy
in deep networks, processing efficiency

Dataset with limited variability, lack of real-
time automation, single-view imaging, lim-
ited comparison with other DL methods

ResNet 0.94

Khatri et al.
[191]

High similarity between wheat varieties,
dataset limitations, difficult feature selection,
high computational complexity

Limited dataset size, potential limited gener-
alization, need for real-world testing, focus
on limited features

Ensemble, kNN,
NB

0.95

Laabassi et al.
[192]

High visual similarity between wheat vari-
eties, variability in growing conditions, high
computational demand, complex model vali-
dation

Limited number of wheat varieties, temporal
variability not considered, impact of storage
conditions not analyzed, potential for model
overfitting

CNN 0.95–0.99

Li et al. [193] Imbalanced and limited dataset, high simi-
larity between healthy and unsound kernels,
proper application of augmentation, classifier
selection

Dependence on hyperspectral imaging, GAN-
based augmentation does not fully replace
real data, limited model generalization, lim-
ited real-time application testing

CNN, SVM 0.97

Lingwal et al.
[194]

High similarity among wheat varieties, need
for a large and diverse dataset, selection of op-
timal hyperparameters, high computational
complexity

Dependence on a specific dataset, generaliza-
tion challenges, computational constraints in
mobile devices, need for real-world valida-
tion

CNN 0.95

Özkan et al.
[195]

High inter-class similarity of wheat kernels,
computational complexity of CNNs, variabil-
ity in imaging conditions

Limited generalization, feature fusion opti-
mization needed, scalability for large-scale
agricultural applications

CNN, SVM 0.98

Passos and
Mishra [196]

Choosing the right DL architecture, computa-
tional cost of optimization, balancing prepro-
cessing techniques

Limited neural architecture search, signifi-
cant computational constraints, fixed prepro-
cessing methods

1D-CNNs 0.95

Sabanci et al.
[197]

Feature selection complexity, data processing
challenges, training data limitations, model
optimization complexity

Small sample size, dependence on visual fea-
tures only, fixed experimental setup, poten-
tial overfitting

ANN 1.00

Sabanci et al.
[198]

Selecting the optimal imaging technique, fea-
ture extraction from noisy images, image fu-
sion complexity, machine learning model op-
timization

Limited sample size, dependence on texture
features only, experimental setup constraints,
potential for overfitting

MLP, SVM,
kNN

0.98

Sabanci [199] Feature extraction from noisy images, feature
selection for AI models, time-consuming hy-
perparameter tuning, small dataset size

Limited dataset, dependence on visual fea-
tures only, fixed imaging setup, model gener-
alization issues

ANN, ELM 1.00

Sabanci et al.
[200]

Intensive image preprocessing, computa-
tional cost of CNN training, model general-
ization issues

Small dataset size, dependence on visual fea-
tures only, fixed imaging conditions, poten-
tial overfitting

Hybrid
CNN-BiLSTM,
AlexNet

0.99

Unlersen et al.
[201]

Variation in wheat cultivars, need for high-
resolution images, limited training data, fea-
ture extraction complexity, high computa-
tional demand

Limited to bulk samples, fixed imaging con-
ditions, no consideration of chemical and rhe-
ological properties

CNN, SVM 0.98

Wei et al. [202] Variability in wheat grain images, separa-
tion of overlapping grains, computational
demand of DL models, lack of pre-existing
datasets

Dataset limited to three wheat varieties, not
tested in real-world field conditions, inability
to distinguish damaged or deformed grains,
computation speed needs optimization

Faster R-CNN 0.91

Yang et al. [203] Data scarcity, variability in kernel appear-
ance, complexity of acoustic signal process-
ing, manual feature engineering, high com-
putational cost

Limited to three classes, dependence on high-
quality acoustic signals, not tested on real-
world bulk grain samples, limited scalability

SPGAN-PNAS,
CNN

0.96

Zhang et al.
[204]

Hyperspectral imaging technology is sensi-
tive to several factors, difficult data prepro-
cessing and feature selection

The study was conducted on a single wheat
variety, limited generalizability, overfitting
problems when using full-wavelength spec-
tral data, need for optimization for real-world

LDA, SVM, DF 0.94
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Table 6. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Zhao et al. [205] Difficult extraction from hyperspectral im-
ages, balancing spectral and spatial informa-
tion, high computational requirements, vari-
ability in seed appearance

Limited generalizability, dependence on high-
quality hyperspectral imaging, substantial
computational resource constraints, need for
larger training datasets

1D-CNN,
2D-CNN

0.96

Zhou et al. [206] High dimensionality of data, feature redun-
dancy and selection, high computational
complexity, variation in kernel properties

Dependence on large datasets, need for fur-
ther optimization for real-time applications,
limited generalization

CNN, SVM,
PLSDA

0.93

The application of AI techniques to wheat grain analysis is primarily concentrated in four
areas: the classification of wheat varieties, the identification of damage types, discrimination
between bread and durum wheat, and grain counting. While most of the studies reviewed
adopt deep learning approaches for these tasks, shallow neural networks and other conven-
tional machine learning methods are still in use [191,197–199]. All studies mentioned in this
section have used data collected in a controlled environment and not on the field.

The classification of wheat grains by variety is crucial for multiple reasons, including
quality control, market segmentation, economic valuation, and supply chain management.
Consequently, the topic has received considerable attention in the literature. The complexity
of this classification task is strongly influenced by the number of varieties involved, which
in the studies reviewed ranges from as few as 3 [191] to as many as 41 [14].

While RGB imaging remains widely used, there is a growing interest in sensors capable
of capturing the spectral characteristics of wheat kernels. This includes hyperspectral
imaging [196,205,206] and soft X-ray imaging [191]. Additionally, sensor fusion strategies,
such as combining RGB, SWIR, and VNIR data, have been explored to enhance classification
performance [195].

To improve model generalization, data augmentation is commonly applied. Most
studies employ standard techniques such as rotation, flipping, cropping, translation,
and scaling [14,194,201]. However, more advanced methods have also been adopted.
Notably, Passos and Mishra [196] enhanced the input feature space by stacking multiple
chemometrically preprocessed versions of the reflectance spectra (e.g., SNV, first and second
derivatives), expanding the number of features from 200 to 1200.

It is important to note that differences between wheat varieties can be subtle, making
classification highly sensitive to minor alterations, such as those induced by storage condi-
tions. Although this concern has been acknowledged in the literature [192], none of the
reviewed studies explicitly examined whether classification accuracy is maintained when
using stored grains as opposed to freshly harvested samples.

The detection of damaged kernels is critical for assessing the quality and marketability
of wheat batches. Although only five studies on this topic were included in this review,
they employ a diverse array of methods to address the challenge. RGB imaging was
used by Gao et al. [190] to classify broken, sprouted, injured, moldy, and spotted kernels,
and by Sabanci [199] to detect kernels damaged by sunn pests. Gao et al. noted that
distinguishing between five visually similar damage categories posed significant challenges,
not only in terms of model performance but also due to increased annotation errors during
dataset preparation.

Hyperspectral imaging has also been employed to detect damaged, germinated,
and mildewed grains [193], as well as to identify slightly sprouted kernels [204], of-
fering richer spectral information for nuanced classification. In an alternative ap-
proach, Yang et al. [203] explored the use of impact acoustic signals to identify kernels
affected by mildew or insect damage. In this method, kernels are dropped from a height of
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50 cm onto a metal surface, and the resulting sounds are captured by a microphone. These
audio signals are then transformed into spectrograms, two-dimensional visual representa-
tions of frequency and intensity over time, which serve as inputs for a deep learning model.

The task of distinguishing between bread and durum wheat was explored in three
studies, all led by the same first author [197,198,200]. Two of these studies employed RGB
imaging to perform the classification [197,200], while the third utilized a multispectral imag-
ing system covering a broad spectral range from the ultraviolet to the near-infrared [198],
thereby capturing more detailed spectral information to improve discrimination. Addition-
ally, the problem of grain counting, important for yield estimation and crop assessment,
was addressed by Wei et al. [202], who combined RGB imaging with image augmentation
techniques to enhance model robustness and performance. This model was designed for
healthy wheat grains and may struggle with broken or irregular grains.

3.7. Other Applications

Table 7 presents all the remaining articles considered in this review.

Table 7. References related to other applications.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Wheat Mapping and Row Identification

Cai et al. [207] Difficulty in capturing detailed growth va-
cancies, feature extraction complexity, need
for adaptive feature selection

Manual threshold setting, limited training
data, absence of multispectral or hyperspec-
tral data, high computational complexity

RCTC, CNN 0.86

Fang et al. [208] Balancing classification accuracy and gener-
alization, need for careful hyperparameter
tuning, remote sensing data limitations

Potentially limited generalizability, only
three ML techniques were considered, impact
of additional environmental and soil factors
was not explored

SVM, RF, CART 0.94–0.95

Luo et al. [209] Variability in crop growth and climate condi-
tions, limitations of satellite-based yield es-
timation, computational complexity of DL
models, data availability and consistency

Limited temporal coverage, coarse spatial res-
olution, challenges in detecting small-scale
variations, poor generalization

LSTM, RF,
LightGBM

0.76

Wheat Mapping and Row Identification

Meng et al.
[210]

Cloud contamination, spectral complexity
of hyperspectral data, fragmented farmland
and mixed land use, cloudy and rainy condi-
tions

Sensitivity to cloud contamination, limited
generalization, no analysis of real-time oper-
ation, limited field sampling

1D-CNN,
2D-CNN,
3D-CNN, RF,
SVM

0.95

Tian et al. [52] Spectral similarity between garlic and winter
wheat, cloud cover in optical imagery, large
data processing requirements, integration of
optical and radar data

Dependence on Sentinel-1 and Sentinel-2
availability, lack of historical data analysis,
no inclusion of climate and soil data, poten-
tial confusion with other winter crops

RF 0.96

Zhong et al.
[211]

Trial-and-error approach is time-consuming,
difficulty in handling high-dimensional data,
pixel misalignment, discrepancies between
data sources

Lower pixelwise accuracy in the spatiotem-
poral model, need for pixel-level reference
data, lack of generalization

Deep learning 0.99

Food Quality

Bourguet et al.
[212]

Balancing nutritional and sensory quality,
conflicting stakeholder priorities, complex
multi-criteria decision-making

Dependence on expert knowledge, high com-
putational complexity, limited quantitative
validation

Argumentation
models

N/A

Nargesi et al.
[213]

Similarity between flour types, time-
consuming data acquisition, high computa-
tional demand

Limited dataset scope, computational com-
plexity of hyperspectral imaging, practical
use needs further validation

ANN, SVM,
LDA

0.98

Shen et al. [214] Complexity of impurity detection, some im-
purities resemble wheat grains, occlusions
and overlapping impurities, need for large
labeled datasets

High error levels with occlusions, limited
generalization, need for larger datasets

CNN 0.98

Shen et al. [215] Limited impurity dataset, expensive equip-
ment, need for more stable models

Limited number of wheat impurities, THz de-
tection method too expensive for real-world
application

CNN 0.97
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Table 7. Cont.

Reference Challenges Limitations Proposed
Techniques

Accuracy

Moisture Content

Bartley et al.
[216]

Complexity of microwave-based moisture
measurement, ensuring density indepen-
dence, limited number of samples

Temperature variations affect accuracy, study
conducted on static wheat samples, limited
dataset size, need for further hardware opti-
mization

ANN 0.99

Shafaei et al.
[217]

The hydration process depends on multiple
factors, need for multiple trials and optimiza-
tions

High model complexity, lack of generaliza-
tion due to data limitations, only one wheat
variety was considered

ANN, ANFIS 0.99

Nitrogen and Chlorophyll Content

Singh et al.
[218]

Complexity of nitrogen prediction, machine
learning model complexity, high computa-
tional demands, need for field validation

Dataset with limited variability, model does
not fully account for environmental condi-
tions, potential overfitting

SVR, RF, kNN,
MLP, PLSR,
GBR

0.89

Wu et al. [219] Selection of optimal time for data collection,
complex feature selection, best prediction
model varied at different growth stages

Limited to the reproductive stage of spring
wheat, variation in optimal machine learning
models, high computational requirements

DNN, PLS, RF,
AdaBoost

0.77–0.97

Protein Content

Yang et al. [220] Variability across spectrometers, dependency
on standard samples, need for careful fine-
tuning

Tested on only five spectrometers, limited
dataset, no comparison with transformer-
based models, not evaluated for real-time ap-
plications

DeepTranSpectra,
CNN

0.98

Crop Recommendation Systems

Akkem et al.
[221]

Black-box nature of AI models, difficulty
meeting real-world agricultural needs, high
computational cost of explainability methods

Training data not always available or accu-
rate, need for domain-specific validation, po-
tential ethical and social transparency chal-
lenges

ML models (not
specified)

N/A

Wheat as Fuel

Bai et al. [222] High viscosity of wheat germ oil, poor engine
efficiency, high nitrogen oxide emissions, hy-
drogen safety risks

Emissions increased with hydrogen addition,
limited comparison with other biofuels, high
cost of hydrogen infrastructure, low energy
output per unit fuel

MLR, DT, RF,
SVR

0.99

Optimization of Energy Use

Ghasemi-
Mobtaker et al.
[223]

Uncertainty in energy efficiency, economic
and environmental risks, data collection limi-
tations

Limited generalizability, environmental im-
pact is high

ANN, ANFIS 0.98

Optimization of Amylase Production

Núñez et al.
[224]

Complexity of optimization, variability in
substrate composition, computational de-
mands of AI models

Limited experimental validation, small
dataset size, lack of enzyme characterization,
limited comparison with other AI models

ANN, GA 0.98

The task of wheat mapping and row identification is inherently grounded in the use of
remote sensing imagery, predominantly captured by satellites [52,208–211], though some
studies have also relied on UAV-based data [207]. Among the five studies reviewed on this
topic, three employed deep learning models [207,209,211], while the remaining two applied
traditional machine learning algorithms [52,208]. Multispectral imagery was the most
frequently used data type [52,208,209,211], although RGB [207] and Synthetic Aperture
Radar (SAR) imagery [52] have also been incorporated.

With the exception of Fang et al. [208], all studies reviewed applied some form of data
fusion. For instance, Cai et al. [207] integrated texture, grayscale, and hue–saturation–value
(HSV) features extracted from UAV imagery using a deep learning-based feature fusion
framework. Similarly, Luo et al. [209] combined diverse data sources—including satellite-
derived vegetation indices (NDVI and LAI), climate variables from TerraClimate, soil prop-
erties from the Harmonized World Soil Database, and cropland masks from GFSAD1k—to
enhance wheat area mapping and yield estimation. In another example, Tian et al. [52]



Agronomy 2025, 15, 1157 31 of 50

fused optical imagery (Sentinel-2 and Landsat-8) with SAR data (Sentinel-1) to differen-
tiate between garlic and winter wheat cropping areas. Lastly, Zhong et al. [211] trained
deep learning models for winter wheat mapping using fused MODIS time-series NDVI
data (from Terra and Aqua satellites) and county-level agricultural statistics from the
USDA NASS.

Three main challenges are frequently associated with wheat mapping. First, cloud
contamination in optical imagery can significantly degrade dataset quality [52,208]. Sec-
ond, the spatial resolution (GSD) of some satellite platforms may be too coarse to capture
fine-scale variations in wheat fields, leading to mixed pixels that contain multiple land
cover classes. While constellations such as Sentinel and Landsat offer moderate resolutions
(10–30 m) [52,208], others like MODIS provide much coarser resolutions [209,211]. Third,
ground-truth generation presents substantial difficulties across all reviewed studies. For ex-
ample, Cai et al. [207] noted the complexity of annotating UAV images due to irregular crop
row structures and the presence of vacant or cluttered areas. Other studies relied on manual
visual interpretation, a process that is both labor intensive and inherently subjective [208].
To improve annotation accuracy, some authors incorporated field surveys [52]. In the case
of Luo et al. [209], subnational agricultural census data were used, though these datasets
varied in format, quality, and temporal coverage across different countries. Finally, the lack
of pixel-level labeled training data was highlighted as a major limitation, impacting both
the training and validation of models.

In the context of wheat flour classification, Nargesi et al. [213] employed a hyper-
spectral imaging system to differentiate between various wheat flour types. Accurate
classification is critical, as the misuse of specific flour types can compromise the quality of
the final product. The authors noted the need for manual preprocessing, such as sieving
to 300 µm, to mitigate spectral noise caused by particle size variation. Complementing
this, Shen et al. [214] developed a deep learning model to identify wheat impurities using
RGB image data. While the method proved effective, the authors observed that occlusion
and overlap between wheat and impurities (e.g., straw or insects) impaired classification
accuracy. To improve model robustness, data augmentation techniques, including image
rotation and flipping, were applied to the training set.

A more sophisticated approach to impurity detection was proposed by Shen et al. [215],
who introduced a method integrating terahertz spectral imaging with convolutional neu-
ral networks. This fusion of spectral and spatial information yielded pseudo-color THz
images that improved classification accuracy. Despite promising results, the system faced
limitations in scalability due to the high cost of THz sensors and the restricted range of
impurity types analyzed. Like the previous study, data augmentation was utilized to
enhance model generalization.

Beyond the realm of image classification, Bourguet et al. [212] proposed an AI-based
argumentation framework to support policy decisions related to wheat-based food qual-
ity. Their system synthesizes knowledge from the scientific literature, expert interviews,
and regulatory documents to evaluate trade-offs in public health policies, particularly
those concerning bread production. Applied to the French PNNS (Programme National
Nutrition Santé), the framework facilitated decisions about promoting whole-grain versus
refined flour by considering factors such as nutritional benefits, sanitary risks, economic
feasibility, and consumer preferences. The study emphasized the complexity of formalizing
stakeholder arguments and the reliance on manual expert input.

Both Bartley et al. [216] and Shafaei et al. [217] aimed to estimate grain moisture
content, a key factor affecting quality, shelf-life, pricing, and storage risk. The first proposed
a non-destructive, real-time method using a microwave transmission system with horn
antennas and a network analyzer. The study employed artificial neural networks (ANNs)
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with input features derived from amplitude, phase, and permittivity values, constituting a
form of data fusion. In contrast, Shafaei et al. [217] used the hydration time and tempera-
ture to predict hydration characteristics, including moisture content, through AI models.
Measurements were based on weight changes, without electronic sensors or data fusion.
The models used were not deep learning based but relied on traditional methods such as
MLP and ANFIS. While both studies addressed moisture prediction, Bartley et al. [216]
focused on sensor-driven, real-time estimation, whereas Shafaei et al. [217] employed a
lab-based, classical modeling approach.

Two studies addressed nitrogen monitoring in wheat, highlighting its importance
for crop health, yield, and environmental sustainability. Nitrogen is vital for chlorophyll
production and photosynthesis, and its accurate estimation enables precision fertilization
and improved nitrogen use efficiency. Singh et al. [218] used a proximal hyperspectral
sensor (ASD FieldSpec) to collect high-resolution canopy reflectance data and applied
traditional machine learning models to estimate nitrogen content directly. This method
provided detailed spectral insights under controlled conditions. Wu et al. [219] employed
multi-temporal UAV multispectral imagery to estimate chlorophyll content (SPAD), a proxy
for nitrogen status. Using a DJI Phantom 4 Multispectral UAV, they combined multiple
vegetation indices across four time points after wheat heading. This approach, which
involved feature- and temporal-level data fusion, supported broad-scale, non-destructive
nitrogen monitoring. Four models were tested, including one deep learning algorithm.

Yang et al. [220] proposed DeepTranSpectra (DTS), a deep learning method for trans-
ferring calibration models across five different NIR spectrometers. To ensure consistency,
spectral data were harmonized through wavelength transformation and interpolation,
a form of instrument-level data fusion. The study aimed to predict crude protein content in
wheat and soybean meal, an essential parameter for quality control and non-destructive
analysis. Due to limited data, the training sets were augmented tenfold using random spec-
tral variations. Although based on simulated scenarios, DTS demonstrated strong potential
for improving model transferability and reliability across heterogeneous NIR devices.

Akkem et al. [221] developed a machine learning-based crop recommendation system
aimed at improving transparency and trust. The system utilized tabular data from sources
like soil, weather, and historical yields, integrating features without applying full data
fusion. To address the “black-box” issue, the study employed XAI methods, helping
users interpret model outputs. A Streamlit-based interface was also created for interactive
visualization. While effective, the authors noted that counterfactual explanations still
require further validation in real-world applications.

Bai et al. [222] investigated the use of wheat germ oil and hydrogen in dual fuel mode
to improve diesel engine performance and reduce emissions. To avoid extensive experi-
mental trials, the study employed traditional machine learning algorithms to predict key
engine parameters. The experimental setup included gas analyzers for emissions, a smoke
meter, a piezoelectric pressure transducer, flow meters, and a crank angle encoder. This
combination of dual-fuel combustion and machine learning enabled accurate predictions
while reducing the need for costly physical testing.

Ghasemi-Mobtaker et al. [223] aimed to support sustainable wheat farming by predict-
ing output energy, economic profit, and global warming potential (GWP). They compared
the performance of different ML models to evaluate environmental impacts. Data were
collected through field surveys and farmer interviews, without using sensors or remote
sensing tools. While this method offered valuable insights, it also posed a risk of response
bias due to the subjective nature of interview-based data.

Núñez et al. [224] aimed to optimize amylase production using solid-state fermentation
with Rhizopus microsporus and low-cost agro-industrial wastes. The study compared
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traditional response surface methodology with ANNs combined with genetic algorithms to
improve modeling and prediction accuracy. Using ternary mixtures of substrates, the study
applied composition-level data fusion to identify optimal substrate combinations. While
ANN-GA provided strong predictive performance, the research was limited to laboratory-
scale experiments, with no industrial validation.

4. Discussion
The challenges associated with applying AI to wheat production are diverse, encom-

passing both application-specific issues and broader, cross-cutting barriers that affect nearly
all research in the field. Some of these general challenges stand out as the most pervasive
obstacles to the wider and more effective adoption of AI technologies in agriculture. This
section focuses on discussing these key challenges and proposing potential solutions to
address them.

Deep learning methods have generally outperformed traditional machine learning
approaches, such as support vector machines (SVMs) and random forests, in tasks like
disease detection, yield prediction, and phenotypic trait estimation. This superiority stems
from their ability to automatically extract hierarchical features from raw data without the
need for handcrafted feature engineering, which is often required in traditional models.
For instance, ref. [13] reported that convolutional neural networks (CNNs) achieved higher
prediction accuracies for wheat yield compared to classical regression models when applied
to UAV imagery. Similarly, ref. [12] demonstrated that deep learning models provided more
robust disease classification under variable field conditions than support vector machines.
However, it is important to note that deep learning approaches typically demand larger
datasets and higher computational resources, which may limit their applicability in certain
agricultural contexts.

Crop fields are inherently unstructured environments, where both intrinsic and extrin-
sic factors introduce significant variability into nearly all types of data collected [81,118].
This issue is especially pronounced in the case of digital images [225], as conditions such
as lighting, angle of insolation, plant architecture, soil background, and sensor settings
vary widely [226], making it virtually impossible to capture two images under identical
conditions [5,110]. High levels of variability usually lead models with poor generalization
capabilities [227,228]. Deep learning models, in particular, are vulnerable to unseen con-
ditions and thus require exposure to data from diverse environments and conditions for
reliable predictions [229].

Building datasets that fully capture the entire range of real-world variation is largely
unfeasible [230]. In practice, most published studies rely on datasets that fall far short
of representing the true diversity of field conditions [227,231]. Consequently, the models
developed under such constrained scenarios tend to produce overly optimistic results
that fail to reflect real-world performance [232]. This issue is especially pronounced when
model performance is validated using a subset of the original dataset rather than an
independent, external dataset, which can lead to inflated accuracy metrics and misleading
conclusions [35,44]. It is important to note, however, that efforts are currently underway to
generate large-scale, annotated public datasets with different types of data [233].

While data augmentation is often used in an attempt to enhance dataset representa-
tivity [227,234], it remains an imperfect and limited solution, frequently insufficient for
producing technologies that are truly ready for field deployment [5]. Even with the support
of advanced techniques such as GANs [235–239], constructing truly representative datasets
remains a significant challenge [240]. In addition, augmentation is not always applied
correctly. If data augmentation is performed prior to dividing the dataset into training and
test subsets, the random split may result in nearly identical images (differing only slightly
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due to augmentation) appearing across all subsets. This introduces significant bias into
the results. Unfortunately, this flawed approach has been adopted in numerous published
studies [96] and is often cited as justification for its continued use. Ultimately, the most
effective way to overcome data limitations is by collecting additional data across a broader
range of environmental and operational conditions. However, achieving such diversity
demands considerable effort, which in turn calls for collaboration among research groups
and the development of data-sharing networks aligned around common goals.

Promoting interdisciplinary collaboration is essential for advancing AI-driven solu-
tions in wheat research. Agronomists and plant pathologists can contribute domain-specific
knowledge for accurate ground-truth labeling and agronomic interpretation of results. Re-
mote sensing specialists can aid in selecting optimal data acquisition strategies, while
computer scientists and AI researchers can focus on model development, optimization,
and explainability. Collaborative efforts should prioritize the creation of large, diverse,
and standardized datasets to improve model generalizability. Additionally, the establish-
ment of shared research platforms, open benchmarks, and coordinated field trials would
accelerate the transition from experimental results to real-world applications. Funding
agencies and academic institutions are encouraged to support interdisciplinary research
initiatives that bridge gaps between agriculture and AI.

In particularly complex domains such as plant pathology, even collaborative research
efforts may not be sufficient to overcome data scarcity. In such cases, leveraging citizen
science and social media-based data collection emerges as a promising solution [110,239].
Citizen science initiatives, which engage farmers and non-expert volunteers in data col-
lection, have already shown success in supporting agricultural machine learning models.
For example, the Radiant Earth Foundation [241] has utilized citizen-contributed data for
land cover classification and crop type identification across Africa, while the PlantVillage
Nuru app [242] enables farmers to monitor plant health through smartphone imagery,
generating large and diverse datasets [78? ]. Encouraging similar frameworks in wheat
monitoring could greatly enhance the geographic and phenotypic diversity of datasets,
while fostering user engagement and technology adoption. Nonetheless, effectively engag-
ing stakeholders across the agricultural ecosystem remains a challenge, often dependent
on favorable conditions and appropriate incentives. Moreover, more informal forms of
citizen science, such as compiling datasets from online sources, can introduce substantial
noise due to inconsistencies in image quality, resolution, and background conditions [227],
underscoring the need for careful data curation and validation.

Beyond expanding datasets, advanced learning strategies such as few-shot learn-
ing (FSL) and self-supervised learning (SSL) offer promising alternatives to traditional
supervised approaches. Few-shot learning methods enable models to generalize from a
very limited number of labeled examples, thereby reducing the dependency on extensive
annotated datasets. For instance, Uzhinskiy [243] evaluated different few-shot learning
methods for plant disease recognition, demonstrating that accurate classification could be
achieved even with a minimal number of training samples. Similarly, Ghanbarzadeh and
Soleimani [244] showed that self-supervised learning approaches significantly improved
remote sensing image classification by enabling models to learn meaningful representations
from unlabeled data. Applying such methodologies to wheat monitoring tasks could
help address current data limitations, enhancing model robustness and facilitating reliable
performance in data-scarce environments.

The integration of heterogeneous data sources such as genomic, phenotypic, en-
vironmental, and management information has become essential in agricultural AI re-
search [245,246]. Combining different types of images has also been frequently ex-
plored [11]. Known as data fusion, this process allows models to capture complex interac-
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tions and improve predictive performance [111,232,247,248]. Farooq et al. [249] highlight
its role in strengthening genotype–phenotype associations, while other authors note that
combining different types of remote sensing data enhances the accuracy of deep learn-
ing models [22,235,250,251]. In addition, Darwin et al. [252] emphasize that including
contextual variables during modeling is crucial for improving reliability. Despite its ad-
vantages, implementing data fusion poses technical challenges. These include the need for
dense, high-quality datasets and robust models capable of handling variable formats and
scales [253,254]. Overall, while data fusion holds clear potential, its success depends on
both computational strategies and comprehensive datasets.

Some problems require multi-class classification, where the data must be categorized
into one of several possible classes. In such cases, it is common for some classes to be signif-
icantly more frequent than others [92,111,173,227,237]. For example, certain wheat diseases
may occur almost every season, while others appear only sporadically [238]. This results in
severe class imbalance, which must be properly addressed to prevent the development of
biased models that underperform on underrepresented classes [68,95,98,255? ]. A variety
of techniques are available to handle class imbalance, including resampling methods, cost-
sensitive learning, and data augmentation [69,73,90,233]. However, the choice of method
should be made carefully, taking into account the specific characteristics and constraints of
the problem at hand [240].

Another important data-related challenge, particularly relevant to prediction and
estimation tasks, is the need for accurate ground-truth values to serve as reference points
and training targets for the models [227]. However, generating ground-truth data is often
labor intensive [1,71,76,108,233], costly, and, in some cases, destructive [140], which adds
logistical complexity and increases the overall cost of the research [32,60]. Crowdsourc-
ing [11,22] and automated labeling tools [235] offer valuable support, but they frequently
introduce errors that can distort both training and validation processes. To mitigate these
ground-truth issues, some studies have adopted weak supervision strategies [22], for exam-
ple using high-accuracy classification outputs from traditional machine learning methods
as proxy labels for training deep learning models [91]. Some authors have emphasized
the need for semi-supervised, unsupervised, and self-supervised learning approaches to
reduce reliance on manually labeled data [226].

Moreover, the process of establishing ground-truth can involve subjective judgment,
especially in field-based evaluations [91,102,111,227], which introduces uncertainty and
reduces the reliability and reproducibility of the results [78,92,232,256]. Additionally,
inter-annotator variability can be substantial, underscoring the importance of involving
multiple experts or adopting consensus-based strategies to ensure reliable labeling [227].
Although there are no straightforward solutions to the challenges of ground-truth genera-
tion, it is crucial that studies explicitly disclose potential sources of error in their annotation
processes. Such transparency enables a more nuanced interpretation of the findings and
enhances the overall credibility and reproducibility of the research.

High computational demand is a recurring challenge in the application of artificial
intelligence, particularly in deep learning [226]. When computational burden arises on
the training side, there are technically viable solutions, such as the use of GPUs, cloud
computing, or model parallelization, that can reduce training time to acceptable levels [72].
However, these solutions often come with significant financial costs, which may be pro-
hibitive for some research groups or institutions [257]. In contrast, when models are
computationally intensive during inference, it can severely limit their practical usability,
especially when deployment is intended on devices with limited processing capabilities,
such as smartphones or edge devices [258].
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That said, it is important to recognize that not all applications require real-time or near
real-time operation [237,240,247,259]. In some cases, inference times measured in minutes
or even hours may be perfectly acceptable, depending on the urgency and context of the
task at hand [227,233]. This flexibility opens the door for the use of more complex models in
offline or batch processing scenarios, where immediate feedback is not critical. Nonetheless,
it is important to note that in precision agriculture applications involving UAVs or robotic
systems, near-real-time inference becomes particularly relevant, thereby favoring the use of
lightweight and computationally efficient models [225,227,252,254].

An often overlooked but increasingly important issue in agricultural AI applications
is data privacy [226,245]. With many countries enforcing strict regulations on data sharing
and processing, including the need for explicit consent from landowners or data subjects,
ensuring compliance has become a significant challenge [260]. This is particularly problem-
atic for technologies intended for direct use by farmers and rural workers, where ease of
deployment is crucial. In response, some studies focused on real-world applications have
adopted security measures such as encrypted communication and token-based access [? ].
Additionally, recent research has investigated privacy-preserving approaches that eliminate
the need for centralized data transfer or sharing. Techniques like federated learning allow
models to be trained locally on users’ devices, thereby mitigating legal and ethical concerns
related to data movement and aligning with emerging privacy regulations [72,226].

Federated learning (FL) offers a promising decentralized framework for developing AI
models while preserving data privacy across different farms and institutions. Although ap-
plications of FL in wheat research are still emerging, several case studies in agriculture
highlight its potential. For instance, ref. [261] demonstrated the use of FL to collaboratively
train crop disease detection models across geographically distributed farms without sharing
sensitive data. Similarly, ref. [262] applied FL to precision irrigation management, enabling
multiple farms to optimize water usage based on shared model improvements. These
examples illustrate how FL can overcome data-sharing barriers, making it a promising
approach for future wheat disease monitoring and yield prediction systems across diverse
agroecological regions.

Despite the growing number of studies exploring the application of AI in wheat pro-
duction, relatively few practical technologies have successfully transitioned from academic
research to real-world farm implementation [232,236,237]. Several factors contribute to this
gap between research and adoption. First, the cost–benefit ratio of many AI-based solutions
may not be compelling enough to justify their adoption, particularly for small- and medium-
sized producers [237,263]. Second, some models are computationally intensive, making
them incompatible with the hardware constraints of field-deployable devices [11,225,258].
Third, in some cases, the technologies developed are misaligned with the actual needs and
constraints of the intended users, limiting their relevance and usability [12,232,246,264,265].
Fourth, even promising models may underperform under real-world conditions due to the
challenges previously discussed, such as poor generalizability, data limitations, and envi-
ronmental variability [225,227,237]. Finally, some authors cite the lack of connectivity in
production areas as a major hurdle for the adoption of the technologies [235].

To bridge this gap, greater emphasis must be placed on translating academic advance-
ments into practical, user-centered technologies that are cost effective, scalable, and re-
sponsive to the real needs of farmers and agricultural stakeholders [226,266]. This includes
stronger collaboration between researchers [229,247], technology developers, and end users,
as well as investments in infrastructure, training, and extension services to support adop-
tion [230]. A simple framework to enable this is suggested in Figure 1. Following these
guidelines, successful applications have emerged in areas like cereal quality [255], plant
phenotyping [233], yield estimation [257], crop monitoring [266], autonomous irrigation sys-
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tems [226,263], and beyond. For instance, ref. [91] demonstrated the practical application of
drone-based imaging for wheat disease detection under real farm conditions, achieving high
classification accuracy despite environmental variability. Similarly, Schirrmann et al. [95]
successfully employed UAV-mounted multispectral cameras to detect wheat leaf rust in
operational agricultural settings.

Figure 1. Proposed framework for translating AI research into practical applications in
wheat production.

Deployment strategies for such AI-driven tools often require accessible and cost-
effective UAV platforms, standardized flight protocols, and basic training for farmers or
agricultural technicians to interpret outputs. However, infrastructural needs, including
reliable internet connectivity for cloud-based processing and availability of affordable
sensor equipment, remain critical barriers to large-scale adoption. Costs for drones and
multispectral or hyperspectral sensors, though decreasing, still represent a significant
investment for smallholder farmers.

To facilitate the adoption of these technologies, protocols could be developed, empha-
sizing low-cost drone models equipped with simplified imaging systems, integration with
farmer-friendly mobile applications for disease alerts, and partnerships with extension
services for capacity building. Successful pilot programs that bundle equipment, software,
and training could serve as scalable prototypes for broader deployment.

5. Conclusions
This review examined the current state of the art in artificial intelligence (AI) tech-

niques and models applied to challenges related to wheat crops. The volume of research
in this area has been growing steadily, and substantial advances have been made not only
in prediction accuracy but also in understanding how AI models generate their outputs.
Despite these achievements, numerous challenges and research gaps remain unresolved.
Many of these were identified and discussed throughout the article, with potential solutions
proposed where feasible.

Emerging trends point to promising directions for future research, particularly in the
fusion of heterogeneous data sources and the development of hybrid modeling approaches.
For instance, Shen et al. [47] demonstrated that integrating multispectral and thermal
imagery significantly improved wheat yield estimation accuracy compared to using either
modality alone, highlighting the value of multi-source data fusion in enhancing model
robustness and sensitivity to key crop parameters. Such approaches can better capture
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the complexity of agricultural systems by leveraging complementary information from
different sensor types.

Another important trend involves combining deep learning techniques with physical
modeling. Cao et al. [30] proposed a hybrid framework that integrates process-based
crop models with deep neural networks, enabling models to incorporate domain-specific
knowledge while retaining the flexibility and pattern recognition capabilities of AI methods.
This hybridization has the potential to improve model generalization under diverse and
changing environmental conditions, addressing some of the limitations associated with
purely data-driven models. Future research should prioritize the exploration of data fusion
strategies that combine satellite, UAV, ground sensor, and meteorological data, as well as
the further development of hybrid AI-physical models tailored to specific agricultural tasks
such as yield prediction, disease monitoring, and stress detection.

Looking ahead, based on recent developments in AI and crop management, several
trajectories appear likely to dominate. AI and deep learning methods are expected to
continue advancing rapidly, broadening their applicability across a wide range of crop
management tasks. At the same time, progress in model interpretability may enable the
development of lighter, more robust architectures suited for deployment in real-world
environments. As technical barriers diminish, an increasing number of AI-based technolo-
gies should become viable under operational conditions. Although limitations related to
data representativeness and model generalization will persist, these challenges are likely
to diminish as sensor technologies and data acquisition methods evolve. Additionally,
the swift progress in other AI domains may yield unforeseen impacts as illustrated by the
societal influence of conversational models.
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Abbreviations

Acronym Meaning
ACO Ant Colony Optimization
AdaBoost Adaptive Boosting
AI Artificial Intelligence
AK Arc-Cosine Kernel
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
ARIMA Auto-Regressive Integrated Moving Average
BPNN Backpropagation Neural Network
BMTME Bayesian Multi-Trait and Multi-Environment model
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CNN Convolutional Neural Network
CW CERES-Wheat
DF Deep Forest
DL Deep Learning
DNN Deep Neural Network
DON Deoxynivalenol
DT Decision Tree
E-MMC Elliptical-Maximum Margin Criterion
EnKF Ensemble Kalman Filter
FCN Fully Convolutional Network
GA Genetic Algorithm
GAN Generative Adversarial Network
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GBDT Gradient Boosting Decision Trees
GBM Gradient Boosting Machine
GBRT Gradient Boost Regression Tree
GBLUP Genomic Best Linear Unbiased Prediction
GK Gaussian Kernel
GPR Gaussian Process Regression
GRNN Generalized Regression Neural Network
GRU Gated Recurrent Unit
GSD Ground Sample Distance
GWO Grey Wolf Optimization
IABC Improved Artificial Bee Colony
IPSO Improved Particle Swarm Optimization
kNN k-Nearest Neighbors
KRR Kernel Ridge Regression
LAI Leaf Area Index
Lasso Least Absolute Shrinkage and Selection Operator
LDA Linear Discriminant Analysis
LR Linear Regression
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MTDL Multi-Trait Deep Learning
NB Naive Bayes
NDVI Normalized Difference Vegetation Index
NLB Non-Local Block
OLS Ordinary Least Squares
PCANet Principal Component Analysis Network
PCNN Pulse-Coupled Neural Network
PLS Partial Least Squares
PLSDA Partial Least Squares Discriminant Analysis
PLSR Partial Least Squares Regression
PSPNet Pyramid Scene Parsing Network
RCTC Residual-Capsule Network with Threshold Convolution
RF Random Forest
RFR Random Forest Regression
RGB Red-Green-Blue
RNN Recurrent Neural Network
RPN Region Proposal Networks
RR Ridge Regression
RRBLUP Ridge Regression Best Linear Unbiased Predictor
SAR Synthetic Aperture Radar
SCNN Shallow Convolutional Neural Networks
SIF Solar-Induced Fluorescence
SPGAN Spectrogram Generative Adversarial Networks
SSD Single-Shot Detector
SVM Support Vector Machine
SVR Support Vector Machine Regression
TGBLUP Threshold Genomic Best Linear Unbiased Prediction
TRMM Tropical Rainfall Measuring Mission
UAV Unmanned Aerial Vehicle
XGBoost Extreme Gradient Boosting
YOLO You Only Look Once
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