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Abstract

Managing scientific names in ontologies that represent species taxonomies is challenging due
to the ever-evolving nature of these taxonomies. Manually maintaining these names becomes
increasingly difficult when dealing with thousands of scientific names. To address this issue, this
paper investigates the use of ChatGPT-4 to automate the development of the Organism module
in the Agricultural Product Types Ontology (APTO) for species classification. Our methodology
involved leveraging ChatGPT-4 to extract data from the GBIF Backbone API and generate OWL
files for further integration in APTO. Two alternative approaches were explored: (1) issuing a
series of prompts for ChatGPT-4 to execute tasks via the BrowserOP plugin and (2) directing
ChatGPT-4 to design a Python algorithm to perform analogous tasks. Both approaches rely on
a prompting method where we provide instructions, context, input data, and an output indicator.
The first approach showed scalability limitations, while the second approach used the Python
algorithm to overcome these challenges, but it struggled with typographical errors in data han-
dling. This study highlights the potential of Large language models like ChatGPT-4 to streamline
the management of species names in ontologies. Despite certain limitations, these tools offer
promising advancements in automating taxonomy-related tasks and improving the efficiency of
ontology development.
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1. Introduction

Ontologies capture a well-defined and well-expressed shared conceptualization of a domain
[1]. Ontologies essentially specify the kinds of entities relevant to a particular domain and the
relationships among such entities, thereby constructing a large semantic structure that represents
the key aspects of domain knowledge [2]. Ontologies also play a crucial role in facilitating the
integration of heterogeneous data sources, enabling interoperability among information systems
[3].

Ontology development is a comprehensive process involving the conceptualization step, dur-
ing which domain experts and ontologists work together to specify significant concepts and rela-
tionships peculiar to a particular domain. Such collaboration guarantees that the established on-
tology sufficiently addresses the intricacies of the domain while being responsive to new knowl-
edge and uses [4, 5]. Ontologies facilitate the structured representation of knowledge, enhancing
interoperability and reusability in modeling real-world concepts [6].

Ontologies in the life sciences domain often incorporate taxonomic classifications to repre-
sent and organize knowledge about organisms. Biologists define taxonomy as “the theory and
practice of identifying, describing, naming, and classifying organisms” [7]. A taxonomy can be
considered an ontology, as it formalizes hierarchical relationships and categories among organ-
isms. However, the science of taxonomy faces numerous challenges from the dynamic nature
of scientific discovery, as scientists continuously find new species and revise earlier established
classifications [8]. The current debate over competing classification systems, such as the Lin-
naean hierarchy versus phylogenetic taxonomy, further compounds this situation by not reaching
a consensus [9]. Additionally, maintaining consistency in naming conventions across languages
and disciplines, managing synonyms (multiple names for the same organism), and resolving
homonyms (the same name referring to different organisms) are also issues that have to be han-
dled [10].

Despite these challenges, taxonomic classifications are a useful resource that can be uti-
lized within ontologies for the classification of organisms. Current approaches to integrating
taxonomic data into ontologies are, however, based predominantly on manual curation or semi-
automated techniques that involve considerable domain knowledge and computational resources.
While prior studies have explored the role of Large Language Models (LLMs) in Knowledge
Graph (KG) generation and ontology development, most focus on unstructured text extraction,
semantic alignment, or conceptual modeling rather than direct automation of taxonomic data
transformation.

This study systematically evaluates LLMs for converting taxonomic data into OWL, leverag-
ing ChatGPT-4 to extract data from the Global Biodiversity Information Facility (GBIF) Back-
bone API and automate ontology generation. Unlike previous works focused on knowledge
extraction, this research explores two approaches – direct API querying via ChatGPT and a
Python-based method guided by LLM-generated code – to assess scalability, reliability, and in-
tegration into a domain-specific ontology. Specifically, it investigates a GPT-based approach for
integrating taxonomic data into the Agricultural Product Types Ontology (APTO), enhancing
its accuracy and resolving ambiguities in agricultural product names, which often vary across
languages, regions, and cultural contexts.

The paper is organized as follows: Section 2 reviews related work, while Section 3 introduces
APTO. Section 4 outlines the methods employed in this study. Sections 5 and 6 present the results
of Approach 1 and 2, respectively. Section 7 explains the integration of species classification into
APTO, and Section 8 concludes with the final considerations.
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2. Related Work

The application of LLMs in KG and ontology development has gained attention due to their
capability to process and generate conceptual schemas from natural language text sources [11].
Recent studies have demonstrated that LLMs, such as ChatGPT, can significantly support tasks
in ontology engineering, including concept extraction, class hierarchy generation, and semantic
relationship identification [11, 12].

One of the most common uses of LLMs in ontology development is automating concept
extraction and populating ontologies with domain knowledge. For example, Aggarwal et al.
[13] experimented with using LLMs in academic ontology development in engineering fields,
with promising results in extracting and structuring domain knowledge. Zaitoun et al. [14] also
employed LLMs to enrich biomedical ontologies, demonstrating that they are able to identify
missing concepts and relations. Trajanoska et al. [15] and Reis et al. [16] demonstrated how
LLMs can be utilized for enhancing KG construction from unstructured text.

LLMs also facilitate semantic relationship discovery and ontology alignment. Amini et al.
[17] investigated LLMs for complex ontology alignment, using contextual embeddings to im-
prove relationship detection. Matentzoglu et al. [18] demonstrated how LLMs like MapperGPT
enhance entity linking and mapping precision. Wu et al. [19] suggested an approach using online
clustering with LLMs for ontology expansion.

Additionally, studies have explored applying LLMs for entity resolution, focusing on iden-
tifying, matching, and reconciling entities across different data sources. Hees [20] examined
LLMs for aligning non-ontological data to ontologies, focusing on semantic interoperability in
the energy sector. Using GPT-3.5 and GPT-4, the study aligned datasets from the ENERSHARE
project with the Semantic TreeHouse ontology framework. The findings suggest that while LLMs
aid entity resolution, they function best as recommendation tools rather than deterministic align-
ment methods.

Zhang et al. [21] explored weakly-supervised taxonomy enrichment, demonstrating how
LLMs can identify discriminative features to enhance hierarchical structures. Their study in-
troduced self-supervised entity resolution techniques and seed-guided taxonomy construction,
showing that minimal human supervision enables LLMs to build structured ontologies from text
corpora.

Hofer et al. [22] analyzed LLM-driven entity reconciliation in KG construction, emphasiz-
ing the need for incremental ontology updates. Their findings indicate that while LLMs generate
entity alignment candidates, a hybrid approach – combining LLMs with rule-based validation –
is necessary for accuracy. The study highlights LLM applications in ontology alignment, par-
ticularly in biomedical KGs, where they refine taxonomic structures while maintaining semantic
consistency.

Chen et al. [23] examined schema-based KGs for taxonomic reconciliation, leveraging OWL
ontologies, RDFS, and SHACL. The study underscores the importance of ontology mapping
repositories (e.g., UMLS Metathesaurus, BioPortal, MONDO) in resolving cross-domain taxo-
nomic inconsistencies. Additionally, it explores LLM integration in entity resolution, particularly
in instance matching and automated ontology extension.

These works emphasize the potential for LLMs to automate and improve ontology engineer-
ing, which is a fundamental concern investigated in this study. Table 1 summarizes how these
works relate to our study.

Despite these developments, integrating LLMs into ontology engineering is not challenge-
free. Challenges related to model interpretability and reliability [12, 24, 25], domain specificity,
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Table 1: Relationship between related studies and this paper
Study Focus area Relationship with this study
Aggarwal et al. [13] LLMs for scholarly ontology generation Automated concept and relationship extractions in

ontology development
Zaitoun et al. [14] LLMs for biomedical ontology augmen-

tation
Demonstrates LLMs’ ability to identify missing
ontological relationships

Trajanoska et al. [15] & Reis
et al. [16]

LLMs for KG construction from unstruc-
tured text

LLM automation of ontology engineering tasks

Amini et al. [17] LLMs for ontology alignment using con-
textual embeddings

Enhances taxonomic data alignment through con-
textual embeddings

Matentzoglu et al. [18] LLMs for entity linking and mapping Improves entity matching, crucial for taxonomic
reconciliation

Wu et al. [19] LLMs for ontology expansion using on-
line clustering

Provides insights into LLM-based ontology expan-
sion

Hees [20] LLMs for semantic interoperability and
ontology alignment

Applies LLMs to ontology alignment, relevant for
aligning non-ontological data to an ontology

Zhang et al. [21] LLMs for weakly-supervised taxonomy
enrichment

Supports taxonomy enrichment with minimal hu-
man supervision

Hofer et al. [22] LLMs for incremental ontology updates
and entity reconciliation

Enhancing the scalability of ontology completion,
updates, and creation using LLMs to extract and
integrate new concepts from structured data, such
as tabular datasets.

Chen et al. [23] KGs for taxonomic reconciliation and
LLM integration

Demonstrates how schema-based KGs aid taxo-
nomic integration with LLMs

and computational costs [26] are some of the key obstacles. Furthermore, the reliability of LLM-
generated outputs in highly technical fields remains a concern, as hallucination and data bias
continue to affect the consistency and accuracy of results [27]. Overcoming these challenges is
crucial to guaranteeing the robustness and real-world applicability of LLM-supported ontology
engineering.

3. The Agricultural Product Types Ontology (APTO)

APTO is a domain-specific ontology developed to standardize terminology for agricultural
product types within the Brazilian commodities market and comprises 3,333 statements. It in-
corporates over 200 product types identified in datasets from three Brazilian agricultural price
index agencies, namely Cepea1, Ipea2, and Conab3.

The ontology adopts a modular approach, comprising two core segments: the Organism
module and the Product Type module. The Organism module links agricultural products to their
biological origins using taxonomic classifications aligned with the GBIF Backbone Taxonomy.
In contrast, the Product Type module categorizes products based on their origin (e.g., plant-
based, animal-based, or inorganic) and processing state (raw, processed, or by-product). This
duality allows APTO to capture the intricate relationships between products, their sources, and
their processing stages, making it generally suitable for applications ranging from semantic web
integration to agricultural market analysis.

We reused existing domain ontologies such as AGROVOC4 [28] and Agrotermos5 [29] when
designing APTO. AGROVOC is a multilingual thesaurus developed by the Food and Agriculture

1URL: https://www.cepea.esalq.usp.br/en
2URL: https://www.ipeadata.gov.br/
3URL: https://www.conab.gov.br/info-agro/precos
4URL: https://agrovoc.fao.org/browse/agrovoc/en/
5URL: https://sistemas.sede.embrapa.br/agrotermos/
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Organization (FAO) to standardize terminology in agriculture, fisheries, forestry, and related do-
mains [28, 30]. In contrast, Agrotermos is a Brazilian agricultural vocabulary designed to support
research and dissemination of knowledge specific to the Brazilian agricultural sector [31]. Ad-
ditionally, Agrotermos serves as a terminology provider to AGROVOC for Brazilian Portuguese
and incorporates concepts from AGROVOC into its vocabulary, ensuring interoperability and
alignment between the two resources.

Despite their utility, a review of these vocabularies revealed gaps, particularly in the consis-
tency and currency of taxonomic names. The dynamic nature of taxonomies, where scientific
names are frequently updated due to synonymization and other taxonomic revisions, presents
a significant challenge to maintaining ontological accuracy. For example, Agrotermos contains
outdated taxonomic names due to the lack of automated mechanisms for verifying authoritative
taxonomic sources for synonymization. Similarly, AGROVOC relies on a manual process for
incorporating scientific names into its vocabulary as specified by its editorial guidelines [32],
which can result in similar issues. Fig. 1 illustrates this problem with the species Prochilo-
dus cearensis Steindachner, 1911, which is a preferred term in Agrotermos, yet it is declared a
synonym of Prochilodus brevis Steindachner, 1875 in the GBIF Backbone Taxonomy [33].

Figure 1: Example of synonym in Agrotermos in Portuguese6.

We did not import species name classes directly from Agrotermos and AGROVOC to prevent
these inconsistencies from propagating into APTO. Instead, we developed a method to extract
up-to-date data from the GBIF Backbone Taxonomy and convert it into OWL format for seamless
integration into the ontology.

The development of APTO followed the SABiO methodology for ontology development
[34], a framework encompassing five main phases: (1) Purpose Identification and Requirements
Elicitation, (2) Ontology Capture and Formalization, (3) Design, (4) Implementation, and (5)
Testing. This paper focuses on part of the Design phase, where we explored the use of ChatGPT
to streamline the integration of taxonomic data into the ontology.

APTO has been implemented in OWL and is accessible through endpoints, including a

6URL: https://sistemas.sede.embrapa.br/agrotermos/resources/c8f08feb5e299b153a2f3c9b2630
cd0f
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SPARQL endpoint7, a text-search interface8, and an OWL/XML serialization9. For Findabil-
ity, Accessibility, Interoperability, and Reusability (FAIR) purposes, the ontology has been made
available on AgroPortal10.

4. Methods

Ontologies and KGs are closely related, with ontologies often serving as foundational frame-
works for creating and interpreting KGs. Ontologies provide structured representations of domain-
specific knowledge, including classes, relationships, and constraints. This logical foundation
aligns with the principles of KGs, which are graph-based structures used to model intercon-
nected data for reasoning and discovery [35, 36]. Ontologies not only aid in formalizing the
semantics of KGs but also extend their capabilities by enabling advanced reasoning tasks [36].
Furthermore, they enhance KG construction by ensuring semantic interoperability and consis-
tency, particularly when generating KGs from textual data [37]. The overlap between ontologies
and KGs illustrates how these paradigms coalesce to support complex data representation and
reasoning [38]. Given this close relationship, ontology development can benefit from recent
techniques employed in KG construction, particularly applying LLMs.

The method employed in this case builds upon the framework outlined by [39] for LLM-
augmented KG development to explore this synergy. The authors address different techniques
using LLMs in KG development, including LLM-augmented KG Construction, and describe two
approaches: end-to-end KG construction and distilling KGs from LLMs. According to [39], we
can understand these approaches as follows:

• End-to-end KG construction is an innovative approach utilizing LLMs to streamline KG
creation from raw text, bypassing the conventional multi-stage process [39]. Studies like
[40] have developed methods integrating LLMs for named entity recognition and rela-
tion extraction, employing dual BERT-based classifiers to identify relationships and their
orientations between entities [39]. This method allows for the direct assembly of KGs,
showcasing models like Grapher and PiVE that facilitate KG generation from textual de-
scriptions or correct errors in existing KGs using iterative verification with smaller LLMs
[39].

• Distilling KGs from LLMs capitalizes on the inherent knowledge encoded within LLMs
to extract and structure this information into KGs [39]. Techniques like COMET [41]
leverage LLMs to generate commonsense KGs by training on seed sets of knowledge
tuples, enabling the LLM to produce novel, high-quality knowledge tuples [39]. This
approach underscores the potential of LLMs as tools for enhancing KG construction and as
vast repositories of implicit knowledge ripe for extraction and organization into explicitly
structured forms [39].

The methodological approach employed in this paper is similar to the End-to-End KG Con-
struction but less complex since we do not deal with extraction from raw text. The data input

7URL: https://data.pldn.nl/FilipiSoares/APTO/sparql
8URL: https://data.pldn.nl/FilipiSoares/APTO/elasticsearch/APTO-Text-search/text
9URL: https://w3id.org/APTO#

10URL: https://agroportal.lirmm.fr/ontologies/APTO
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we used in the ontology construction is structured as JSON files with representative and precise
names, which makes it easier to process (and more precise) than natural language input.

In this research, we used ChatGPT-4 to improve the quality of an ontology. Two alternative
approaches were explored: (1) issuing a series of prompts for ChatGPT-4 to execute tasks via
the BrowserOP plugin and (2) directing ChatGPT-4 to design a Python algorithm to perform
analogous tasks. We followed the workflow activities shown in Fig. 2 in both approaches. The
following sections discuss each activity in detail.

Figure 2: Workflow for the taxonomic data transformation.

4.1. Selecting the Species List

We started by selecting a list of plant and animal species related to all agricultural prod-
uct types in APTO. This step involved mapping product types from three key Brazilian datasets
onto commodity price indexes, namely the agricultural prices index from the Center for Ad-
vanced Studies on Applied Economics (Cepea) [42], the IpeaData Macroeconomic Indicators
[43], and the ’Companhia Nacional de Abastecimento’ (Conab) agricultural prices database [44].
We based the association between product types and species on resources such as Agrotermos,
Agrovoc, and the scientific literature, producing two lists: an Animal species list with 14 sci-
entific names and a Plant species list with 74 names, both lists with names of species or genus
level.

Another criterion for selecting these species was their agricultural relevance, particularly
within Brazilian agronomic and livestock domains. The list includes economically significant
species, widely cultivated, and well-documented in key Brazilian agricultural data repositories.
Given Brazil’s diverse agricultural landscapes, these species provide a representative yet incom-
plete view of the taxonomic groups involved in commercial agriculture.

While the selection is representative of Brazilian agrobiodiversity, it has limitations when
generalizing to global taxonomies. Many agricultural taxonomies include species from other
regions with different climatic, economic, and ecological contexts. As this study focuses on
Brazilian datasets, certain species with regional importance elsewhere may be underrepresented.
However, the approach developed in this study is not limited to Brazilian species. It can be
expanded to include species from other regions, as long as they are represented in the GBIF
Backbone Taxonomy.

4.2. Connecting with the GBIF Backbone Taxonomy API

GBIF is an international network and data infrastructure supported by governments world-
wide. Its primary goal is to provide open access to biodiversity data for all types of life on
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Earth, accessible from anywhere [45]. Recognized as the most extensive biodiversity data infras-
tructure regarding the volume of observations [46], GBIF serves many stakeholders, including
researchers, policymakers, and other decision-makers. It achieves this by aggregating data from
numerous sources, standardizing the information, and making it freely available for public use
[47].

For the Organism module in APTO, we imported scientific names from the GBIF Backbone
Taxonomy [48]. GBIF provides an API11 for extracting taxonomic classifications. This API
operates on data stored within the GBIF Checklist Bank, which indexes every registered checklist
dataset across the GBIF network [49]. To consume these RESTful JSON web services, GBIF
internally utilizes a Java web service client [49]. Using ChatGPT-4 and the BrowserOp plugin,
we automated the retrieval of taxonomic data for each species via the GBIF API.

The GBIF Backbone Taxonomy is a comprehensive synthetic classification system that un-
derpins GBIF’s integration of diverse name-based information from various sources, including
occurrence datasets, species pages, and external databases like the Encyclopedia of Life (EOL),
Genbank, and the International Union for Conservation of Nature and Natural Resources (IUCN)
red list database, facilitating consistent taxonomic searches and cross-referencing across re-
sources [48]. Regular updates expand its scope by merging additional scientific names from
authoritative datasets into the Catalogue of Life-based structure [50], enhancing coverage be-
yond family-level classifications [48]. The taxonomy also incorporates identifiers for Oper-
ational Taxonomic Units (OTUs) from barcoding projects like iBOL and UNITE, employing
consensus-based methods to connect Barcode Index Numbers (BINs) and Species Hypotheses
(SHs) to taxon names and classifications [48]. Available for download in various formats, the
GBIF Backbone Taxonomy data represents a critical resource for taxonomic research, drawing
from over 105 sources to ensure broad and accurate name coverage [48].

4.3. Checking the Accuracy of Scientific Names
International nomenclature codes govern the assignment of scientific names to species, es-

tablishing principles and rules to ensure clarity and consistency across the scientific community.
This process involves the formal description and publication of each species, adhering to specific
criteria set by these codes. Over time, scientific names may become deprecated due to various
factors, such as the discovery of prior valid names overlooked in earlier assessments or new
phylogenetic insights that necessitate reclassification [51, 52]. As a result, the nomenclatural
landscape is dynamic, with taxonomists revising and updating names to reflect the most accurate
understanding of biological relationships. These updates lead to synonymizing many species
names [51, 52].

We reviewed each name on the species list to determine whether it was accepted or a syn-
onym. In Approach 1, we used ChatGPT to check the name status through the GBIF API. In
Approach 2, we implemented this process using the Python Taxonomy Converter.

4.4. Extracting Multi-level Taxonomic Classification Data
Species classification follows various conventions, leading to multi-level taxonomies that

organize life forms into hierarchical categories [53]. In this study, we adopted a seven-tiered
framework for the taxonomic classification of species, consisting of kingdom, phylum, class,
order, family, genus, and species, aligned with established biological taxonomy principles [53].

11URL: https://api.gbif.org/v1/
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This hierarchical structure is crucial for understanding the relationships and distinctions among
different life forms [53]. During the classification phase, we tasked both applications — Chat-
GPT integrated with the BrowserOp plugin and the Python Taxonomy Converter — with extract-
ing these seven levels of classification for each species listed or six levels for names at the genus
level.

4.5. Transforming Taxonomic Data Into OWL

Finally, we used the extracted taxonomic information to generate OWL/XML files, incor-
porating hierarchical relationships that accurately reflect the underlying species taxonomy upon
which they were based.

5. Approach 1: ChatGPT with BrowserOp Plugin

5.1. Prompt Specification and Results

The process consisted of incorporating a series of instructions into the ChatGPT 4 model, as
shown in Table 2. This study’s prompt engineering methodology builds on Giray’s work [54],
which categorizes the components of an effective prompt into four main elements:

• Instruction: A directive that specifies the task, guiding the model’s behavior and ensuring
it aligns with the desired outcome.

• Context: Relevant background information or external details provide additional knowl-
edge, enabling the model to generate accurate and context-aware responses.

• Input data: The core query or data to be processed serves as the primary driver of the
model’s understanding and response generation.

• Output indicator: An indicator of the expected response format, such as a brief answer,
detailed explanation, or structured output, shaping the model’s solution delivery.

We built the prompt based on these four elements, as shown in Table 2.

Table 2: Prompt Specification
Element Prompt

Instruction Build an ontology for species names.
Context Access the GBIF API [using the BrowserOp plugin]: https://api.gbif.org/v1/

Input data Extract the full taxonomic classification for each name in this list, including kingdom, phylum,
class, order, family, genus, and species. In some cases, the name on the list is at the species
level, and in other cases, at the genus level.

Input data If a name has the status ‘deprecated‘, look for the accepted name for that species.
Output indicator This taxonomy should be organized as OWL classes and subclasses (do not create individuals

or instances). Each class should have a URI from GBIF and an RDF label with the name
for that class, with the language tag (considering that scientific names are written in Latin,
include the language tag “lat”). Finally, generate an OWL code, including all the necessary
namespaces.

The species names used as Input data are listed in Table 3. The first species in this list, Apis
mellifera, served as a test case where the ChatGPT model utilized the BrowserOp plugin to send a
request to the GBIF API. This plugin fetched real-time data from the web [55], and facilitated the
interaction as detailed in Listing 1. As specified in Context, the call to the GBIF API performed
with the BrowserOP plugin successfully retrieved the desired data. In our directive to ChatGPT,
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we specified a connection with the GBIF API’s base URL (https://api.gbif.org/v1/),
which hosts various endpoints catering to different data dimensions, including but not limited
to the Registry API, Species API, Occurrence API, and Literature API, each serving distinct
purposes such as registry lookup, species matching, occurrence data retrieval, and literature
references, respectively. Despite the lack of explicit instruction on which endpoint to use,
ChatGPT identified and targeted the appropriate API endpoint for species matching, which is
https://api.gbif.org/v1/species/.

Table 3: List of animal scientific names
Taxon rank Taxon name
Species Apis mellifera
Species Bos taurus
Subspecies Capra aegagrus hircus
Species Ovis aries
Genus Sus
Species Bombyx mori
Species Prochilodus cearensis
Species Prochilodus scrofa
Species Prochilodus margravii
Species Semaprochilodus insignis
Species Semaprochilodus taeniunes
Species Colossoma mitrei
Species Arapauma gigas
Genus Tilapia

Listing 1: Response from the GBIF API to the GPT-BrowserOP call

1 // Request to BrowserOP

2 {

3 "link": "https://api.gbif.org/v1/species/match?name=Apis%20mellifera"

4 }

5
6 // Response from BrowserOp

7 {

8 "result": {

9 "content": " { \" usageKey \":1341976,\" scientificName \":\"Apis mellifera

Linnaeus, 1758\",\" canonicalName \":\"Apis mellifera \",\"rank\":\"

SPECIES \",\" status \":\" ACCEPTED \",\" confidence \":99,\" matchType \":

\"EXACT \",\" kingdom \":\" Animalia \",\" phylum \":\" Arthropoda \",\"

order\":\" Hymenoptera \",\" family \":\" Apidae \",\"genus \":\"Apis\",\"

species \":\"Apis mellifera \",\" kingdomKey \":1,\" phylumKey \":54,\"

classKey \":216,\" orderKey \":1457,\" familyKey \":4334,\" genusKey \":13

34757,\" speciesKey \":1341976,\" synonym \":false,\"class\":\" Insecta

\" } \n",

10 "rules": [

11 "Use the language that the user previously used or the language

requested by the user.",

12 "Based on the provided data (and all historical retrieved data if the

results need more than 1 requests to be completely provided),

respond to the user ’s request. No need to include other

irrelevant words in your answer .",

13 "Always extract url or source from provided content as a support for

your answer .",

14 "Ensure the information provided is accurate, clear, and concise.

Avoid overly complex or lengthy explanations when a simple,

direct response will suffice, while in the meantime, make sure to

provide all the information the user will find valuable based on

your correct understanding of user ’s intention .",

15 "If a conclusive answer cannot be generated based on the provided

content, respond to user ’s query first and then attempt to
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interpret the user ’s intent and suggest ways for them to refine

their query for a more successful result .",

16 "If the provided data includes authoritative source such as [wiki] or

[official website], organize the response based primarily on

data from these sources .",

17 "If the user ’s query contains a URL, give a brief description of the

site and summarize it based on the content of the page."

18 ]

19 } ,

20 "code": 0

21 }

The API response shown in Listing 1 adheres to the prompt specification (refer to Table
2), demonstrating the successful extraction of detailed taxonomic classification data for the
species Apis mellifera. As specified in the prompt’s Input data, ChatGPT retrieved the com-
plete taxonomic hierarchy, including the ranks: kingdom, phylum, class, order, family, genus,
and species. Listing 1 confirms the accurate extraction of all ranks, formatted as key-value pairs
(e.g., kingdom:Animalia).

The prompt further specified that the ontology generated from the retrieved (Output indica-
tor in Table 2) data should incorporate GBIF URIs for each class representing a taxon. Listing
1 shows that each taxon is assigned a unique key corresponding to its taxonomic rank (e.g.,
kingdomKey:1, genusKey:133475). GBIF assigns a unique numeric ID to each entity in its
Backbone Taxonomy, forming the URI that uniquely identifies every scientific name in its cata-
log. For example, the response indicates Animalia is linked to the kingdomKey value 1, which is
represented by the GBIF URI https://www.gbif.org/species/1. These URIs ensure that
each taxon is unambiguously identified within the ontology.

The prompt also required ChatGPT to verify the species’ name’s status. The API response in
Listing 1 shows the name status as ACCEPTED, indicating that the species name is valid and rec-
ognized within the taxonomy catalog. This outcome confirms ChatGPT’s successful execution
of this verification step.

Moreover, Listing 1 shows the rules block, which outlines a set of operational guidelines
not explicitly defined in the prompt, suggesting they originate from ChatGPT’s model internal
rules to enhance the response’s comprehensiveness and relevance.

Finally, the prompt in Table 2 defined that the output should be an OWL file generated from
the data extracted via the API. Initially, GPT-4 created OWL code using https://api.gb

if.org/v1/species/ as the namespace for the ontology classes. This URI is a reference
point within the GBIF API, linking to JSON data files describing scientific names and their
relationships, as illustrated in Listing 2.

Listing 2: JSON data for the Animalia class (https://api.gbif.org/v1/species/1)

1 {

2 "key": 1,

3 "nubKey": 1,

4 "nameKey": 130188353,

5 "taxonID": "gbif:1",

6 "sourceTaxonKey": 1,

7 "kingdom": "Animalia",

8 "kingdomKey": 1,

9 "datasetKey": "d7dddbf4-2cf0-4f39-9b2a-bb099caae36c",

10 "constituentKey": "d7dddbf4-2cf0-4f39-9b2a-bb099caae36c",

11 "scientificName": "Animalia",

12 "canonicalName": "Animalia",
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13 "vernacularName": "Animals",

14 "authorship": "",

15 "nameType": "SCIENTIFIC",

16 "rank": "KINGDOM",

17 "origin": "SOURCE",

18 "taxonomicStatus": "ACCEPTED",

19 "nomenclaturalStatus": [],

20 "remarks": "",

21 "numDescendants": 2981931,

22 "lastCrawled": "2023-08-22T23:20:59.545+00:00",

23 "lastInterpreted": "2023-08-22T22:11:51.237+00:00",

24 "issues": []

25 }

However, after careful consideration, we decided to use URIs from the https://www.

gbif.org/species/ endpoint instead. We chose this endpoint because it provides access to
valuable enriched resources for end users, such as taxon photos, occurrence statistics, and related
information. Although we did not import these supplementary resources into the ontology, users
can access them by clicking on the URL, aligning with linked data principles.

To apply this change, we directed ChatGPT to regenerate the OWL code using https:

//www.gbif.org/species/ as the namespace. Listing 3 shows the updated output.

Listing 3: GPT-generated OWL Representation for Taxonomic Hierarchy

<rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22- rdf-syntax-ns#"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf-schema#"

xmlns:owl="http: //www.w3.org /2002/07/ owl#">

<!-- Kingdom Animalia -->

<owl:Class rdf:about="https: //www.gbif.org/species /1">

<rdfs:label xml:lang="lat">Animalia </rdfs:label >

</owl:Class >

<!-- Phylum Arthropoda -->

<owl:Class rdf:about="https: //www.gbif.org/species /54">

<rdfs:label xml:lang="lat">Arthropoda </rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /1"/>

</owl:Class >

<!-- Class Insecta -->

<owl:Class rdf:about="https: //www.gbif.org/species /216">

<rdfs:label xml:lang="lat">Insecta </ rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /54"/>

</owl:Class >

<!-- Order Hymenoptera -->

<owl:Class rdf:about="https: //www.gbif.org/species /1457">

<rdfs:label xml:lang="lat">Hymenoptera </ rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /216"/>

</owl:Class >

<!-- Family Apidae -->

<owl:Class rdf:about="https: //www.gbif.org/species /4334">

<rdfs:label xml:lang="lat">Apidae </ rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /1457"/>

</owl:Class >

<!-- Genus Apis -->
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<owl:Class rdf:about="https: //www.gbif.org/species /1334757">

<rdfs:label xml:lang="lat">Apis </rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /4334"/>

</owl:Class >

<!-- Species Apis mellifera -->

<owl:Class rdf:about="https: //www.gbif.org/species /1341976">

<rdfs:label xml:lang="lat">Apis mellifera </ rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /1334757

"/>

</owl:Class >

</rdf:RDF >

We repeated this process for all taxa listed in Table 3. ChatGPT confirmed the taxon names
Bos taurus, Ovis aries, Genus Sus, Semaprochilodus insignis, Semaprochilodus taeniurus, Ara-
paima gigas, and Tilapia as accepted names within the GBIF Backbone Taxonomy. Then, it
successfully generated the corresponding OWL code for these taxa. The OWL files are available
on Zenodo [1].

ChatGPT identified the remaining taxa as having outdated or deprecated names, classifying
them as synonyms, as shown in Table 4. These taxon names were listed as preferred terms in
the Agrotermos thesaurus but were absent from AGROVOC, the two vocabularies used as the
foundation for building this ontology. An exception is Capra hircus, which we did not find in
either of these vocabularies.

Table 4: Synonymous scientific names and their corresponding accepted names identified by ChatGPT
Target name Synonym of
Capra hircus Capra aegagrus
Prochilodus cearensis Prochilodus brevis
Prochilodus scrofa Prochilodus lineatus
Prochilodus margravii Prochilodus argenteus
Colossoma mitrei Piaractus mesopotamicus

Agrotermos and AGROVOC include concepts for representing “goat,” but with limitations.
In Agrotermos, the term “Cabra” (Portuguese for goat) is not explicitly associated with its sci-
entific species. In AGROVOC, Capra hircus is modeled as an entry term for this concept. To
address this gap, we referred to the classification provided on Wikipedia, which defines “goat”
species as Capra hircus. We added this name to the list, which turned out to be outdated.

ChatGPT retrieved the corresponding accepted name from the GBIF Backbone Taxonomy
for each synonym identified and generated OWL code incorporating these validated names, as
shown in Listing 4.

Listing 4: Output After Resolving Synonyms

<rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22- rdf-syntax-ns#"

xmlns:rdfs="http: //www.w3.org /2000/01/ rdf-schema#"

xmlns:owl="http: //www.w3.org /2002/07/ owl#">

...

<!-- Species Prochilodus brevis (for Prochilodus cearensis) -->

<owl:Class rdf:about="https: //www.gbif.org/species /2352151">

<rdfs:label xml:lang="lat">Prochilodus brevis </rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /2352148

"/>
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</owl:Class >

<!-- Species Prochilodus lineatus (for Prochilodus scrofa) -->

<owl:Class rdf:about="https: //www.gbif.org/species /2352154">

<rdfs:label xml:lang="lat">Prochilodus lineatus </rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /2352148

"/>

</owl:Class >

<!-- Species Prochilodus argenteus (for Prochilodus margravii) -->

<owl:Class rdf:about="https: //www.gbif.org/species /2352177">

<rdfs:label xml:lang="lat">Prochilodus argenteus </rdfs:label >

<rdfs:subClassOf rdf:resource="https: //www.gbif.org/species /2352148

"/>

</owl:Class >

</rdf:RDF >

In Listing 4, we tasked ChatGPT with generating OWL code for three species within the same
genus: “Prochilodus Cearensis,” “Prochilodus Scrofa,” and “Prochilodus Margravii.” However,
during our first attempt to extract data from the GBIF API using these names, ChatGPT reported
that no data was available for these taxa. We discovered that this issue stemmed from formatting
errors in the species names. According to international standards for species nomenclature [56,
57], species names should consist of a capitalized genus name followed by a lowercase specific
epithet, often including the naming authority and year of identification. The names we used in
the initial query, copied directly from the Agrotermos vocabulary, had capitalization errors in the
specific epithets (e.g., “Cearensis” instead of “cearensis”), which rendered them unrecognizable
to the GBIF API.

After correcting the formatting to align with these standards, we reissued the query, and Chat-
GPT successfully retrieved the taxonomic data. Table 5 provides a detailed log of this interaction,
highlighting the issue and the resolution process.

Following the initial incident, we intentionally repeated the same mistake by submitting the
species name “Colossoma Mitrei” with the same capitalization error in the specific epithet. Chat-
GPT corrected the error autonomously before sending the request to the GBIF API, demonstrat-
ing its ability to learn iteratively from prior interactions.

This adaptability reflects ChatGPT’s advanced machine-learning techniques, allowing it be-
yond simple input processing to refine its comprehension and response strategies over time. Such
functionality exemplifies a core characteristic of Artificial Intelligence (AI): the ability to inter-
nalize lessons from previous interactions and apply this knowledge to similar situations in the
future, thereby reducing errors and enhancing operational efficiency [58, 59].

In ontology development, this AI-driven error correction potentially reduces manual effort
and enhances data quality. Studies [58, 59, 60, 61] highlight the growing role of AI in fostering
more intelligent and efficient system interactions, making it a transformative tool in fields that
demand adaptability and precision.

5.2. Limitations

This approach presented limitations when handling extensive species lists. For this reason,
we did not move forward with generating the OWL code for the plant species listed in the ontol-
ogy since the list of plant species is larger than the animal species list.
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Table 5: Iteration with ChatGPT
Agent Prompt

Do it [repeat the steps described in Table 2] for these three species: Prochilodus Cearensis, Prochilodus Scrofa, and
Prochilodus Margravii.
The attempts to match the species names “Prochilodus Cearensis,” “Prochilodus Scrofa,” and “Prochilodus Margravii”
with the GBIF database did not yield any results due to too little confidence in the matches. This means that the specific
names provided might not be directly available in the GBIF database under those exact spellings, or are not recognized
at the species level in the database.
For taxonomic research and ontology building, accurate species names are crucial. It is possible that these names might
have synonyms under which they are listed in databases, or there might be slight variations in spelling or taxonomy that
affect the search results.
In such cases, further steps could include:
Verifying the scientific names for spelling or taxonomic updates. Searching for broader taxonomic groups (e.g., the
genus “Prochilodus”) and then narrowing down to the species level based on additional sources or databases. Consulting
specialized taxonomic databases or literature for the most current classification and synonyms. If you have alternative
or broader taxonomic categories in mind or need assistance with another query, please let me know how I can assist
further.
Try again with Prochilodus cearensis, Prochilodus scrofa, and Prochilodus margravii.

Based on the data retrieved from the GBIF API for the species Prochilodus cearensis, Prochilodus scrofa, and Prochilo-
dus margravii, here’s the ontology in OWL format. It’s important to note that all three names are recognized as syn-
onyms for other species within the GBIF database: [provided the OWL code shown in Listing 4. After the code block,
it commented:] This OWL code represents the full taxonomic classification for the species Prochilodus cearensis
(synonym for Prochilodus brevis), Prochilodus scrofa (synonym for Prochilodus lineatus), and Prochilodus margravii
(synonym for Prochilodus argenteus), including the higher taxon levels (kingdom, phylum, class, order, family, genus)
with each class having a valid URI from GBIF and a rdf label of the name for that class in Latin.

Moreover, the processing time increases with the list’s size, impacting this method’s scala-
bility. For example, the processing time to call the GBIF API and generate the ontology for the
species Apis mellifera was 37 seconds. For the three species Prochilodus cearensis, Prochilodus
scrofa, and Prochilodus margravi, which were synonyms, the processing time was 2 minutes
and 5 seconds. This approach proved efficient for smaller clusters of species names, particu-
larly when the names are taxonomically related (within the same genus or family). However,
we observed that reliability decreases for lists with more than five names, where the likelihood
of hallucinations increases. Initially, we attempted to process the entire list of species names
from Table 3 through ChatGPT in a single batch. However, this approach resulted in multiple
inaccuracies, including the generation of URIs non-existent in the GBIF database, incorrect as-
sociation between valid URIs and labels, and occasional omissions of tasks, such as adding RDF
labels. We opted for a more controlled approach to address these issues by submitting names
to ChatGPT individually or in smaller groups (at most three species each time). This strategy
significantly improved the accuracy of the results.

Another challenge was integrating multiple OWL files using Protégé, which resulted in dupli-
cated labels and parent-child relationships as illustrated in Fig. 3. Despite attempts to consolidate
these files using Protégé’s merge function, these redundancies persisted, but this can be also con-
sidered as a limitation of Protégé for handling these multiple files rather than a problem with
ChatGPT-generated codes.

Another limitation of this approach is the challenge of reproducibility due to ongoing updates
in ChatGPT’s technology. During the initial experiments, ChatGPT plugins such as BrowserOP
were still operational. However, as of March 2024, OpenAI replaced these plugins with GPTs,
and ChatGPT no longer has direct access to the internet.

To assess the feasibility of reproducing the results, we attempted to replicate the experi-
ments on March 6, 2025, using three different GPT models: BrowserOP (the former plugin),
ChatGPT-4o, and Data Analyst. In all three cases, the models returned the same message indi-
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Figure 3: Duplicated labels and relationships in the ontology visualization in Protégé.

cating their inability to make direct API calls, confirming that ChatGPT currently lacks internet
access. Therefore, this approach is no longer viable unless ChatGPT regains internet access in
the future.

To evaluate whether a similar approach could work with alternative AI models, we tested
the same prompt using DeepSeek V3 and Google Gemini 2.0. However, the results were highly
inaccurate and unreliable. Although both models generated API responses that structurally re-
sembled the expected format (similar to Listing 1), the responses contained incorrect taxon keys
that did not match the expected labels. Additionally, neither model correctly identified that the
species in this test, Prochilodus scrofa, was a synonym.

Even after multiple refinements to the prompt, including providing more details about API
syntax and sample responses, both models continued to generate hallucinated results that did
not accurately reflect the expected outputs. These issues indicate that using this approach with
DeepSeek V3 and Gemini 2.0 would require further fine-tuning or prompt engineering to mitigate
these errors. The full prompts and interaction transcripts with DeepSeek and Google Gemini are
available on Zenodo 1.

In conclusion, this approach is currently not reproducible with ChatGPT due to the lack of
internet access. Additionally, attempts to apply this methodology to other AI models, such as
DeepSeek V3 and Gemini 2.0, require further adjustments to reduce hallucinations and improve
reliability. Therefore, we recommend using Approach 2 as a more viable solution for generating
an OWL ontology for species taxonomy.

6. Approach 2: Python Algorithm for Converting GBIF Taxonomic Data to OWL

Building on the steps outlined in Table 2 and the prompt interactions described in Section
5, we tasked ChatGPT with developing a Python algorithm to generate OWL files from data
retrieved via the GBIF Backbone Taxonomy API. However, the initial version of the algorithm
introduced redundancies in the generated OWL code by repeating higher taxonomic levels for
each taxon. For example, the class Animalia was redefined for every taxon describing an animal
species rather than being defined once and used as a superclass for the relevant species. To
address this issue, we provided ChatGPT with the revised instruction outlined in Table 6.

The algorithm second version fixed redundant taxonomic level definitions but introduced a
new issue: improper class-subclass relationships in the OWL code. When reported to ChatGPT,
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Table 6: Iteration with ChatGPT: fixing repetitions
Agent Prompt

It should present the superior taxon levels once in the code when they are the same for multiple species. Animalia, for
instance, is a taxon common to all species in this list.
To address the issue of repeating higher taxon levels for multiple species, you can modify the script to accumulate
unique taxon levels across all species before generating the OWL representation. This approach ensures that each
taxon level (e.g., kingdom, phylum) is represented only once, regardless of how many species share it.

it responded as shown in Table 7.

Table 7: Iteration with ChatGPT: fixing relationships
Agent Prompt

“To ensure the OWL output correctly represents the subClassOf relationships and avoids duplicating common higher
taxon levels across species, let’s refine the approach. We’ll adjust the script to build a hierarchy that maintains these
relationships and ensures each taxon level is included only once.”

In this third trial, we got an error: “AttributeError: ‘list’ object has no attribute ‘replace.’ A
typo in the list of names caused this error. We tasked ChatGPT to review the species list, and it
detected “Semaprochilodus taeniunes” as a typo, suggesting the correct name as “Semaprochilo-
dus taeniurus.” ChatGPT inference was correct since this is also the accepted name in the GBIF
Backbone Taxonomy. After reviewing this name and reentering the list, the algorithm worked as
expected.

Finally, we tasked ChatGPT with generating the documentation for the algorithm, which we
named GBIF Taxonomy OWLizer. The complete algorithm and its documentation are available
on Zenodo [2].

6.1. Script Overview

This Python script follows a pipeline to fetch taxonomic classification data for a species list
from the GBIF API and generates an OWL representation. It can handle multiple species names,
representing higher taxonomic levels only once, even if they are shared across species, avoiding
duplication of classes as reported in the limitations of Approach 1. It also checks synonyms and
looks for the accepted names. The script is written in Python 3.x and requires the requests

library.

Functions

This script met the requirements specified in Table 2, including the following functions:
• fetch gbif data(scientific name): Fetches taxonomic classification from the GBIF

API for a given scientific name.
• fetch synonyms(species key): Fetches synonyms for a given species key from the

GBIF API. It checks the accepted scientific name of a species, ensuring that the OWL
ontology only includes the correct names.
• accumulate taxa(data, taxa): Accumulates unique taxa and their relationships from

the GBIF data.
• validate accepted name(data, taxa): Ensures that only the accepted scientific name

is included in the taxa dictionary by validating against synonyms.
• generate owl(taxa): Generates an OWL/XML representation from the accumulated

taxa.
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Listing 5 shows an example of usage for the list of names from Table 3. The output was an
OWL/XML file (Animalia.xml on Zenodo [1]). Subsequent inspection of this file in Protégé
revealed a well-structured class hierarchy, depicted in Fig. 4. This visualization confirmed the
accuracy of the hierarchical relationships and the appropriate formatting of the generated OWL
code.

Listing 5: Example of usage

1 species_names = [

2 "Apis mellifera", "Bos taurus", "Capra aegagrus hircus", "Ovis aries",

"Sus", "Bombyx mori", "Prochilodus cearensis", "Prochilodus scrofa"

, "Prochilodus margravii", "Semaprochilodus insignis", "

Semaprochilodus taeniurus", "Colossoma mitrei", "Arapaima gigas", "

Tilapia"

3 ]

4
5 taxa = {}

6 for name in species_names:

7 data = fetch_gbif_data(name)

8 if data:

9 accumulate_taxa(data, taxa)

10 validate_accepted_name(data, taxa)

11
12 owl_data = generate_owl(taxa)

13 print(owl_data)

Figure 4: Visualization of classes hierarchy in Protégé.
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Testing the Algorithm with a Larger List of Species Names
The scalability limitation of Approach 1 prevented the generation of OWL codes for long

species lists. In contrast, the second approach works significantly faster. To evaluate its ef-
ficiency, we conducted a test with 74 plant species listed in the file PlantSpeciesList.py

available on Zenodo [1]. As an initial step, we asked ChatGPT to verify the spelling of the
species names in this list using only its internal knowledge, without connecting to the GBIF API.

Although we did not explicitly request ChatGPT to identify synonyms – since our algorithm
handles this functionality – it flagged Euterpe edulis as a synonym of Euterpe oleracea. However,
subsequent verification using authoritative sources, including the GBIF Backbone Taxonomy
[48] and the Plants of the World Online catalog [62], confirmed that both Euterpe edulis and
Euterpe oleracea are valid and accepted species names. This misidentification highlights the
potential for inaccuracies when ChatGPT’s analysis is based solely on its internal knowledge
rather than being anchored to reliable external sources for validating taxonomic names.

Despite the incorrect synonym suggestion, we continued with the task. The algorithm per-
formed efficiently, generating OWL code for nearly all the listed species – except for Triticum x
Secale – in just 2 minutes and 31 seconds. By comparison, the first approach required 2 minutes
and 5 seconds to generate OWL code for only three species. This stark contrast highlights the
superior scalability of the second approach, which successfully processed 74 species at a similar
time. The complete OWL code can be found as plantae.xml on Zenodo [1].

The exclusion of Triticum x Secale from the output was due to its hybrid name syntax, which
the GBIF API does not recognize. This probably happens because hybridization occurs at the
individual level, and not at the species level, as highlighted by [63].

Names of hybrids are structured to indicate their origin from two different species or genera.
The × indicates hybrid status in botanical nomenclature. It is placed between the genus name
and the specific epithet for interspecific hybrids or between two genera for intergeneric hybrids
[64]. For instance, the intergeneric hybrid between the genera Triticum (wheat) and Secale (rye),
is denoted as “Triticum × Secale,” where the “×” explicitly marks its hybrid nature.

In zoology, hybrids are also identified using similar conventions, although they are less stan-
dardized and may vary depending on the taxonomic authority. Hybrids are often represented by
combining the parent species’ names or genera, sometimes without a specific symbol [56].

Hybrid names can have synonyms or be reclassified over time as more is learned about their
genetics and relationships to parent species. Managing these changes and ensuring that the on-
tology reflects the most current understanding can be challenging. Representing the genetic and
taxonomic relationships between hybrids and their parent species would require the ontology to
support complex hierarchical and networked structures. This complexity can pose challenges for
both the design of the ontology and for users querying the ontology to understand the relation-
ships between different entities.

6.2. Web Application with User Interface
Based on the Python script of Approach 2, we developed the GBIF Taxonomy OWLizer12,

which is a web-based application that allows users to convert species names into an OWL taxon-
omy using the GBIF API. It provides a simple interface for users to enter species names, fetch
their taxonomic classification, and download the generated OWL file. This tool is designed for
biologists, taxonomists, and ontology researchers needing structured taxonomy data in OWL
format.

12URL: https://filipi-soares.github.io/TaxonOWLConverter/
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Functionalities:
• Users can input the names of one or multiple species.

• The app queries the GBIF API to fetch taxonomic classifications.

• The app converts the taxonomy data into an OWL ontology format.

• Users can copy and paste or download the generated OWL taxonomy file.

• Previously searched species are cached in local storage, allowing instant retrieval without
re-fetching data.

Technologies used:
• HTML, CSS (Bootstrap): Provides a simple and responsive user interface.

• JavaScript: Handles API requests, caching, and file downloads.

• jQuery: Simplifies DOM manipulation and AJAX requests.

• Flask (Python Back-end on Render): Processes API requests and fetches taxonomic data
from GBIF.

• GBIF API: Provides taxonomic classification data.

• GitHub Pages: Hosts the front-end (static website) for free.

• Render (Free Tier): Hosts the back-end Flask API that fetches data.

• UptimeRobot: Sends periodic requests to prevent the back-end from going to sleep.

6.3. Limitations

Approach 2 successfully addressed the scalability limitations of Approach 1. However, this
algorithm remains sensitive to typographical errors in the input data. To mitigate this, we recom-
mend a preliminary step in which users utilize ChatGPT to review the list of species names and
correct typos. This workflow combines the strengths of both tools: ChatGPT’s ability to verify
and correct spellings and the algorithm’s efficiency in processing species names and performing
synonym checks.

While the GBIF Taxonomy OWLizer web-based app provides a functional and accessible
way to generate OWL representations of taxonomic data, it has certain limitations due to free-
tier services. The back-end, hosted on Render’s free tier, enters a sleep state after 15 minutes
of inactivity, causing delays in API responses when it needs to restart. To mitigate this, Up-
timeRobot periodically pings the back-end, keeping it active most of the time. However, this
workaround is not entirely reliable and may still result in occasional downtime. Since GitHub
Pages is used to host the front-end, the application can only serve static content, requiring an
external back-end to handle API requests.

Furthermore, the app caches responses using local storage, meaning previously fetched data
is only available on the same device and browser. This limits persistent caching across multiple
sessions or devices, which could be improved by integrating a more robust storage solution such
as IndexedDB or a cloud-based database. Despite these limitations, the current implementation
remains an effective and free-to-use tool for taxonomists and ontology researchers.
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7. Integrating Species Classification in APTO

After generating and integrating the OWL file with species classifications into APTO Or-
ganism module, each product type was linked to its corresponding species. This association
is essential for accurately representing the meaning of commercial product names, particularly
within the regional context where they are traded. Establishing these precise connections ensures
semantic clarity and helps prevent errors arising from ambiguous or incorrect associations.

APTO offers several examples that underscore the importance of this type of modeling. For
example, a frequent ontological modeling error appears in sources such as Agrotermos, Agrovoc,
and even in Wikipedia, concerning the term “Pimenta.” In Brazilian Portuguese, ‘Pimenta’ is
often translated into English as “pepper.” While this translation might seem correct, it oversim-
plifies the term and creates semantic confusion. In Brazilian Portuguese, ‘Pimenta’ refers to the
reddish or yellowish (sometimes green when collected unripe) berries from plants of the genus
Capsicum. Examples include ‘Pimenta malagueta’ (Capsicum frutescens), ‘Pimenta cumari’
(Capsicum baccatum var. praetermissum), and ‘Pimenta dedo-de-moça’ (Capsicum baccatum).

In resources such as Agrovoc [65] and Agrotermos [66], the concept of ‘Pimenta’ is translated
into English as “pepper” and associated with the species Piper nigrum. In Brazil, however, Piper
nigrum refers explicitly to the plant that produces black pepper, known locally as ‘Pimenta-do-
reino.’

In Agrotermos, Capsicum sp. is listed as a related concept to ‘Pimenta,’ but there is also
a relationship indicating that ‘Pimenta’ is produced by Piper nigrum. This misrepresentation
creates confusion, as the term ‘Pimenta’ in Brazil is predominantly associated with Capsicum
sp., while ‘Pimenta-do-reino’ refers to Piper nigrum (black pepper), as previously mentioned.

This issue is not limited to these two vocabularies. On Wikipedia, a search for ‘Pimenta’
in Portuguese retrieves an article describing ‘Pimentas’ derived from Capsicum sp., as shown in
Fig. 5a. However, switching the article’s language to English leads to an article about “pepper,”
which refers to Piper nigrum, as illustrated in Fig. 5b.

Despite being a common mistake, the organisms represented by these concepts are biolog-
ically distinct. Table 8 shows the biological classification of both species, highlighting their
differences. Capsicum sp. and Piper nigrum are only related at the class level (Magnoliopsida),
underscoring their distinct evolutionary and biological characteristics.

Table 8: Comparison of the classification between Piper nigrum and Capsicum sp., based on the GBIF Backbone Tax-
onomy [48].

Taxon rank Piper nigrum Capsicum sp.
Kingdom Plantae Plantae
Phylum Tracheophyta Tracheophyta
Class Magnoliopsida Magnoliopsida
Order Piperales Solanales
Family Piperaceae Solanaceae
Genus Piper L. Capsicum L.
Species Piper nigrum L. —

The accurate English equivalent of the Brazilian concept “Pimenta” is “chili pepper.” How-
ever, in Agrovoc [67] and Agrotermos [68], the concept of “chili pepper” is incorrectly matched
with the Portuguese term ‘Condimento picante’, which translates to “spicy condiment” in En-
glish. This translation conflates two distinct concepts from different hierarchical levels, treating
them as language equivalents when they are not.

In Wikipedia, the “chili pepper” article translates into Portuguese as ‘Pimentas chili’. This
translation is problematic because the term ‘Pimentas chili’ is not used in Brazil, leading to
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further confusion. These examples highlight how a single incorrect association can trigger a
series of ontological inconsistencies across different terminology systems and languages.

To address this issue in APTO, we created two distinct classes, each explicitly linked to the
correct biological classification:

• Pepper: ‘member of taxon’ exactly 1 Piper nigrum

• Chili pepper: ‘member of taxon’ some Capsicum

(a) Pimenta on Wikipedia in Portuguese.
(b) Black pepper as direct translation of ‘Pimenta’ on Wikipedia
in English.

Figure 5: Comparison of ‘Pimenta’ and its translation as Black pepper in Wikipedia13.

Multilingual vocabularies often face ontological challenges due to the complexity of mod-
eling concepts across diverse regions and languages. However, such issues are not exclusive
to global contexts; regionalisms can also create significant ontological challenges at the local
level. A prominent example is apto:Cheiro verde, a commonly used culinary herb mixture in
Brazil. The term, which translates to “green smell” in English, is a staple in Brazilian cuisine,
enhancing the flavor of soups, stews, and meats.

The composition of ‘Cheiro verde’ varies significantly across Brazil’s regions, as illustrated
in Fig. 6. In the Southeast, South, and Midwest, it typically consists of parsley and chives. In
the Northeast, parsley is replaced by coriander; in the North, the mixture expands to include
chives, coriander, and fitweed. This regional variation is particularly important for traditional
Amazonian dishes such as ‘Pato no tucupi’ (duck in tucupi) and ‘Tacacá’ [69, 70].

In APTO, the variations of this concept have been modeled as shown in Listing 6. This ap-
proach allows even non-Portuguese speakers to understand the basic semantics of the concept
despite its lack of a direct English translation. The class Cheiro verde is defined as a combi-
nation of Coriander and Chives, Parsley and Chives, or Coriander and Chives and

Fitweed, with each ingredient linked to its corresponding species. These combinations should
ideally be associated with the specific Brazilian regions to enhance this modeling further.

13Wikipedia sources: https://pt.wikipedia.org/wiki/Pimenta, https://en.wikipedia.org/wiki/Blac
k_pepper.
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Figure 6: Herbs included in ‘cheiro verde” by Brazilian regions. Parsley image source: [71]; Coriander image source:
[72]; Chives image source: [73]; Fitweed image source: [74]. All images reused in this figure are licensed under the
public domain on Wikimedia Commons.

Listing 6: ‘Cheiro verde’ representation in APTO

Class: ‘Cheiro verde ’

SubClassOf: ‘Culinary herbs ’

’Equivalent to ’( Coriander and Chives) or

(Coriander and Chives and Fitweed) or

(Parsley and Chives)

...

Class: ‘Coriander ’

‘member of taxon ’ exactly 1 ‘Coriandrum sativum ’

Class: ‘Chives ’

‘member of taxon ’ exactly 1 ‘Allium schoenoprasum ’

Class: ‘Fitweed ’

‘member of taxon ’ exactly 1 ‘Eryngium foetidum ’

Class: ‘Parsley ’

‘member of taxon ’ exactly 1 ‘Petroselinum crispum ’

8. Final Considerations

This study explored two approaches for integrating taxonomic data into APTO, leveraging
ChatGPT with the BrowserOP plugin (Approach 1) and a Python algorithm developed with Chat-
GPT’s assistance (Approach 2). Each approach demonstrated unique strengths and weaknesses,
highlighting the potential and challenges of integrating Artificial Intelligence and automation in
ontology development.

Approach 1 utilized ChatGPT for direct interaction with the GBIF API, demonstrating its
capability to handle complex queries, retrieve taxonomic information, and verify synonym rela-
tionships. However, scalability limitations became evident as dataset size increased, leading to
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longer processing times and issues such as hallucinated URIs and incomplete tasks. The subse-
quent discontinuation of GPT plugins further limited the reproducibility of this approach.

In contrast, Approach 2 addressed these limitations by employing a Python algorithm to
process more extensive lists of species names efficiently. This approach successfully handled
a list of 74 plant species in just over 2.5 minutes while maintaining consistent class-subclass
relationships and avoiding redundancy in taxonomic hierarchies. However, it was sensitive to
typographical errors, necessitating a pre-processing step with ChatGPT for name validation.

The study underscores the complementary strengths of generative AI and algorithmic meth-
ods in ontology development. ChatGPT proved effective for tasks such as synonym detection,
taxonomic hierarchy generation, and OWL code creation. Its ability to learn from errors and
refine subsequent outputs exemplifies its potential for interactive and adaptive ontology design.
Meanwhile, the Python algorithm provided the scalability and robustness required for handling
larger datasets, demonstrating the practicality of combining AI-driven tools with structured pro-
gramming techniques.

Challenges remain, particularly regarding dependency on external tools like ChatGPT, which
may evolve unpredictably, as seen with the discontinuation of GPT plugins. Additionally, ad-
dressing semantic variations, such as those exemplified by the concepts ‘Pimenta’ and ‘Cheiro
Verde,’ requires contextual modeling that goes beyond simple automation.

The workflow developed in this study is adaptable beyond the agricultural domain and can
be applied to fields such as biodiversity informatics, ecological modeling, and conservation plan-
ning. Future work should explore fully automated solutions for error detection and validation,
potentially incorporating machine learning models to reduce reliance on manual intervention. A
complementary algorithm should be developed to periodically verify all species names in the
ontology and update them in alignment with the latest version of the GBIF Backbone Taxonomy,
for each new ontology version release.

In conclusion, this paper demonstrates how combining AI-driven tools can streamline ontol-
ogy engineering, address domain-specific challenges, and enhance scalability and efficiency.
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Moreira, D., Corrêa, F. E., Braghetto, K. R., Pignatari Drucker, D., & Botazzo Delbem,
A. C. (2025). Supporting Data for “Exploring ChatGPT-4 for Transforming Taxonomic
Data into OWL: Lessons Learned and Implications for Ontology Development” [Data set].
Version 2. Zenodo. https://doi.org/10.5281/zenodo.14982527

2. Soares, F. M. (2025). GBIF Taxonomy OWLizer. [Software]. Version 2. Zenodo. https:
//doi.org/10.5281/zenodo.14984136

Author Contributions

F.M.S. conceived and conducted the experiments and drafted the original manuscript. L.F.P.,
L.O.B.S.S., and A.M.S. supervised the study. F.M.S., D.A.M., F.E.C., K.R.B., D.P.D., and
A.C.B.D. contributed to the formal analysis. All authors reviewed and approved the final text.

24 Data Intelligence

https://doi.org/10.5281/zenodo.14982527
https://doi.org/10.5281/zenodo.14984136
https://doi.org/10.5281/zenodo.14984136


Exploring a Large Language Model for Transforming Taxonomic Data into OWL

Acknowledgements

F.M.S. acknowledges support from the Fundação de Amparo à Pesquisa do Estado de São
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