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The development of non-invasive methods and accessible tools for application to

plant phenotyping is considered a breakthrough. This work presents the preliminary

results using an electronic nose (E-Nose) and machine learning (ML) as affordable

tools. An E-Nose is an electronic system used for smell global analysis, which

emulates the human nose structure. The soybean (Glycine Max) was used to

conduct this experiment under water stress. Commercial E-Nose was used, and a

chamber was designed and built to conduct the measurement of the gas sample

from the soybean. This experiment was conducted for 22 days, observing the

stages of plant growth during this period. This chamber is embedded with relative

humidity [RH (%)], temperature (°C), and CO2 concentration (ppm) sensors, as well

as the natural light intensity, which was monitored. These systems allowed

intermittent monitoring of each parameter to create a database. The soil used

was the red-yellow dystrophic type and was covered to avoid evapotranspiration

effects. The measurement with the electronic nose was done daily, during the

morning and afternoon, and in two phenological situations of the plant (with the

healthful soy irrigated with deionized water and underwater stress) until the growth

V5 stage to obtain the plant gases emissions. Data mining techniques were used,

through the software “Weka™” and the decision tree strategy. From the evaluation

of the sensors database, a dynamic variation of plant respiration pattern was

observed, with the two distinct behaviors observed in the morning (~9:30 am)

and afternoon (3:30 pm). With the initial results obtained with the E-Nose signals

and ML, it was possible to distinguish the two situations, i.e., the irrigated plant

standard and underwater stress, the influence of the two periods of daylight, and

influence of temporal variability of the weather. As a result of this investigation, a

classifier was developed that, through a non-invasive analysis of gas samples, can

accurately determine the absence of water in soybean plants with a rate of 94.4%

accuracy. Future investigations should be carried out under controlled conditions

that enable early detection of the stress level.
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1 Introduction

Abiotic stress is a term used to describe a range of

environmental stresses that can affect crops, such as elevated

temperature, chilling, excessive light, drought, waterlogging,

wounding, exposure to ozone, UV-B irradiation, osmotic shock,

and salinity. According to Bray et al. (2000), abiotic stress can lead

to a potential yield loss of 51-82% in annual crops.

Zhao and collaborators in their investigation predict that

significant crop yields, such as wheat, rice, corn, and soybeans,

will decrease by an average of 6.0%, 3.2%, 7.4%, and 3.1%,

respectively, for each degree Celsius increase in the global average

temperature (Zhao et al., 2017).

The present moment demands careful consideration to improve

the knowledge about biotic and abiotic stress to sustainable

agriculture, food security, population growth, and the efficient use

of natural resources, necessitating multidisciplinary and

interdisciplinary research. As a result, collaboration among

various fields, such as engineering, physics, geosciences, plant

sciences, ecophysiology, computer science, and instrumentation,

is crucial to developing effective non-invasive plant phenotyping

techniques and methods. In agriculture, the key to practical

applications lies in affordable, lightweight, and adaptable devices,

instruments, sensors, and biosensors. The current trend in

phenotyping research favors non-invasive techniques (Fiorani and

Schurr, 2013).

Land vegetation accounts for 90% of global VOC emissions

(Kiendler-Scharr et al., 2009). Plants emit volatile organic

compounds (VOCs) when they suffer from disease, making them

an ideal measure of phenotypic dynamics with promising results

(Niederbacher et al., 2015).

Affordable plant gas detection methods could soon include

electronic nose (E-Nose) and A.I. applications. The concept of

electronic nose was first introduced in 1982 by Persaud and Dodd at

the University of Warwick (Persaud and Dodd, 1982). Gardner and

Bartlett (1994) provided the most accepted definition, defining the

system as “an instrument comprised of an array of electronic

sensors with specific recognition capabilities and a standard

recognition system that can detect olfactory substances ranging

from simple to complex” (Schaller et al., 1998). The olfactory system

is more complex than other sensory systems like vision and hearing,

with hundreds of different biological sensors involved in olfaction.

Each olfactory receptor cell has only one type of odor receptor,

which can detect only a limited number of substances (Lozano et al.,

2005). Figure 1 illustrates a block diagram of the E-Nose concept. E-

noses have been widely used and studied by large companies in

industries such as food, cosmetics, packaging, pharmaceuticals,

chemicals, petrochemicals, and agriculture (Manzoli et al., 2011;

Steffens et al., 2014). This technology is a fast, simple, low-cost, and

non-destructive tool for quality control and decision-making. In

medicine, it has been used to detect chemicals in lung cancer

patients and monitor the fertile period of cows in livestock (de

Vries et al., 2019). In agriculture, monitoring insects and pests with

current techniques is time-consuming and often yields variable

results, making it challenging for producers and consultants to

make reliable and accessible decisions. Electronic noses can use

distinct types of sensors, including conductive polymers, “Carbon

Black,” and carbon nanotubes (Manzoli et al., 2019; Garcia-Berrios

et al., 2013; Chatterjee et al., 2013).

Hazarika and collaborators presented in their investigation

showed a technique to detect a pathogen called Citrus Tristeza

Virus (CTV) in Khasi mandarin plants, where the biological process

of smell was mimicked by electronic nose (E-Nose). They used

invasive and destructive methods, where leaf samples were cut with

scissors into square pieces measuring approximately 1 cm by 1 cm

and placed in the sample holder. To evaluate the signal from the E-

Nose was used classifier models such as bagging k-nearest neighbors

(KNN Bag), adaptive boosting (AdaBoost) decision tree (ABDT)

(Hazarika et al., 2020) and deep neural network (DNN) (Sharma

et al., 2023).

Water stress triggers various physiological and biochemical

responses in plants, such as stomatal closure, growth and

photosynthesis repression, and respiration activation (Hale and

Orcutt, 1987).

Environmental factors that affect transpiration change the water

vapor gradient between the leaf surface and surrounding air: the

energy balance between the sun and the leaf, air humidity and

temperature, wind, and soil water availability (Angelocci et al.,

2004). Therefore, transpiration intensifies with decreasing relative

humidity and increasing air temperature.

Plant transpiration is vital because it goes beyond eliminating

excess water and accelerates the transport of raw sap. The sap is a

nutrient-rich substance, from the root to the leaves. It is

transformed into an elaborate sap related to the plant’s

production. Transpiration assessment was used as a direct

quantitative relationship of water status in vines, and this

parameter was used as an indicator to organize the plant’s

irrigation schedule (Patakas et al., 2005).

Transpiration is the evaporation of water from plant leaves.

Transpiration involves vaporizing liquid water in plant tissues and

removing the vapor into the atmosphere. Crops lose water

through stomata.

The relationship between transpiration and water stress can be

measured using a variety of methods. One common method is to

measure the rate of water loss from a plant leaf using a potometer

(Pasqualotto et al., 2019). Another method is to measure the leaf

water potential, which is a measure of the amount of water that is

available to the plant (Ratzmann et al., 2019), and others, as for

example the lysimeter. They all have limitations, disadvantages,

high-cost and can sometimes produce incorrect results. However,

Abbreviations: ABDT, Adaptive Boosting Decision Tree; BR, Brazil; CMOS,

Complementary Metal-Oxide- Semiconductor; CTV, Citrus Tristeza Virus; DAP,

Days After Planting; DAS, Days After Sowing; DIN, Deutsches Institut für

Normung; DNN, Deep Neural Network; DT, Decision Tree; GDP, Gross

Domestic Product; IQR, Interquartile Range; ISO, International Organization

for Standardization; KNN, K-Nearest Neighbors; LVAd, dystrophic Red-Yellow

Latosol; ML, Machine Learning; PMMA, Poly methyl methacrylate; PTFE,

Polytetrafluoroethylene; RH (%), relative humidity (%); R0, Initial electrical

resistance (W); R, Electrical resistance varying over time (W); SP, São Paulo;

TR, Transpiration; S(%), Sensitivity (%); UV-B, Ultraviolet-B; VOC, Volatile

Organic Compound; VPD, Vapor Pressure Deficit.
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the potential of electronic nose applications can overcome these

difficulties and present a new exploration technique and method.

Sinclair et al. (2010) showed in their work the relations of vapor

pressure deficit (VPD) and how it affected the sensitivity of the

transpiration (TR): the time hours of Low VPD are between 7 –

11:00 a.m. and High VPD are between 11:00 a.m. – 3:00 p.m.

Studies have shown that water stress can significantly reduce the

rate of transpiration in soybean plants, which can impact the plants’

overall health and productivity (Lambers et al., 2008).

An increase in atmospheric CO2, in terms of transpiration, or

water use by the plant, means that the stomata, or the leaf pores that

exchange gases between the leaf and the atmosphere, do not need to

open as much. The effects can occur at the level of abiotic and biotic

stress. Work by Sun and collaborators showed that with an increase

in CO2, the leaf transpiration rate (mmol H2O m-2 s-1) decreased

and the work showed the influence on the infestation of pea aphid

(Acyrthosiphon pisum) in Medicago truncatula (Sun et al., 2015).

Soybean crops are highly vulnerable to the detrimental effects of

drought, an abiotic stress that can cause severe damage to the plant’s

growth and development. This stress is particularly impactful

during certain stages of the soybean’s life cycle, leading to

substantial yield losses. Studies have shown that soybean’s

sensitivity to drought is relatively high, with annual losses of up

to 40% attributed to this kind of stress (Basal and Szabó, 2020).

The precise effects of water stress on soybean physiology and

biochemistry remain unclear. Insufficient soil moisture triggers a

range of plant adaptations, including morphological, physiological,

and biochemical processes that can inhibit growth, lower

photosynthesis, and transpiration rates, diminish chlorophyll

levels, and modify protein structures. Given the complex nature

of photosynthesis and gas exchange, these processes serve as

valuable indicators of soybean response to soil moisture stress

during the vegetative phase (Wijewardana et al., 2019).

The process of measuring gas exchange in leaves often involves

interfering with their natural physiology, as it requires direct

contact with the leaves.

Machine learning is a combination of data science and statistics

that is based on the probability of occurrence of events, patterns,

and behaviors in the provided database (Tan et al., 2006; Han et al.,

2011). For this project, data mining techniques were employed to

enable the machine to study a relevant database and detect

stress levels.

Those techniques (E-Nose and Machine Learning) could be a

valuable tool for assessing water stress levels in soybeans, serving as a

new method of phenotyping plants that can be applied in precision

agriculture. It is an affordable device that can be used for global gas

analysis. It allows the application of machine learning – the basis of

artificial intelligence – to examine data generated due to abiotic

plant stress.

Soybeans are of great economic importance to Brazil, the

second-largest producer of this crop in the world, and this crop’s

success directly impacts the national GDP. In 2018/2019, soybeans

occupied an area of 44,062 million hectares, producing 154.566

million tons – resulting in productivity rate of 3,508 kg/ha

(Embrapa Soja, 2023).

The electronic nose, through global gas analysis, is being used as a

new tool for plant phenotyping, aiming to investigate water stress and

the influence of sample acquisition during two separate times of gas

acquisition [morning (9:30 a.m.) and (3:30 p.m.)] as well as the use of

machine learning to detect the absence of irrigation. The system will

provide easy handling, quick response, and a flexible tool for

pattern recognition through machine learning and artificial

intelligence techniques for severity observations and non-

destructive measurements with portability. These differential factors

highlight the advantages researchers, producers, and consultants can

use in decision-making in favor of crop management.

FIGURE 1

The block diagram of an E-nose and its components, including sensors, signal transducer, electronic system, and data processing.
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This project work aims to investigate the use of an electronic

nose and machine learning techniques to obtain non-invasive

values of transpiration in soybeans (Glycine Max), evaluate the

water stress and investigate de temporal variability.

The study conducted experiments proposing innovations in

phenotyping, presenting, and enhancing an affordable system that

employs E-Nose technology. This system allows for non-invasive and

non-destructive studies using automated instrumentation in data

collection. It is particularly useful in investigating abiotic effects

such as water stress and examining the seasonal influence of gas

emissions throughout the day. Additionally, it utilizes data mining

and machine learning techniques to extract meaningful information.

2 Materials and methods

2.1 Electronic Nose Alpha FOX 2000

An Electronic Nose, model Alpha FOX 2000 was used, which

also came with several tools in data processing and analysis

software, helping in the proposal of joining the device with the

Data Mining technology.

The equipment is built with six (06) n-type tin oxide

complementary metal oxide semiconductors (CMOS) sensors.

The quantity of catalytic metals (platinum palladium) in the tin

oxide will be influenced by their selectivity (Vernat-Rossi et al.,

1996). Table 1 lists all sensors and their main applications. They

detect the variation of the electrical resistance due to the interaction

of the gases with the semiconductor surface (FOX Analyzer -

Hardware User’s Guide, 2000).

2.1.1 E-nose measurements
The E-Nose FOX 2000 model was configured to acquire data

from the variation in electrical resistance (W) of every six sensors

over time, using the following parameters:

Acquisition duration (s): 240; Acquisition period (s): 1;

Acquisition time (s): 300; Flow rate of 150 (ml/min); Injection

Volume (μl): 500; Injection speed (μl/s): 500. The internal chamber

of the E-Nose, that there are located the sensors of the equipment

with an internal temperature adjusted to 64°C and the 0.0 (%) of the

relative humidity.

The gas sample, from the chamber, were collected using a

Syringe for Headspace 2,500 (μl) H 0,72 (G22) d 51 PTFE seal.

The precision:< ± 1% of the volume. The volume used to extract the

samples was 500 (μl) to each measurement.

2.1.1.1 Calculation used on the response of the sensors

The sensitivity S (%) for each sensor was calculated using the

following Equation (1):

S( % ) =
R − R0

R0

� �

x100         ( % )               (1)

R0– Initial electrical resistance (W);

R – Electrical resistance varying over time (W).

To analyze the data that were acquired from the E-Nose, has

been used the radar chart and the area radar from the peak of the

sensitivity [S (%)] of each six sensors were used (S1: T30/1; S2: P10/

1; S3: P10/2; S4: P40/1; S5: T70/2 and S6: PA/2). An area radar chart

is a type of radar chart that uses the area enclosed by the lines

connecting the data points to represent the values. In Figure 2, there

is a representation of the radar chart and radar area to the peak of

the sensitivity [S (%)]. The negative sign of S (%) shows that the

electrical resistance (W) of each sensor is decreasing relative to its

baseline. The information shows that the sensor is more conductive.

A higher numerical value in S (%) indicates that the sensor is more

sensitive to the gas sample it is detecting.

An area radar chart is a type of radar chart that uses the area

enclosed by the lines connecting the data points to represent the

values. In Figure 3, there is a representation of the radar chart and

radar area to the peak of the sensitivity [S (%)]. This can be useful

for comparing the overall performance of distinct data groups. Liu

and collaborators have used the method that uses radar charts to

visualize multi-dimensional data. Radar charts are a type of chart

that can be used to represent multiple variables at once (Liu

et al., 2008).

A radar chart is a graphical representation that effectively

illustrates multidimensional data by expressing the values of each

TABLE 1 The sensors installed in the E-Nose are (Wei et al., 2017).

No. Sensor Sensitivity property Reference
Materials

1 T30/1 Organic compounds Organic compounds

2 P10/1 Combustible gas hydrocarbon

3 P10/2 Inflammable gas methane

4 P40/1 Oxidizing gas fluorine

5 T70/2 Aromatic compounds methylbenyene, xylene

6 PA/2 Organic compounds and
toxic gas

Ammonia, amines,
ethyl alcohol

FIGURE 2

The variation in sensitivity of each of the six sensors in relation to
time, depending on the gas sampled and measured in the E-Nose.
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attribute in a clear and concise manner. Its 2D visualization

provides a comprehensive view of the data, making it easier to

analyze and understand its various dimensions (Peng, 2022).

The method of radar chart for Multidimensional Data:

X = {X1, X2Xj,⋯ Xn} is a multi-dimensional data set, and Xi {xi1,

xi2, xi3xiN} is a N-dimensional vector. Use the radar chart when N⩾3
(Liu et al., 2008).

A method for evaluating the accessibility of a facility location

using the area of a radar chart was provided by Takenaka and

collaborators (Takenaka et al., 2018). The authors argue that the

area of a radar chart is a more stable measure of accessibility than

other measures.

The Area of the Radar (An) was calculated with the Equation (2)

where Xi = Si {S1(%), S2(%), S3(%), S4(%), S5(%), S6(%)}.

An   ≡  
1
2
  sin  

2p
n

 o
n

i=1
xi−1*xi           ( %

2 )               (2)

2.2 Instrumented chamber

The instrumented chamber was specially designed to collect

gaseous samples while soybeans were growing. The chamber was

equipped with sensors to measure the temperature (T in °C),

relative humidity (RH in %), and CO2 concentration (CO2 in

ppm). A computer fan was also installed inside the chamber to

simulate wind (flux wind = 1 cubic feet per minute or 28.32 l/

min). This chamber was also designed to administer irrigation

without compromising insulation, with a valve connected directly

to the ground. The pot containing the soil was covered with

aluminum foil to avoid gas exchange between this medium and

the chamber.

The chamber is positioned in an open and isolated area with

solar illumination, and it is externally and internally instrumented

for monitoring.

The technique for obtaining the gas was headspace.

Chamber indoor humidity was controlled with dry air

(99% purity).

The monitoring of Temperature (°C), R.H. (%), and CO2

(ppm), both parameters measuring inside and outside of the

chamber, was performed. The sensors used were an internal

Vaisala CO2 Probe GMP252 sensor for measuring CO2 levels and

an external Vaisala CO2 Probe GMP343 model, both operating in

the range of 0 – 2,000 (ppm), an internal and an external digital

thermometer with a resolution of 0.1°C, an indoor and an outdoor

relative humidity sensor with a resolution of 0.5 (%). This

experiment’s luminosity was natural and measured through a lux

meter ranging from 0.001 (lumen/m²) to 19.9 K (lumen/m²).

Each internal sensor’s data in the chamber was obtained every

five minutes and fed to a database. Acquisition software was

developed, allowing the storage and reading of sensors in real time.

The temperature to experiment was ambient (monitored

internally in the chamber and externally). Irrigation control

occurred by calculating the desired amount of water, based on the

volumetric moisture value of the wilting soybean point, concerning

the soil used and the absence of water during the plant’s

vegetative growth.

Figure 4 illustrates the developed chamber used to allocate the

plant and extract the emanating gas to be monitored in the

experiment. The homemade chamber was built with a Poly

(methyl methacrylate) (PMMA) tube, also known as acrylic or

Plexiglas, with the Transmittance (DIN 5036, Part 3): ca. 92%

(<0.05 (%) absorption in the visible range), Refractive index (ISO

489): 1.491, Max. permanent service temperature: 70 (°C), Material

density (ISO 1183): 1.19 (g cm-3), Permeability coefficient (P0) @ 25

(°C) of oxygen 5.8 – 6.7 [(cm3 *·mm)/(m2 *·d·* atm)] and water

vapor 1.7 [(cm3 *·mm)/(m2 *·d·* atm)] (Keller and Kouzes, 2017).

The baseline was obtained with an empty chamber before

starting the soybean experiment. The Temp. (°C), R.H. (%), and

CO2 (ppm) values were measured during 03 days before including

the plant. Three measurements were performed with the E-Nose for

the volume of gas samples of 500 (μl). Measurements were always

performed at the same time as the experiment. The temperature

inside the chamber fluctuated by 4.0°C, ranging from 23.0°C to

27.0°C. The relative humidity inside the chamber displayed a

variation of 9.0%, ranging between 16% and 25%. Additionally,

the concentration of CO2 inside the chamber showed a variation of

20.0 ppmv, ranging from 250 ppmv to 270 ppmv.

2.3 Plant used in the experiment: soybean
(Glycine Max)

The Brazilian soybean cultivar (Glycine max L. Merrill) BR-16

was used, treated, and subjected to drought under controlled

conditions. The BR-16 soybean plants were irrigated during

the growth phase and then subjected to drought for nine

consecutive days.

The experiments were carried out during plant growth until the V5

stage of their vegetative cycle. Plants in V5 are approximately 25 to 30

(cm) tall and have six nodes, in which the leaves have unfolded leaflets.

FIGURE 3

The radar chart and radar area from the sensitivity (%) peak to the six
sensors (S1: T30/1; S2: P10/1; S3: P10/2; S4: P40/1; S5: T70/2 and
S6: PA/2) from the E-nose.
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Soybean specimens were studied in a laboratory environment,

under controlled conditions, and with irrigation to verify water

stress. The soil moisture for soybean emergence was between 15%

and 20%, and the pot, with the plant, was included in the

experiment chamber as was prepared.

The experiment was carried out with the soybean for 21 days

(Days After Sowing (DAS) 11 – 32). Following the steps: DAS

Irrigate: 11 – 20; DAS Not Irrigated: 21 – 32. The gas samples were

obtained in the daylight hours [morning (09:00 – 10:00 a.m.) and

afternoon (03:30 – 04:30 p.m.)].

2.4 Irrigation procedure

Irrigation was performed with Milli-Q deionized water (~12

MW*cm), through the adapted valve of the chamber.

The volume used to feed the plant was 100 (cm3) of Milli-Q

water every two days.

The irrigation described was maintained for ten days, after

which irrigation was completely stopped.

2.5 Soil

The soil used for this experiment was a dystrophic Red-Yellow

Latosol (LVAd) with the following granulometry: Clay: 369 g/kg;

Silt: 54 g/kg; Sand: 577 g/kg, with humidity at field capacity

(considered at water tension of 10 KPa) of 0.295 cm3/cm3 and

humidity at permanent wilting point (considered at water tension

of -1,500 kPa) of 0.134 cm3/cm3.

The soil sample was obtained from Embrapa National

Laboratory for Precision Agriculture (LANAPRE) at geographic

coordinates 21°57’14” S and 47°51’08” W, 860 (m).

A study carried out by Ferreira et al. (2015) would have tested

the covering of vessels with varied materials considering soybean

and demonstrated that the isolation is effective in causing water

losses to be the result only of transpiration, which was crucial to this

experiment. Therefore, the soil was isolated with aluminum foil to

reduce gas exchange between the medium of interest and the

rhizosphere, and irrigation was administered directly into the

ground. The volume of the constructed pot is Vpot = 8,100 (cm3).

The dimensions of the pot used is the height (hpot)= 24.5 (cm),

diameter (Dpot)= 14.5 (cm), and the empty pot weight 682.9 (g).

The pot with the soil and the soybean, to conduct the

experiment, was prepared with the following characteristics: dry

soil weight (pds) = 4,758 (g), the dry soil volume (Vds) = 8,090 (cm3)

and the soil density (rds) = 0.59 (g/cm3).

2.6 Data mining

The Weka™ (The University of Waikato Webpage, 2021;

WEKA WIKI, 2021) tool was used for this work, and it was

possible to apply several classification algorithms. K nearest

A

B DC

FIGURE 4

The illustration of dimension and configuration of the instrumented chamber developed and used in the experiment, (A) Diameter ext (dext) = 260
(mm), Diameter int (dint) = 250 (mm), Thickness (Th) = 10 (mm), y = 570 (mm), Total volume = 27.93 (l); (B) details of the base to the chamber; (C)
the draw of chamber assembled and (D) details of chamber that was developed with two plants of soybean growing inside. In this picture is possible
to see the sensors, the fan installed, as well the inlet and outlet of the carrier gas and valve to control the water.

Herrmann et al. 10.3389/fpls.2024.1323296

Frontiers in Plant Science frontiersin.org0634



neighbor (KNN) and the decision tree were used to evaluate the

results from the database. A total of 500 gas samples from 12

soybeans were used to obtain the measured values with the E-Nose.

The data was used to feed Weka database.

Data Mining is a subfield of machine learning that focuses on

seeking patterns and behaviors within a database (Feyyad, 1996).

Several classic data mining strategies were considered and

tested on the obtained database—for example, association

algorithms, k-means clustering, k-nearest neighbors, logistic

regression, and decision trees. The latter strategies returned

more efficient and consistent results.

Decision trees represent a classification strategy based on a

tree’s construction, where each node represents a logical test that

separates a sample into different classes through parallel cuts in

hyperplane space (Han et al., 2011; Loh, 2011).

After obtaining a well-structured and efficient tree, classifying a

sample is a relatively simple task. This is one of the significant

advantages of using this method when good results are achieved

(Han et al., 2011; Wang et al., 2023).

3 Results

Experiment was conducted over a period of three years (from

November 2017 to March 2020) and involved different soybeans

subjected to water stress. This paper considers the results obtained

from 22 days or roughly three weeks of experimentation.

Specifically, the experiment was conducted between days after

sowing (DAS) 10 to 32 for the plant. Sensors were placed both

inside and outside the chamber to record the temperature (in °C),

CO2 (ppm), R.H. (%), and LUX (external values only) during both

morning and afternoon periods. Figures 4–7 depict these results.

The x-axis on each figure shows the number of DAS from 11 to

32 DAS, while the y-axis displays the internal temperature in the

chamber during both 9:30 a.m. (morning) and 3:30 p.m.

(afternoon). The correlation between the x and y axis is

represented by a trend line visible in red (afternoon) and black

(morning), with a full red circle (afternoon) and a black square

(morning) denoting the relationship. The graphs (3-6) depict two

distinct segments of the experiment, with irrigation spanning from

the 11th to the 20th day and no irrigation from the 21st to the 32nd.

On the right-hand side of the y-axis, the temperature of the

laboratory environment in which the plant chamber is situated is

illustrated. The deep blue full circle depicts the external temperature

correlation in the afternoon, while the light green inverted square

represents it in the morning. Throughout the 31-day experiment

period after sowing (DAS), gas samples were collected at 9:30 a.m.

and 3:30 p.m. for the E-Nose (Figure 7).

The relationship between temperature, relative humidity, CO2

concentration, and soybean growth in a closed chamber while

experiencing water stress is complex and multifaceted (Smith

et al., 2010). In a closed chamber with water stress, achieving

FIGURE 7

The internal relative humidity [R.H. (%)] in a plant chamber with and
without irrigation for 31 days (about one month) after emergence
(DAS), while also showing the external R.H. (%) in the laboratory
during the morning (9:30 a.m.) and afternoon (3:30 p.m.).

FIGURE 5

The temperature measurements, both external (blue y-axis) and
internal (black y-axis), in degrees Celsius for both irrigated and non-
irrigated conditions, in the morning (9:30 a.m.) and afternoon
(3:30 p.m.).

FIGURE 6

The external CO2 concentrations (ppm) measurement on the blue
y-axis and the internal measurement (irrigated and non-irrigated) on
the black y-axis, during the morning (9:30 am) and afternoon
(3:30 pm).
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optimal soybean growth requires a delicate balance between

temperature, relative humidity, and CO2 concentration.

3.1 Internal and external temperature (°C)
of chamber versus days after sowing
of soybean

Temperature is perhaps the most crucial variable influencing

the soybean’s metabolic rate and energy allocation. High

temperatures can cause heat stress, reducing photosynthesis rates,

impaired carbon fixation, and decreased yield (Yang et al., 2023).

On the other hand, low temperatures can slow the soybean’s growth

rate and delay its development. Figure 5 shows us that there is

clearly an increase in temperature, when compared to the

temperature in the laboratory environment and the temperature

inside the camera, with the plant inside, in irrigated and non-

irrigated conditions. It is observed that the temperature is higher in

the afternoon than in the morning.

Figure 5, presents temperature (°C) readings taken at 9:30 a.m. and

3:30 p.m. throughout the experiment, highlighting the temperature

variance between the chamber and the experimental environment.

3.2 Internal and external CO2 levels (ppm)
of chamber versus days after sowing
of soybean

CO2 concentration (ppm) is a crucial variable for soybean growth

as it affects photosynthesis. High CO2 concentrations (ppm) can

enhance the soybean’s growth rate and yield, while low

concentrations can reduce photosynthesis and growth. In Figure 6,

the CO2 levels (ppm) inside and outside the chamber were measured

using an internal and an external sensor respectively, providing

insights into the experimental environment. Figure 6 shows the

level of CO2 concentration with the plant being irrigated and not

irrigated. It is observed that the CO2 level, internal to the chamber,

with the plant inside, through the trend line is below (~ 200 ppm) the

CO2 concentration in the laboratory. It is verified for the non-

irrigated period of the plant that there is a decline during the

measurements carried out in the afternoons and mornings while

the external CO2 remains practically constant.

3.3 Internal and external relative humidity
[RH (%)] of chamber versus days after
sowing of soybean

Relative humidity is also critical in soybean growth, affecting the

plant’s water balance and transpiration rates. High humidity can

increase the risk of disease and fungal infections, while low humidity

can cause water stress and reduce the soybean’s growth rate.

To examine the impact of irrigation on the internal relative

humidity [R.H. (%)] within a plant chamber, data was collected over

a 31-day period following emergence (DAS). Two sets of data were

analyzed, one with irrigation and one without. The resulting

information is presented in Figure 7 alongside the external R.H.

(%) recorded within the laboratory. The graph in Figure 7 shows the

state of relative humidity [RH (%)] external and internal to the

chamber. The behavior of RH (%), depending on the irrigated and

non-irrigated plant stage, can be seen. Relative humidity is lower in

the laboratory environment, while internally, there is a more

significant variation for this stage, which was evident than in the

non-irrigated condition. In this case, there is an increase in relative

humidity, particularly in the morning, while in the afternoon, along

the trend line (red), there is a brief decrease.

3.4 External luminosity [LUX (lumen/m²)]
versus days after planting of soybean

On Figure 8, is shows the relationship between LUX (lumen/m²)

and days after planting (DAP) for plots that were irrigated and those

that were not. The x-axis represents the number of DAP from 11 to 32,

while the y-axis represents the LUX (lumen/m²). The correlation

between the two axes is represented by a blue circle (afternoon) and

a green square (morning), both accompanied by a trend line in blue

(afternoon) and green (morning). LUX (lumen/m²) values were

obtained at 9:30 in the morning and 3:30 in the afternoon. The

figure is divided into two parts, with irrigation taking place between

days 11 and 20 and no irrigation from days 21 to 32.

3.5 Radar area (%²) measure with
electronic nose versus days after sowing
of soybean

During the 31-day experiment period following the Day After

Sowing (DAS), the Radar Area (U.A.) from the Electronic Nose (E-

Nose) was recorded and is displayed in Figure 9. The x-axis of the

graph shows the number of DAS from 11 to 32. At the same time,

the y-axis displays the Area Radar (U.A.), based on the value of the

intensity of electrical resistance (ohms), measured by six sensors,

FIGURE 8

The graph shows the environmental luminosity measured in LUX
(lumen/m2) for both irrigated and non-irrigated areas, during the
morning (9:30 am) and afternoon (3:30 pm).
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with the gas sample extracted from the chamber during both

morning (9:30 a.m.) and afternoon (3:30 p.m.). The correlation

between the x and y axis is demonstrated with a full red circle

(afternoon) and a black square (morning), with the trend line visible

in red (afternoon) and black (morning). Figure 9 is segmented into

two parts, with irrigation occurring between the 11th and 20th days

and no irrigation from the 21st to the 32nd.

In Figures 10–12 there are graphs obtained from the local

climatological station (São Carlos (SP), BRAZIL) showing the box

plot of the parameter’s temperature (°C), relative humidity (%) and

luminosity respectively, for the period (Summer 2020), where the

experiments were carried out.

The decision tree (DT) from the data mining and machine

learning (ML) was used to visualize and explicate represent decision

and decision making to the gas emanate from the plant in the state

irrigated and not irrigated. Figure 13 is showing the model to DT.

A series of experiments on twelve soybean specimens was

performed and derived a highly efficient detection device that can

accurately identify irrigation malfunctions in a staggering 94.4(%)

of cases, as confirmed by a separate efficiency test database. The

device solely relies on the data obtained from E-Nose readings,

which are acquired by sampling the gas concentrated by soybeans.

Table 2 shows the best learning results from sample classes

(rows) and machine classifications (columns).

4 Discussion

Reviewer 2: 2-3 key points for detailed discussion. Discuss the

main findings rather than simply list the literature. The discussion

FIGURE 10

The box plot analysis of the external temperature (0C) during the
period (Summer 01/2020) and total time of the experiment.

FIGURE 9

E-nose measurements of gas samples taken from a chamber
containing soybeans during the DAS, using the average of radar area
and standard deviation (n=3). The measurements are presented
based on the time of day, either in the morning (9:30 a.m.) denoted
by red circles or in the afternoon (3:30 p.m.) denoted by black
squares. Moreover, the measurements are obtained from both
irrigated and non-irrigated plants. For each DAS, gas samples are
measured three times in both periods, i.e., the morning and
afternoon to obtain the area radar measurement.

FIGURE 11

The box plot analysis of the external relative humidity (%) during the
period (Summer 01/2020) and total time of the experiment.

FIGURE 12

The box plot analysis of the laboratory luminosity (lumen/m2)
obtained during the period (Summer 01/2020) and total time of
the experiment.
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part mainly focuses on the experimental results and the verification

with mechanism analysis. Foi feito!

4.1 Instrumented chamber and analysis of
the data obtained

The displayed temperature data in Figure 5 exhibits the

temperature in both the plant inside of the chamber and

laboratory environment. This figure is separated into two

sections, one showcasing irrigation between the 11th to 20th day

and another without irrigation from the 21st to the 32nd day.

Throughout the observation period, the temperature in the

chamber is consistently higher than that of the laboratory

environment. The temperature disparity is more noticeable in the

afternoon than in the morning. The chamber’s temperature reaches

its highest point on the 11th day and its lowest on the 32nd day.

Conversely, the laboratory environment’s temperature peaks on the

15th day and hits its nadir on the 25th day.

It is worth noting that irrigation has a potentially minor cooling

impact on the chamber’s temperature by adding moisture to

its surroundings.

According to the graph provided, it can be observed that the

temperature within the chamber is controlled and differs from the

temperature in the laboratory surroundings. This variation is

primarily caused by water stress which leads to the closure of

stomata, ultimately resulting in an increase in the leaf temperature.

Mano et al. (2023) found in their works that water deficit led to

reductions in stomata size and density in both maize and soybean

leaves. These findings collectively support the idea that water stress-

induced stomata closure contributes to an increase in soybean

leaf temperature.

Based on the findings presented in Figure 6, it appears that the

enclosed chamber experienced lower CO2 concentrations compared

to the surrounding environment. This is likely due to the active

photosynthesis process of the plants, which absorb carbon dioxide

from the air. During the afternoon, when the plants were more

actively engaged in photosynthesis due to intense sunlight, CO2

concentrations within the chamber were higher. However, after

irrigation was stopped, the CO2 concentrations in the chamber

decreased, which may have impacted the plant’s ability to

photosynthesize effectively. It ’s worth noting that CO2

concentrations outside the chamber remained stable throughout

the day, possibly due to the experiment being carried out in

laboratory conditions, where environmental factors that could

affect measurements are strongly reduced.

The experiment clearly shows a difference in the amount of CO2

concentrated between the enclosed chamber and the external

environment. This discrepancy is likely due to the plants in the

chamber actively undergoing photosynthesis. When irrigation

stopped, CO2 concentrations decreased because the plants were

water-stressed and couldn’t photosynthesize as efficiently.

The influence of plant respiration on CO2 concentrations is

distinct. While CO2 levels in the lab environment remained

constant at around 450 ppm throughout the day, there was a

noticeable change when comparing irrigated and non-irrigated

plant conditions. The trend lines for CO2 concentrations

demonstrate a variation between morning and afternoon during

the irrigated phase.

In the absence of irrigation, there is a noticeable decline in CO2

levels during both morning and afternoon periods, indicating a

FIGURE 13

Decision tree learning extracted from test to plant 5.

TABLE 2 Result of the best machine obtained.

Decision Tree

Irrigated Non irrigated

Irrigated 92.7% 7.3%

Non irrigated 5.7% 94.4%
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higher release of carbon dioxide in the afternoon. However, the

difference between the two situations is around 50 ppm. The

external sensor, which serves as a reference, shows the impact of

water stress on the plant’s behavior. Low CO2 concentrations

suggest that the plants are actively absorbing CO2 from the

surrounding environment rather than releasing it (Farquhar

et al., 2001).

Higher CO2 concentrations reduce stomata opening, resulting

in decreased transpiration. This is because plants can

photosynthesize more effectively in an elevated CO2 environment,

reducing the need for stomata opening to obtain the required CO2.

Pallas in his investigation observed that increasing carbon dioxide

content caused stomata closure and reduced transpiration rate in

various plant species, including soybean (Pallas, 1965).

According to the findings illustrated in Figure 7, it was noted

that the relative humidity [R.H. (%)] inside the chamber was greater

than the R.H. (%) outside, especially in the morning. Gomes et al.

(1987) discovered that elevated R.H. (%) leads to increased stoma

opening in Theobroma cacao seedlings, implying that the internal

R.H. (%) in the chamber may have surpassed the external R.H. (%).

In the same way Arve and Torre also support this, showing that

high R.H. promotes stomatal opening in tomato leaves (Arve and

Torre, 2015). This can be attributed to the plant’s transpiration

process, which introduced moisture to the air inside the chamber.

Additionally, the R.H. (%) inside was higher during the irrigation

phase compared to the no-irrigation period, as watering the soil and

plants raised the amount of moisture in the air.

After analyzing the data presented in Figure 8 pertaining to

LUX (lumen/m2) values for 32 DAS, some noteworthy observations

can be made. The highest LUX value recorded was 5,500 (lumen/

m2), which was observed on DAS 11 in the afternoon under

irrigated conditions. On the other hand, the lowest recorded LUX

value was 1,000 (lumen/m2), which was observed on DAS 32 in the

morning under non-irrigated conditions. Across all treatments, the

average LUX value was 3,750 (lumen/m2). For irrigated conditions,

the average LUX value was 4,000 (lumen/m2), whereas for non-

irrigated conditions, it was 3,500 (lumen/m2). Figure 7 shows the

variability in terms of luminosity during the experiment period,

related to the mornings and afternoons in which the measurements

were taken.

According to the data from Figure 9, the Radar chart area (%2)

values are higher in the afternoon compared to the morning.

Daylight time can influence the gas emissions by soybean plants,

particularly in terms of photosynthesis and respiration. During the

irrigation period from 11 to 21 DAS, the Radar chart area (%2)

values of irrigated and non-irrigated plants are similar. However,

after the irrigation period ends on the 22nd day, the Radar chart

area (%2) values for non-irrigated plants start to decrease. The

increased values in the afternoon may be due to plant activity and

transpiration during the day. Additionally, the slight increase in

values over time may be due to plant growth and development.

Similar values during the irrigation period could be attributed to

adequate water supply in the soil for both groups of plants. The

different behavior of plants in irrigated and non-irrigated

conditions during the morning and afternoon periods, in non-

irrigated conditions, the plants emit gasses as they grow. However,

when the plants are under stress, the emission of gasses remains

different in the morning and afternoon. The literature review

suggests that as the plant grows from the vegetative stage (Vc) to

the V5 stage, the number of leaves and stomatal density increases,

leading to more significant gas exchanges. The study examines the

non-irrigated portion and tracks environmental factors like

temperature, humidity, internal and external CO2 levels, and

luminosity. The findings indicate that the E-Nose detected a stage

shift that aligns with previously cited research (Silva et al., 2020)

that suggests a continual increase in stomatal conductance until

soybeans reach the V3 or V4 stage.

4.2 Variation of radar area (%2) using the
electronic-nose to monitor the whole
plant under stress

When irrigation stops, non-irrigated plants may experience

water stress which can result in a decrease in Radar chart

area values.

This increase should continue if there are no interruptions in

the water supply. It is important to note that the response to the

absence of irrigation after the tenth day can vary depending on

several physiological and environmental factors. The health and

condition of the plant are crucial in this relationship, according to a

study by Rodrigues and collaborators (Rodrigues et al., 2015).

All six sensors of the E-Nose detected the gas emitted by the

plants, each with varying levels of sensitivity. Of these sensors, P10/

1 (sensor 2) and P40/1 (sensor 4) showed the highest sensitivity (%).

Table 1 reveals that P10/1 is sensitive to combustible gasses, with

hydrocarbons as the reference material, while P40/1 is sensitive to

oxidizing gasses, with fluorine as the reference material. During

irrigated conditions, from DAS 11 to 21, the peak sensitivity (%) to

sensor P10/1 was -27.97 (%) ± 4.36 (%) and from non-irrigated

conditions, from DAS 22 to 32, was -28.62 (%) ± 3.26 (%). Similarly,

for sensor P40/1, during DAS from 11 to 21, the peak sensitivity (%)

was -28.30 (%) ± 4.87 (%) and from non-irrigated conditions,

during DAS 22 to 32, was -28.88 (%) ± 3.59 (%).

Figure 9 displays the standard deviation of the values from the

radar area for irrigated and non-irrigated soybean samples. Notably,

the variance between morning and afternoon measurements is

significant, with the largest standard deviation occurring in the

afternoon time. The causes of this disparity could be attributed to

various factors, including the plant’s physiological state, the

environmental conditions during sample extraction, and the

specific growth stage of the plant or errors in the syringe

headspace. The most significant standard deviation occurred in

the afternoon. On the 22nd day of the experiment, during the

afternoon measurements, there were weather conditions that

included closed weather, rain, and rainy and cloudy conditions.

The average luminosity (lumen/m2) measure during this time was

1,350 with a standard deviation of 1,050 (n=13), around 77%

variation, much more than in the morning. In the morning the

average luminosity (lumen/m2) measure was 3,461 with a standard

deviation of 1,342 (n=11), around 39% variation. Soybeans are

classified as a C3 plant, which means they use the Calvin cycle to
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photosynthesize. Abrupt variations in light intensity can stress

soybean plants, especially affected by different light intensity

treatments (Feng et al., 2019).

In tropical countries, afternoons, compared to mornings, tend

to show a high temperature gradient, being significantly hotter. The

photosynthetic rate of plants in general (which includes soybean

plants) tends to decrease and gas exchange (respiration) increases in

higher temperatures. The greatest variances observed in the

afternoons (area radar graphs) are likely linked to greater

exchange of gases.

The outcomes from the study suggest that the E-Nose has the

potential to effectively monitor plant water stress.

The data on the climatic conditions of São Carlos (SP), BRAZIL

to Figures 10–12, were provided by the conventional meteorological

station of Embrapa Southeastern Livestock, located 21°57’42” S, 47°

50’28” W, 860m.

Figure 10 shows that the external temperature in January 2020

was relatively warm. The average temperature was above 25°C, and

the standard deviation was relatively low. This means that the

temperatures were generally consistent throughout the month.

However, there were a few days with temperatures above 34°C in

both experiments, and a few days with temperatures below 24°C.

From Figure 11 the average relative humidity was 70% with a

standard deviation of 5%. The median relative humidity was 70%,

and the interquartile range (IQR) was 10%. This means that 50% of

the relative humidity values were between 60% and 80%. The box

plot analysis shows that the external relative humidity in January

2020 was relatively high.

With the analysis of Figure 12 is possible to see that the external

luminosity in January 2020 was relatively high. The average

luminosity was 6,000 (lumen/m²) with a standard deviation of

500 (lumen/m²). The median luminosity was 5,500 (lumen/m²).

This means that 50% of the luminosity values were between 4,500

(lumen/m²) and 7,500 (lumen/m²). The upper whisker extends to

8,500 (lumen/m²) and the lower whisker extends to 3,500 (lumen/

m²). This means that there were a few days with luminosity values

above 8,500 (lumen/m²) and a few days with luminosity values

below 3,500 (lumen/m²).

The environmental conditions that were described by de data

presented from the figures in Figures 5–8, 10–12, in the DAS from

21 to 32, in which there was a lack of water and in its vegetative

growth would have several impacts on the physiology of soybeans,

particularly in terms of water stress. At the end of the experiment,

the amount of moisture in the soil {measured as gravimetric soil

moisture in percentage [qw (%)]} was determined. The sample of

the dystrophic Red red-yellow latosol (LVAd) used in this

investigation weighed 127.25 g. It was placed in an oven for 24

hours and regulated to a temperature of 102°C. After 24 hours, the

dry weight of the soil was found to be 118.81 g, and the gravimetric

soil moisture content was 7.1%.

Water stress is a significant factor affecting the physiology of

soybeans. The absence of water for 10 days would likely cause

significant stress to the soybean plants. According to the literature

(Jumrani and Bhatia, 2019) it can lead to a decrease in photochemical

quenching and electron transport rate, both of which are crucial for

photosynthesis. According to a study, the photochemical quenching

and electron transport rate in soybeans were significantly affected by

temperature and water stress. The average photochemical quenching

and electron transport rate values declined progressively as the

growing temperatures increased.

The decrease in CO2 would also affect photosynthesis, as CO2 is

a crucial component in the photosynthesis process. A lower

concentration of CO2 can limit the rate of photosynthesis,

potentially leading to reduced growth and yield.

The increase in relative humidity might help the soybean plants

cope with the lack of water to some extent. Higher humidity can

reduce the transpiration rate (water loss from plant leaves), which

may help the plants conserve water. However, it’s also important to

note that high humidity can create a conducive environment for

certain plant diseases.

The decrease in ambient light intensity would likely impact

photosynthesis as well. Light is another key component of

photosynthesis and a decrease in light intensity can lead to a

decrease in the rate of photosynthesis (Feng et al., 2019).

In response to these environmental conditions, soybeans would

likely exhibit several physiological and biochemical adaptations. For

instance, under water stress, the soluble sugar content in soybeans

increases, presumably to reduce water-deficit-induced damage

(Wang et al., 2022).

4.3 Machine learning technique, using
decision tree, from evaluate the stress

The decision tree (DT) model shown in Figure 13 is used to

visualize decision making on gas emanate from plant in irrigated

and not irrigated state. The DT is a hierarchical structure that starts

with a root node and has branches that lead to child nodes. Each

child node represents a decision point, and the branches leading

away from the child node represent the possible outcomes of that

decision. The DT terminates at leaf nodes, which represent the final

decisions that can be made.

The DT in the image starts with the root node, which asks the

question “Is regression_max_sensor 6<= 0.829849?” If the answer is

yes, then the DT goes to the left child node, which asks the question

“Is max_sensor 6<= 0.315273?” If the answer is yes, then the DT

goes to the left child node, which predicts that the plant is irrigated.

If the answer is no, then the DT goes to the right child node, which

predicts that the plant is not irrigated.

If the answer to the root node question is no, then the DT

goes to the right child node, which asks the question “Is

regression_temperature(int)<= 0.714568?” If the answer is

yes, then the DT goes to the left child node, which predicts

that the plant is irrigated. If the answer is no, then the DT goes

to the right child node, which predicts that the plant is

not irrigated.

Using advanced technology such as the E-Nose and home built

chamber, we were able to gather detailed data on plant irrigation

methods. This data was carefully analyzed using Machine Learning

algorithms, which ultimately resulted in a highly accurate detection

rate of 94.4% for identifying inefficient irrigation practices in plants.

This cutting-edge technology is revolutionizing the way we
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approach plant cultivation and ensuring that our crops are grown in

the most efficient and sustainable ways possible.

5 Conclusion

After developing techniques (E-Nose and ML), methods, and

data analysis evaluation, a distinctive water stress pattern was

identified in soybean plants. The electronic nose signals,

variations in mean and standard deviation, and machine learning

proved highly effective in distinguishing plant physiology

parameters in the whole plant, including: (i) - The growing plant;

(ii) - Two scenarios: watered plants and water-stressed plants; (iii) -

Gas collected from the chamber during DAS varied depending on

the time of day (morning to 9:30 a.m. and afternoon to 3:30 p.m.);

(iv) - The standard deviation of the radar area in each DAS, which

suggested the influence of luminosity intensity due to soybean

characteristics and variations in environmental conditions; (v) -

The potential of using machine learning and decision trees to

classify water stress status. These findings suggest that irrigation

positively impacts the Area Radar (U.A.) values of the E-Nose.

Therefore, it can be used as a non-invasive method to observe the

impact of irrigation on whole plants.

Using machine learning and decision tree to detect the absence of

irrigation with a 94.4% accuracy rate. The most common error

identified was the misclassification of irrigated samples as non-

irrigated. This type of error is considered less detrimental than

overlooking a sample experiencing water stress. This allowed for the

early identification of stress levels, which is a crucial factor in ensuring

the healthy growth of plants. Furthermore, the preliminary outcomes

acquired from the E-Nose signals and machine learning enabled the

researchers to differentiate between the irrigated plant control and the

water stress scenario and the impact of the two daylight periods.

The classifier has demonstrated stability when tested across

various scenarios, even with different soybeans subjected to varying

treatments used as the testing base. As a decision tree, it has the

potential to integrate E-Nose and chamber data effectively to

determine water stress. The practical development, implementation,

and automation of these machines can be easily achieved.

Overall, these findings have significant implications for the field of

plant science and could pave the way for more efficient and effective

affordable techniques and methods of plant monitoring and care.

The effects observed in the two periods, mainly in the afternoon,

really demand extensive research to reach an assertive conclusion.

However, it is also understood that some insights (for future work)

are useful and must be refined in the light of respiratory process

and/or the photosynthetic rate.

Further studies should be carried out with controlled luminosity,

aiming to investigate the effect of varying luminosity in a controlled

manner, as well as carrying out studies on the use of E-Nose and

machine learning with drought-tolerant wheat, one of the main

diseases of wheat, caused by Fusarium graminearum Schwabe.
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