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ABSTRACT: The growing concern about nutrient-rich diets and
health monitoring has motivated the search for simple, fast, and
effective methods for detecting important nutrients in foodstuffs. In
this scenario, colorimetric detection using nanostructures present-
ing enzymatic properties (nanozymes) has gained prominence due
to its experimental simplicity and low cost. In this work, zinc
oxide−cobalt oxide electrospun nanofibers (ZnO−Co3O4 NFs)
were combined with titanium carbide (Ti3C2Tx) MXene for the
colorimetric detection of ascorbic acid. The nanocomposite
(ZnO−Co3O4 NFs/Ti3C2Tx) presented peroxidase-like activity
with a high affinity for the chromogenic substrate 3,3,5,5-
tetramethylbenzidine and fast reaction kinetics. Taking advantage
of the catalytic properties of the developed nanocomposite, ascorbic acid was detected with high sensitivity (the limit of detection
was 0.58 μmol L−1) and selectivity, even in the presence of common interferents. The colorimetric sensor even detected ascorbic
acid in orange juice, revealing its potential to be used as a reliable and sensitive portable method for food analysis.
KEYWORDS: nanozyme, colorimetric sensor, food analysis, peroxidase-mimetic activity, titanium carbide, MXene, electrospun nanofibers

1. INTRODUCTION
Ascorbic acid (AA or Vitamin C) is a nutrient that has
antioxidant properties and plays a pivotal role in human
physiological and biochemical processes. Like other vitamins,
AA must be regularly ingested in small and precise quantities
for the body’s normal function. Its deficiency has been
associated with the development of health issues such as
scurvy1 and mental illness.2 In addition, AA exhibits a
correlation between the synthesis of collagen fibers and the
assimilation of iron by the human body.3,4 Humans ingest
Vitamin C mainly by consuming foods rich in this nutrient,
especially citrus fruits or their derived foods.5 In this scenario,
to ensure precise control over the concentration of AA in food
samples, producers necessitate expeditious and straightforward
methods for the rapid detection and quantification of AA.3,5

Many techniques have been reported for the detection of
AA, including voltammetry techniques,6−8 high-performance
liquid chromatography,9,10 electrophoresis,11,12 and chemilu-
minescence.13,14 Despite presenting high accuracy and
sensitivity, such methods usually demand sophisticated equip-
ment and highly trained personnel. In this scenario, the
colorimetric detection of AA may represent a simpler, faster,
and low-cost alternative.15,16 Due to their high catalytic
efficiency, stability, and low cost, nanozymes, i.e., nanostruc-
tures with enzyme-like activities, have been successfully
employed to design colorimetric sensors.4,17,18 The detection
is usually performed by catalyzing the oxidation of a

chromogenic substrate, e.g., 3,3,5,5-tetramethylbenzidine
(TMB), with the nanozyme and, subsequently, reducing the
oxidized substrate by adding the analyte to the reaction
medium. The color changes can be monitored, for instance, by
absorbance variations, and the concentration of the analyte can
then be determined.19,20

The catalytic performance of nanozymes is inherently
influenced by their constituent materials. Among the diverse
range of nanomaterials with reported catalytic activities akin to
natural enzymes, such as oxidases21 and peroxidases,22,23

carbon-based materials24,25 and metal oxide26,27 and metal
nanostructures28,29 have demonstrated excellent catalytic
activity.30−32 On the other hand, the utilization of MXenes
as nanozymes remains underexplored, with a limited number
of studies reporting their potential.30,33 MXenes are a new
family of 2D transition metal carbides, nitrides, and
carbonitrides with large active surface area,34 high con-
ductivity,35 and acceptable biocompatibility36 and can be
easily dispersed in water,37 making them promising materials
to compose nanostructures with enzyme-like activities.38−40
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Furthermore, combining MXene with other nanostructures can
give rise to synergic effects, which have not yet been fully
explored.
Herein, we developed a novel MXene-based nanozyme with

superior catalytic properties. Specifically, we synergistically
combined zinc oxide−cobalt oxide electrospun nanofibers
(Scheme 1a(i)) with Ti3C2Tx MXene (Scheme 1a(ii)), which

yielded a nanozyme (ZnO−Co3O4 NFs/Ti3C2Tx) with a high
peroxidase-like catalytic performance, presenting remarkable
kinetic parameters. This is the first time Ti3C2Tx MXene has
been combined with inorganic nanofibers to be used as
nanozymes. The enhanced performance can be attributed to
the composition of the materials since metal oxides have
demonstrated excellent catalytic properties, while MXenes
possess exposed active sites displaying peroxidase-like
activity.30,41 Moreover, the 1D and 2D structures of the
constituent materials give rise to a nanocomposite with a large
specific surface area. The composite displayed high sensitivity
for the colorimetric detection of AA in actual juice samples, as
illustrated in Scheme 1b.

2. EXPERIMENTAL SECTION
2.1. Materials. Zinc nitrate (Zn(NO3)2·6H2O), poly-

(vinylpyrrolidone) (PVP, Mw 1,300,000), and N,N-dimethylforma-
mide (DMF), purchased from Sigma-Aldrich, and cobalt acetate
(Co(CH3COO)2·6H2O), supplied by Synth, Brazil, were used in the
electrospun nanofiber production. TiC (99.5%, 2 μm powder), Ti
(99.5%, 325 mesh), and Al (99.5%, 325 mesh) used in the MAX
phase synthesis were purchased from Alfa Aesar. Hydrofluoric acid
(HF, 40%, Vetec), hydrochloric acid (HCl, 36%, Synth), and lithium
chloride (LiCl, Synth) were used in the MXene etching and
delamination.

Acetic acid (CH3COOH) and sodium acetate (CH3COONa) were
purchased from Synth and used in the preparation of the acetate
buffer (0.1 mol L−1, pH 4). 3,5,3′,5′-Tetramethylbenzidine (TMB)
and L-ascorbic acid (AA, ≥99%) were obtained from Sigma-Aldrich.
Hydrogen peroxide (H2O2, 35%) was purchased from Neon, Brazil.
Sodium citrate (Synth), citric acid (Synth), potassium chloride (KCl,
≥99%, Synth), sodium chloride (NaCl, ≥99%, Synth), D-(+)-glucose

(≥99%, Vetec), sucrose (Hexis), and sorbitol (D-sorbitol, 99%, Vetec)
were used in the interferent tests.

The orange juices used in the sample analysis were purchased from
a local market.
2.2. ZnO−Co3O4 NFs/Ti3C2Tx Synthesis. The Ti3AlC2 MAX

phase used in the MXene synthesis was prepared as described
elsewhere.42 Ti3C2Tx synthesis was performed by etching the Al layer
of the MAX phase, adapted from a previously reported method.43 In
the synthesis, a mixture containing 2 g of the MAX phase, 11.2 mL of
DI water, 24 mL of HCl (11.65 mol L−1), and 4.8 mL of HF (22.6
mol L−1) was stirred at 35 °C for 24 h. The multilayer MXene was
obtained by successive centrifugation steps (3500 rpm for 5 min)
until the pH of the supernatant was higher than 6. Then, the obtained
slurry was dispersed in 100 mL of a 0.5 M LiCl solution and stirred
for 24 h at room temperature. The LiCl was removed by
centrifugation (3500 rpm for 5 min), and the delaminated Ti3C2Tx
was collected when the supernatant started to become a black color.

To produce the ZnO−Co3O4 electrospun NFs, 0.5 g of PVP, 0.4 g
of Zn(NO3)2·6H2O, and 0.2 g of Co(CH3COO)2·6H2O were
dissolved in 5 mL of DMF under stirring for 6 h at room temperature.
The nanofibers were prepared by electrospinning on an electric field
of 20 kV, a working distance of 6 cm, and a feed rate of 0.3 mL h−1.
Subsequently, ZnO−Co3O4 nanofibers were synthesized by calcinat-
ing the precursor fibers at 500 °C for 4 h in a muffle furnace with a
heating rate of 10 °C min−1.

The ZnO−Co3O4 NFs/Ti3C2Tx composite was obtained by adding
60 mg of the nanofibers and 0.8 mL of a 1 mg/mL Ti3C2Tx dispersion
to 3.2 mL of water. Then, bath sonication (5 min) was used to ensure
the dispersion of the materials.
2.3. Physicochemical Characterization. A Scanning Electron

Microscope (SEM, FEI Magellan 400 L, USA) was used to evaluate
the morphology of the materials, which were deposited onto a silicon
substrate by drop-casting. Energy Dispersive X-ray Spectroscopy
(EDS) was performed using a SEM instrument (JEOL, JSM 6510,
Japan). The nanocomposite was deposited on a silicon substrate. X-
ray diffraction (XRD) measurements were carried out in a Shimadzu
XRD-6000 diffractometer (Japan) using the MAX phase powder and
the vacuum-filtrated Ti3C2Tx films. The experimental parameters were
Cu Kα radiation (λ = 0.154059 nm), 30 kV, and 30 mA (Shimadzu
XRD-6000). X-ray photoelectron spectroscopy (XPS) measurements
were performed with the material’s powder on an ESCALAB-MKII
spectrometer (excitation source of 1486.6 eV). Fourier transform
infrared (FTIR) spectroscopy was carried out on a Bruker Vertex 70
spectrometer (USA). 64 scans were collected from 4000 to 400 cm−1

using the attenuated total reflectance (ATR) mode and the materials’
powder.
2.4. Peroxidase-Like Activity of ZnO−Co3O4 NFs/Ti3C2Tx. To

evaluate the peroxidase-like activity of the nanomaterials, UV−vis
time-dependent kinetic studies were performed to monitor changes in
the solution color associated with oxidation of the TMB chromogenic
substrate. The kinetic constants were calculated using the Michaelis−
Menten equation44,45

S
K S

max

m
= [ ]

+ [ ] (1)

where νi and νmax are the initial and maximum reaction velocities, Km
is the Michaelis−Menten constant, which is associated with the
affinity of the nanozyme for the substrate, and [S] represents the
substrate concentration.30 The tests were carried out in acetate buffer
solution, which was used to correct the final volume to 2 mL. To
evaluate the affinity with TMB, 15 μL of the nanozyme dispersion (15
mg mL−1) and 200 μL of H2O2 (1 mol L−1) were added to the buffer
solution, and the TMB concentration was varied from 0.05 to 0.7
mmol L−1. To estimate the affinity with H2O2, 15 μL of the nanozyme
solution (15 mg mL−1) and 10 μL of TMB (5 mg mL−1) were used,
and the H2O2 concentration varied from 0.05 to 1.0 mol L−1. UV−vis
spectra were collected from 320 to 750 nm, and the absorbance at 652
nm, the wavelength used to monitor the TMB chromogenic reaction,
was recorded with 45 s time intervals.45,46

Scheme 1. (a) Schematic Illustration of the (i) ZnO−Co3O4
NFs and (ii) Ti3C2Tx Syntheses; (b) Peroxidase-Like
Activity of the ZnO−Co3O4 NFs/Ti3C2Tx Nanozyme and
Colorimetric Detection of Ascorbic Acid
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To calculate the kinetic parameters (νmax and Km), the collected
data were fitted by the Lineweaver−Burk plot:46

K
S K

1 1 1m

max m
=

[ ]
+

i
k
jjjjj

y
{
zzzzz (2)

The Beer−Lambert Law was used to convert the absorbance data to
the concentration [S].
2.5. Colorimetric Detection of Ascorbic Acid. The detection of

AA was carried out by monitoring the fading of the blue oxidized
TMB (oxTMB) solution after AA addition. In the process, 15 μL of
the nanozyme dispersion was added to an acetate buffer solution
containing 0.4 mol L−1 of H2O2 and 0.1 mmol L−1 of TMB. The
solution was incubated for 15 min, and then the absorbance of the
blank (A0) at 652 nm was recorded. Next, a certain concentration of
AA was added to the solution, and the absorbance was again recorded
at 652 nm after 1 min (A1). A concentrated AA solution (0.1 mol L−1)
was used to avoid dilution effects. A calibrated curve was obtained
using the concentration of the AA added and the difference in the
absorbance recorded before and after AA addition (ΔAbs = A0 − A1).
The limit of detection (LOD) was calculated using the 3σ/S ratio, in
which σ is the standard deviation of the lowest concentration of AA
added and S is the slope of the calibration curve.18 The interferent
tests were performed using the same procedure but using a fixed
concentration of interferents (500 mmol L−1).
2.6. Real Sample Analysis. The feasibility of AA detection by the

ZnO−Co3O4 NFs/Ti3C2Tx nanozyme was evaluated by using
commercial orange juices: fresh orange juice, carton orange juice,
and orange juice powder. The orange juice from the powder was
prepared according to the instructions on the packaging. Before use,
juice samples were filtered using a 0.22 μm pore size membrane
(Macherey-Nagel) and diluted 50 times with the acetate buffer
solution. The same procedure described in the last section was used
with spiked and nonspiked samples. The recovery of AA was
calculated using the calibration curve obtained previously.

3. RESULTS AND DISCUSSION
3.1. Materials Characterization. XRD characterization

was carried out to confirm the Ti3C2Tx MXene synthesis and
formation of the ZnO−Co3O4 NFs. Figure S1a shows the XRD

pattern of the Ti3AlC2 MAX phase and the Ti3C2Tx film. While
the Ti3AlC2 pattern presents all the crystallographic peaks, the
MXene shows only the (00l) peaks, confirming the etching and
delamination of the MAX phase.47 Also, the (002) peak shifted
from 9.5° to 7.7°, indicating a higher interlayer spacing of
MXene, contributing to a greater available surface area. The
XRD pattern obtained for the ZnO−Co3O4 NFs (Figure S1b)
shows typical diffraction peaks of the ZnO wurtzite structure
(JCPDS no 36-1451) and Co3O4 cubic phase (JCPDS no 42-
1467), confirming the crystalline structure obtained after the
annealing.48,49 No additional peaks were observed, which
indicated the absence of impurities.

The morphologies of the MXene, the nanofibers, and the
nanocomposite were evaluated by SEM (Figure 1) and TEM
(Figure S2). As shown in Figure 1a,d and Figure S2a, isolated
Ti3C2Tx flakes were obtained after etching and delamination.
The flakes presented defined edges with no apparent defects,
indicating a high-quality MXene.50 The ZnO−Co3O4 NFs,
shown in Figure 1b, presented a mean diameter of 129 ± 24
nm (n = 50 measures). In Figure 1e, one can see more clearly
the wrinkled surface of the obtained nanofibers due to the
formation of ZnO and Co3O4 nanoparticles. The TEM image
of a ZnO−Co3O4 NF (Figure S2b) reveals the crystalline
structure of the metal oxides wrapped in a thin layer of carbon.
The interaction of the MXene with the nanofibers can be
visualized in Figure 1c and f, in which it is possible to observe
nanofibers located either onto the MXene layers (Figures 1c)
or involving them (Figure 1f).

EDS analysis was employed to investigate the composition
of the nanocomposite. As shown in Figure S3, besides the C
and O elements present in both materials, the images revealed
the presence of Co and Zn from the ZnO−Co3O4 NFs and Ti
from the MXene. The images also show that the constituent
materials of the nanozyme are evenly distributed, indicating
that the nanocomposite was successfully synthesized.

The nanocomposite was also characterized by FTIR and
XPS (Figure S4). The Ti3C2Tx FTIR spectrum presents bands

Figure 1. SEM images of (a and d) Ti3C2Tx MXene flakes, (b and e) ZnO−Co3O4 NFs, and (c and f) ZnO−Co3O4 NFs/Ti3C2Tx nanocomposite.
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related to hydroxyl groups at 1651 cm−1 and between 3200
and 3600 cm−1, which can be ascribed to adsorbed water on
the MXene surface. The peaks at 2927 and 2852 cm−1 are
related to symmetric and asymmetric stretching vibrations of
C�H bonds, while the peak at 1090 cm−1, attributed to the
stretching vibration of the C�F bond, indicates a function-
alization of the MXene surface during etching.51,52 The
deformation vibration of the Ti�O and Ti�C bonds can
be ascribed to the bands at 634 and 573 cm−1, respectively.52,53

The ZnO�Co3O4 NF spectrum presented bands centered at
2348, 1578, and 1410 cm−1 attributed to the C�N, C�O,
and C�C bonds, respectively, due to the presence of residual
surface carbon in the nanofibers.54,55 The bands between 535
and 760 cm−1 can be ascribed to the Zn�O and Co�O
vibrations.56−58 The nanocomposite spectrum presents the
same bands of the constituent materials and does not present
any additional peak. Minor shifts of the C�O and C�C
bands can be ascribed to the interaction between the materials
by van der Waals forces, indicating the success in obtaining the
nanocomposite.59

The XPS Ti3C2Tx survey spectrum shows peaks related to
Ti, C, O, F, and Cl elements (Figure S4b). While Ti and C are
from the structure of the MXene, O, F, and Cl can be present
as surface terminations.47 The MXene Ti 2p high-resolution
spectra (Figure S5a) also show peaks related to the Ti−C
bonds and from adsorbed oxygen onto the MXene surface.60,61

The survey spectrum of the nanofibers (Figure S4b) shows a C
1s peak related to the residual surface carbon structure, Zn, Co,
and O peaks from the metal oxide phases. The ZnO−Co3O4
NFs/Ti3C2Tx nanozyme spectrum presented only the peaks
associated with the ZnO−Co3O4 NFs, probably due to the
smaller amount of MXene in the nanocomposite. The high-
resolution Zn 2p and Co 2p spectra are presented in Figure
S5b and c. The Zn 2p spectrum has two sharp peaks centered
at 1045 and 1022 eV related to the Zn 2p1/2 and Zn 2p3/2,

respectively, indicating the presence of Zn2+. The energy
difference between the two peaks was found to be 23.1 eV, in
accordance with other works.62,63 The Co 2p spectrum could
be deconvoluted in peaks related to Co3+, Co2+, and their
satellite peaks, indicating that Co is present in two different
oxidation states at the NF surface.64 The Zn 2p and Co 2p
spectra of the nanocomposite (Figure S5d and e) did not show
remarkable changes after combining the MXene with the NFs,
indicating their stability.
3.2. Peroxidase-Like Catalytic Activity. The peroxidase-

mimetic ability of the ZnO−Co3O4 NFs/Ti3C2Tx nanozyme
was evaluated by monitoring the conversion of the TMB
substrate in its oxidized form, which presents a blue color.
Besides the nanocomposite, the isolated materials were also
tested. As shown in Figure S6a, ZnO−Co3O4 NFs and Ti3C2Tx
presented some peroxidase-like activity. These properties can
be mainly ascribed to the different valence states of the metal
atoms of the nanofibers and the exposed active sites of the
Ti3C2Tx MXene.30,41 However, the constituent materials alone
gave an inferior performance compared to that of the hybrid
material. Notice that the performance of the ZnO−Co3O4
NFs/Ti3C2Tx nanozyme is greater than the sum of the
performances of the isolated materials (ca. 85% of the ZnO−
Co3O4 NFs/Ti3C2Tx performance). This suggests that a
synergistic effect is obtained by combining the nanofibers
with MXene, giving rise to a nanocomposite with superior
catalytic activity. The synergistic effect is probably due to the
novel architecture formed when combining the nanomaterials.
The van der Waals forces between the ZnO−Co3O4 NFs and
the MXene can lead to more suitable conformations, giving rise
to a nanocomposite with a higher specific surface area and a
superior performance.18,65

Different ratios of ZnO−Co3O4 NFs and Ti3C2Tx were
tested in preliminary experiments (results not shown). The
ratio used in this investigation was found to present higher

Figure 2. Catalytic kinetics of the ZnO−Co3O4 NFs/Ti3C2Tx nanozyme as peroxidase mimicking. Michaelis−Menten curves for different amounts
of (a) TMB and (b) H2O2 and Lineweaver−Burk plots for (c) TMB and (d) H2O2 with the respective values of νmax and Km parameters.
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catalytic activity. As shown in Figure S6a, MXene presents an
inferior peroxidase-like performance; therefore, ratios contain-
ing higher amounts of MXene led to a decrease in the
nanocomposite activity. Since there is a synergistic effect by
combining the materials, the optimum amount of MXene was
used to take advantage of the synergistic effect without
compromising the nanozyme performance.
The performance of the ZnO−Co3O4 NFs/Ti3C2Tx nano-

zyme was also evaluated at different pH values. As observed for
other nanozymes,4,66,67 the peroxidase-like activity is higher at
pH 4 (Figure S6b). The higher activity at acidic pH values can
be mainly ascribed to a buffer coating formation over the
nanozyme surface. At this pH, the TMB is partially positively
charged and remains attached to the outer coating of the
nanozyme. In contrast, the H2O2 passes through the buffer
coating, reaching the nanozyme surface, decomposing into ·
OH radicals that oxidize TMB.68 Based on these results, all of
the hereafter experiments were carried out using buffer acetate
with pH 4.
The Michaelis−Menten model was used to estimate the

performance of the nanozyme by calculating the νmax and Km
kinetic parameters (eq 1).45,46 Figure S7 (a) and (b) shows the
TMB and H2O2 reaction evolution catalyzed by the ZnO−
Co3O4 NFs/Ti3C2Tx nanozyme, respectively. The curves were
used to calculate the initial reaction velocity (νi) of the
Michaelis−Menten model. The Michaelis−Menten curves and
the Lineweaver−Burk (eq 2) plots obtained are shown in
Figure 2a,b and c,d, respectively.
Figure 3 shows a comparison between the peroxidase-like

performance toward TMB oxidation of the ZnO−Co3O4 NFs/

Ti3C2Tx nanozyme and other reported materials as well as the
natural horseradish peroxidase (HRP) enzyme. Km is used to
estimate the affinity of the nanozyme for the substrate�lower
values indicate higher affinity.30,31 Therefore, the further to the
left in the graph, the greater the interaction of the nanozyme
with the TMB substrate. The ZnO−Co3O4 NFs/Ti3C2Tx
nanozyme presented a Km value of 0.136 mmol L−1 for
TMB, indicating an affinity for the substrate higher than those
of most similar nanozymes recently reported. Also, ZnO−
Co3O4 NFs/Ti3C2Tx presented fast kinetics with a νmax value
of 33.1 × 10−8 mol L−1 s−1, indicating high reactivity of the

nanozyme toward TMB oxidation. Moreover, the obtained
kinetic parameters for the ZnO−Co3O4 NFs/Ti3C2Tx nano-
zyme are superior to those of natural HRP. The νmax and Km
values are presented in Table S1, as well as the values for H2O2
as a substrate.
3.3. Ascorbic Acid Detection. Given the good peroxidase

mimicking performance obtained, the nanozyme was then used
to detect AA. The detection is possible due to the chromogenic
reaction of the TMB substrate and the peroxidase-like activity
presented by the ZnO−Co3O4 NFs/Ti3C2Tx nanocomposite.
In the presence of the nanozyme and H2O2, the substrate is
oxidized to oxTMB, which gives a blue color (Figure S8a).
Upon addition of AA, the analyte reacts with oxTMB,
producing TMB, causing color fading and dehydroascorbic
acid, as illustrated in Scheme 1b. Since this color change is
proportional to the amount of AA added, its detection can be
performed by monitoring the absorbance value change at 652
nm.

Figure 4a shows a linear relationship between the amount of
AA added and the ΔAbs recorded at 652 nm. The calculated
LOD (3σ/S) was found to be 0.58 μmol L−1. The comparison
of ZnO−Co3O4 NFs/Ti3C2Tx composite sensitivity toward AA
detection with other nanozymes is presented in Table 1. Since
different nanozyme compositions give rise to particular
kinetics, i.e., unique values of Km and νmax, the performance
is expected to vary according to the nanozyme used. The LOD
obtained in this work is comparable or even superior to
recently reported values achieved using similar peroxidase-like
nanozymes. Moreover, unlike other techniques used to detect
AA, such as electrochemical,79,80 high-performance liquid
chromatography,81 and electrochemiluminescence,82 the col-
orimetric method reported here does not require sophisticated
equipment, besides being simpler and faster.

Aiming to employ the material to detect AA in actual food
samples, possible interferent tests were performed using
substances commonly found in juice, including sodium citrate,
citric acid, KCl, NaCl, glucose, sucrose, and sorbitol. As can be
seen in Figure 4b, the addition of interferents at 500 μmol L−1

did not show significant changes in the absorbance values at
652 nm, while the addition of 100 μmol L−1 of AA led to a
total fading of the blue color solution. Such behavior can be
visualized in Figure S8b,c, in which digital pictures of the TMB
solution are displayed immediately after and 1 min after adding
the AA and the interferents.
3.4. Real Sample Analyses. Tests with interfering agents

demonstrated the potential of the as-developed nanozyme
system for AA detection in food samples. For this, orange juice,
known to have a significant AA content, was chosen as a
sample. Three commercial juices were tested: fresh orange
juice, carton orange juice, and orange juice from powder. Table
2 shows the amount of AA found in each orange juice sample
and the recovery obtained after the addition of the analyte.
The measurements were performed in triplicate. All the
recovery values were close to 100%, indicating the capacity of
the sensor to estimate the amount of AA in actual food samples
within varied concentrations in an easy, low-cost, and
expedited way.

4. CONCLUSIONS
Herein, ceramic electrospun nanofibers (ZnO−Co3O4 NFs)
were combined with Ti3C2Tx MXene to obtain a material with
peroxidase-like catalytic activity. The nanocomposite was
thoroughly characterized, and its performance as a nanozyme

Figure 3. Comparison of the catalytic kinetic parameters (Km and
νmax) of the ZnO−Co3O4 NFs/Ti3C2Tx with other peroxidase-like
nanozymes and the natural HRP for TMB. GQDs/CuO,69 Pan/
CuO,4 CNT/FeNC,70 Pd−Pt−Ru,66 CP600−6,

67 CP10000−6,
67 Fe1,5−

N−GDY,71 Fe55−N−C,72 Pt/ZnCo2O4,
73 Mn@Co3O4 NSs,74 IrO2/

GO,3 Por−CoMoO4,
75 Cu9Bi1 aerogel,76 Zn/Mo DSAC−SMA,77

HRP.78
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was evaluated, showing a synergic effect of ZnO−Co3O4 NFs
and the Ti3C2Tx. The kinetic parameters revealed a high
affinity of the nanozyme toward the TMB substrate (Km of
0.136 mmol L−1) and a fast reaction rate (νmax = 33.1 × 10−8

mol L−1 s−1). The composite material was used to detect
ascorbic acid by changing the oxidation state of the
chromogenic TMB substrate. A low limit of detection of
0.58 μmol L−1 was obtained, and tests in real orange juice
samples demonstrated the potential of the ZnO−Co3O4 NFs/
Ti3C2Tx nanozyme to be used in the detection of ascorbic acid
in juice simply and reliably with high accuracy. The results
pave the way for future detection and monitoring of ascorbic
acid concentrations in food and other environments, such as in
body fluids.
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Table 1. Comparative Performance of ZnO−Co3O4 NFs/
Ti3C2Tx with Other Peroxidase-Like Nanozymes for AA
Detection in Acetate Buffer

Nanozyme
Linear Range
(μmol L−1)

LOD
(μmol L−1) Ref.

Pan/Cuo 1−180 0.56 4
CNT/FeNC 0.1−10 0.03 70
Pd−Pt−Ru 2−12 1.13 66
d-CoFe-LDHs 20−625 3.6 83
CP600−6 0.8−80 35 67
Mn@Co3O4 1−8 0.4 74
Pt/ZnCo2O4 1−15 0.456 73
IrO2/GO 5−70 0.324 3
Fe−CuO 5−50 4.66 84
Fe3O4/CoFe-LDH 0.5−10 0.2 85
Cu9Bi1 aerogel 0.3−0.9 0.059 76
Pd−Pt−Ir 25−800 11.7 86
ZnO−Co3O4 NFs/Ti3C2Tx 2.5−100 0.58 This

work

Table 2. Determination of AA in Orange Juice Samples Using the ZnO−Co3O4 NFs/Ti3C2Tx Nanozyme

Fresh orange juice Carton orange juice Orange juice from powder

Added
(μmol L−1)

Found
(μmol L−1) Recovery (%)

Added
(μmol L−1)

Found
(μmol L−1)

Recovery
(%)

Added
(μmol L−1)

Found
(μmol L−1)

Recovery
(%)

0 9.3 ± 0.4 0 7.2 ± 0.1 0 2.8 ± 0.3
24 32.5 ± 0.8 98.5 ± 2.4 24 29.9 ± 0.8 96.4 ± 2.6 24 26.8 ± 0.8 99.3 ± 2.9
64 73.3 ± 1.2 100.5 ± 1.7 64 70.6 ± 0.9 99.5 ± 1.3 64 66.1 ± 1.1 98.6 ± 1.7
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