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Napier grass (Cenchrus purpureus) is a C4 perennial grass species native to Sub-Saharan Africa and widely used as livestock feed in the 
region. In this study, we sequenced the genomes of 450 Napier grass individuals from 18 countries, identifying over 170 million DNA 
variants (SNPs and Indels). Approximately 1% of these SNPs were informative and used to assess genetic diversity within the collection. 
Our resequencing study provided valuable insights into the global genetic diversity of Napier grass. Additionally, a genome-wide asso-
ciation study on 2 independent populations identified multiple quantitative trait loci significantly associated with key agronomic traits, 
including biomass yield, nitrogen and cellulose content. These findings serve as a crucial resource for preserving and understanding 
Napier grass genetic diversity in the context of climate change. Moreover, they will support genomics-based breeding programs aimed 
at developing high-yielding and drought-tolerant varieties for forage and biofuel production.
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Introduction
Globally, grasslands cover 26% of the land area, 70% of agricultur-
al land, and play an important role as livestock feed, particularly 
in Sub-Saharan Africa (SSA) (FAO 2010). In SSA, popular grasses 
include Cenchrus, Urochloa, and Megathyrsus species and these 
grasses are critically important for smallholders and frequently 
used by women to maintain the livestock production systems 
(Njuki and Sanginga 2013; Simeão et al. 2021). Unfortunately, an-
nual milk and meat production in SSA remains low compared to 
the global average (Balehegn et al. 2021). One of the significant rea-
sons behind the below-par productivity of the livestock industry is 
the inadequate access to quality feeds and forages, worsened re-
cently by the risks associated with climate change (Balehegn 
et al. 2020; Paul et al. 2020). Most small-scale livestock farmers in 
SSA rely heavily on natural common grazing lands as their 

primary source of forage and feed supply, mainly available during 
the rainy seasons (Hanan and Kahiu, 2016). Unfortunately, such 
grazing lands are dwindling because of the inevitable population 

increase, climate change, and more land being allocated for food 

crops (Tolera 2007; Smith et al. 2013; Enahoro et al. 2019). 

Consequently, livestock farmers are now more in need of product-

ive, high quality and resilient forage varieties to support their 

livestock.
Napier grass or Elephant grass [Cenchrus purpureus (Schumach.) 

Morrone syn. Pennisetum purpureum Schumach.] is a crucial trad-

itional forage species in SSA, growing mainly up to 2,000 m above 

sea level in the tropics (Habte et al. 2020; Mkutche 2020). It is pri-

marily used to feed cattle in cut and carry feeding systems in 

Ethiopia, Kenya, Uganda, Tanzania, and Nigeria (Mwendia et al. 

2006), because of its low cost of production, year-round 
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availability under limited irrigation, and some degree of resilience 
against drought (Habte et al. 2020; Muktar et al. 2022). Due to its 
high biomass yield and desirable nutritional traits, Napier grass 
has recently garnered interest as a candidate for bio-based pro-
ducts and biofuels in tropical and semitropical regions of the 
world, such as the USA and Brazil (Anderson et al. 2008; Rocha 
et al. 2019; Sawasdee and Pisutpaisal 2021). Once established in 
the main production field, Napier grass can grow and be main-
tained for decades under good management practices, yielding 
up to 50 tons of dry matter (DM) ha−1 per year (Habte et al. 2020; 
Dokbua et al. 2021). Because of its adaptability, persistence, and 
versatility, it has been naturalized to Central and South 
America, the tropical parts of Asia, Australia, the Middle East, 
and the Pacific Islands (Fukagawa and Isshi 2018).

Napier grass has the potential to be included in the mainstream 
feed chain, particularly in the tropics, if research is focused on this 
species, it can also contribute to energy requirements for current 
and future generations. Unfortunately, Napier grass remains an 
underutilized crop with limited genetic and genomic tools devel-
oped to date and few cultivars available for farmers. The first ref-
erence genome was reported in 2020 (Yan et al. 2021) and a second, 
improved 1 was reported in 2022 (Zhang et al. 2022). The availabil-
ity of these reference genomes facilitates the generation of mo-
lecular markers by elucidating their genomic positions. Here, we 
report on a species-level whole-genome sequencing (WGS) study 
of a global collection of 450 genotypes. We analyzed the collec-
tion’s diversity to explore how breeding, selection, and environ-
mental pressures have shaped the Napier grass genome in the 
international collections. We also analyzed the genomic regions 
associated with important agronomic traits, such as fresh bio-
mass yield and plant height, and nutritional feed-quality traits, 
such as crude protein content. Thus, the genomic tools developed 
in this study will enable forage breeders to apply advanced plant 
breeding procedures such as genomic selection and marker- 
assisted breeding, which have been lacking to date for Napier 
grass. Furthermore, new perspectives from the study should 
benefit conservation efforts worldwide.

Materials and methods
Napier grass field evaluation
Phenotype data were assessed from 2 collections of Napier grass 
genotypes which were independently evaluated in this study. 
The first collection consisted of 84 genotypes conserved at the 
International Livestock Research Institute (ILRI) genebank which 
was evaluated in Bishoftu, Ethiopia for 2 consecutive years, in a 
P-rep design, replicated twice. Details of the field evaluation 
have previously been reported (Habte et al. 2020; Muktar et al. 
2022). Briefly, 84 genotypes (72 unique and 12 check genotypes) 
were arranged into 4 blocks with 2 replicates. The 12 check geno-
types were duplicated in each block, while the remaining 72 gen-
otypes appeared only once. The first 2 blocks (first replicate) were 
subjected to a volumetric soil water content (VWC) of approxi-
mately 20%, referred to as moderate water stress (MWS). In con-
trast, the other 2 blocks received less water, resulting in a VWC 
of about 10%, referred to as severe water stress (SWS). The second 
collection of 91 Napier grass genotypes was evaluated at the 
Embrapa Dairy Cattle experimental field, located in Brazil, and 5 
cuttings were conducted between 2014–2016 in both wet and dry 
seasons. Rocha et al. (2019) described in detail these evaluations 
that were done in natural conditions. Nine genotypes (BA17, 
BA30, BA34, BA53, BA81, BA86, BA93, BA97, and Pioneiro (released 
cultivar)) were shared between these 2 trials. In both trials, the 

planting materials used were clonally propagated from original 
mother plants conserved in situ. Throughout the experimental 
period, the plants were harvested every 6–8 weeks, and no flower-
ing was observed during the experimental period.

Phenotyping of agronomic and feed quality traits
The following agronomic traits were measured for the trial carried 
out in Ethiopia: leaf length (LL, mm), leaf width (LW, mm), 
leaf-to-stem ratio (LSR), stem thickness (ST, mm), tiller number 
(TN), and biomass yield data (total fresh weight [TFW, g] and total 
dry weight (TDW, g) were collected as described previously in 
Habte et al. (2022). Water use efficiency (WUE) was also calculated 
by dividing the TDW per plant by the total volume of irrigated 
water applied to each plant during the dry season. Likewise in 
Brazil, plant height (PH, m), production of TFW (Mg ha−1), produc-
tion of TDW (Mg ha−1), and DM concentration (%) were scored. 
Furthermore, 9 feed-quality nutritional traits including acid de-
tergent fiber (ADF), neutral detergent fiber (NDF), lignin (LIG), cel-
lulose (CEL), hemicellulose (HCEL), in vitro dry matter digestibility 
(IVDMD), ash (ASH), and nitrogen content (NIT) were also scored 
in Brazil. The DM concentration recorded for agronomic traits 
was used as a common denominator for estimating of biomass di-
gestibility. Further details can be found in Rocha et al. (2019).

Phenotypic data analysis
Collected phenotypic values for each trait were checked for nor-
mal distribution and transformed, when needed, ahead of vari-
ance comparison using the bestNormalize R package (Peterson 
2018). Phenotypic variability between genotypes was calculated 
with R statistical software (R Core Team R 2022) using the model:

E · R + E · R · B + G + G · E where E, R, B, and G denote environ-
ment, replicate, incomplete block, and genotype, respectively. 
Environment effects and replicate effects nested within the environ-
ment, both represented by (E·R), were taken as fixed. In contrast, the 
block effect nested within the replicate and environment and the 
genotype-by-environment interaction (G·E) were taken as random. 
The main genotype effect (G) was taken as random. Analysis of vari-
ance (ANOVA) and multiple comparison tests (LSD) were conducted 
at a probability level of 5%. Furthermore, phenotypic data were used 
to carry out hierarchical clustering and principal component ana-
lysis (PCA) using the Factoextra R package (Kassambara 2017). 
Correlation analysis was also carried out between all the variables 
measured in the field evaluation in Brazil.

Sequenced worldwide Napier grass collection
A total of 450 Napier grass genotypes were sequenced and deposited 
as bioproject PRJEB73794: 61 from the ILRI genebank, 131 from 
Embrapa, 23 from the USDA, 6 from China (Lanzhou University), 
118 from the Kenya Agricultural and Livestock Research 
Organization, and 2 released cultivars, namely Super Napier (G1) 
and Pioneiro (PION). In addition, 109 progeny plants (generated 
from seeds collected from 14 ILRI genotypes (mother plants) by 
open pollination were sequenced. The progenies were from open 
pollinated plants in the field and the pollen donor genotypes were 
unknown. All mother plants were represented by 6–10 progenies 
except for 1 mother plant (IL18438), which a single progeny repre-
sented. More information about these genotypes can be found in 
Supplementary Table 1: metadata.

DNA extraction and sequencing
Young leaf tissue was collected from respective genotypes and 
subjected to isolation of genomic DNA following the procedure de-
scribed in the Qiagen DNeasy Plant Mini kit (250) (Qiagen Inc., 
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Valencia, CA, USA). Before library preparation, DNA quality was 
checked on 1% agarose gels, and DNA purity was checked using 
a Nanophotometer spectrophotometer (IMPLEN, CA, USA), and 
DNA concentration was measured using the Qubit DNA Assay 
Kit in a Qubit 2.0 Fluorometer (Life Technologies, CA, USA). 
High-quality DNA with a minimum of 50 ng/µL was used for 
Illumina WGS. The genotypes were sequenced using Illumina 
technology using paired-end 2 × 150 bp short-reads. A total of 
4.92 Tb of data were generated, with an average sequencing depth 
of 15–20 × per sample. Library preparation and sequencing were 
conducted by Novogene (https://en.novogene.com).

Read mapping, SNP calling, and filtering
The quality of raw reads was checked using the FastQC (Andrews 
2010) and MultiQc tools (Ewels et al. 2016). Afterwards, raw reads 
were trimmed and filtered with the trimmomatic tool (Bolger et al. 
2014) to remove Illumina Truseq adapter remnant sequences, as 
well as low-quality reads (with a quality score lower than 30). 
Curated reads were mapped against the Napier grass reference 
genome with the Burrows Wheller Aligner (BWA) (Li and Durbin 
2009). The SAM files generated from the BWA step were converted 
into sorted BAM files using SAMtools (Li et al. 2009). The 
HaplotypeCaller tool, Genome Analysis Toolkit (GATK4.4), was 
used for the variant calling step with default parameters 
(McKenna et al. 2010). The generated vcf file, from the variant call-
ing step, was filtered and pruned with BCFtools (v.1.9) (Li et al. 
2009). The SNP filtering process retained biallelic and polymorphic 
loci with read depths between 10 and 300, mapping quality (GQ >  
20), a minor allele frequency above 0.05, and missing data in less 
than 1% of the samples. After filtering, 1,068,685 SNPs were re-
tained for downstream analysis.

Genetic diversity and population structure
The population structure analysis tool, ADMIXTURE (v1.3.0) 
(Alexander and Lange 2009), was used to infer optimal cluster/ 
subpopulations (K ) and the proportion of ancestry among the 
450 global Napier grass genotypes, with the filtered SNPs. Ten in-
dependent runs were carried out for maximum likelihood esti-
mates of the ancestry subgroups (K ) from 2 to 10. For each K, 
ADMIXTURE was run 20 times with varying random seeds. 
Afterwards, CLUMPP software (Jakobsson and Rosenberg 2007) 
was used to align up to 10 Q-matrices in the same cluster. The 
number of ancestors was determined according to the position 
of the minimum value, with an error rate obtained from the cross- 
validation (CV) score. A good value of K will exhibit a low CV error 
compared to other K values. Outputs from ADMIXTURE were col-
lated using the R pophelper program (v.2.3.1) (Francis 2017), which 
compares the ancestral make-up of each predicted population.

Using genotypic data, PCA was performed to examine inter- 
population distribution using the SNPRelate (v. 4.0.2) (Zheng 
et al. 2012) and Plotly R packages (Sievert 2020). A phylogenetic 
tree was also constructed with the filtered, high-quality SNPs 
using identity by descent with the SNPRelate R package (v.4.0.2) 
(Zheng et al. 2012) and visualized with the interactive Tree Of 
Life (Letunic and Bork 2021).

Genome-wide association study
A total of 174 genotypes in 2 independent populations, 90 from 
Embrapa and 84 from ILRI, were considered for the genome-wide 
association study (GWAS). These genotypes included 2 independ-
ent populations phenotyped in the field evaluation carried out in 
Brazil and Ethiopia. These trials were carried out at 2 different 
times, and different traits were measured in each experiment. 

For the field evaluation carried out in Brazil, the marker-trait asso-
ciation analysis was carried out separately for dry and wet sea-
sons, for each of the 12 quantitative agronomic and feed-quality 
traits (PH, TFW, DM concentration,TDW, CEL, LIG, ADF, NDF, 
HCEL, IVDDM, NIT and ASH). In the experiment carried out in 
Ethiopia, the traits measured were PH, leaf length (LL), LW, LSR, 
ST, TDW, TFW, TN, and WUE and the groups were split into 
MWS and SWS dry season treatments.

Furthermore, GWAS was employed to investigate marker-trait 
associations (MTAs) for 3 agronomic traits; PH, production of 
green biomass (TFW), and production of dry biomass (TDW) as-
sessed in both field evaluations conducted in Brazil and 
Ethiopia. The mean value for each trait was first indexed as low, 
medium and high based on quantile values for each trait per sea-
son, i.e. mean values less than the 1st quantile were labeled as low 
and mean values between the 1st and 3rd quantiles were labeled 
as medium and mean values above the 3rd quantile were labeled 
as high. Once recoded, the data from each country was merged 
per trait and for each season. The transformed data from the 9 
genotypes, shared between the 2 evaluations showed some degree 
of inconsistency (probably due to GxE interactions), particularly 
for the dry season and in such cases data from Ethiopia was se-
lected since frequent measurements, i.e. every 8 weeks, were ta-
ken during the trial in Ethiopia (Supplementary Table 1).

Prior to GWAS, the average values for all traits were normalized 
using the bestNormalize R package (Peterson 2018). GWAS was then 
performed on the average values, normalized values, and BLUE and 
BLUP predicted values. Different GWAS models were used to ensure 
detection of significant associations while accounting for popula-
tion structure and relatedness. The analysis was conducted using 
the Genomic Association and Prediction Integrated Tool (GAPIT) 
version 3 software package within the R environment (Wang and 
Zhang 2021). We implemented the Fixed and random model 
Circulating Probability Unification (Liu et al. 2016 ), which improves 
power by iteratively testing markers while controlling for con-
founding effects. Bayesian-information and Linkage-disequilib-
rium Iteratively Nested Keyway model (Huang et al. 2019) 
enhances efficiently by replacing the kinship matrix with Bayesian 
information and linkage disequilibrium (LD)-based marker selec-
tion. The multiple-locus mixed linear model (Segura et al. 2021) it-
eratively incorporates multiple associated SNPs as cofactors, 
improving polygenic trait detection while accounting for population 
structure and relatedness. The distribution of observed vs. expected 
−log10(P) values was assessed using Quantile–Quantile (Q–Q) plots, 
which visualize deviations from the null hypothesis. Significant 
SNP-trait associations were identified based on the internal model 
selection criteria and multiple testing correction methods imple-
mented in GAPIT, including adjustments for population structure 
and control of the genome-wide type I error rate. This approach en-
sured the statistical rigor and reliability of our GWAS results.

Regions of 0.04 Mbp surrounding highly significant SNPs, identi-
fied by multiple models and associated with multiple traits and/or 
treatment conditions, were blasted against protein databases, in-
cluding Phytozome (Goodstein et al. 2012), to identify homologous 
genes or proteins with similar sequences and MTAs. A threshold 
of 80% identity was used to report putative homologous proteins.

Results
Phenotypic variability among Napier 
grass genotypes
Field evaluations in wet and dry seasons at the Embrapa Dairy 
Cattle in Brazil indicated significant differences between seasons, 
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among some agronomic and feed-quality traits (Table 1). PH and 
TFW were significantly higher during the wet season whereas 
CEL and ash concentrations exhibited no seasonal variation. 
Furthermore, the interaction between genotypes and harvest cy-
cle was insignificant for most traits, except PH, TFW, DM, and 
TDW. Also, the interaction of genotypes with the season was sig-
nificant for most traits except TDW, HCEL content, and NIT, indi-
cating that the performance of genotypes was differentially 
affected by season. The mean performance per accession for all 
traits is presented in Supplementary Table 1.

Among the 91 genotypes evaluated, the highest TFW was re-
corded for genotypes BAGCE2, BAGCE64, and BAGCE60. The high-
est biomass-yielding genotypes as TDW were similar, indicating a 
high correlation between TFW and TDW. Regarding NIT content, a 
key trait in feed quality, the genotypes BAGCE58, BAGCE82, and 
BAGCE1 were the top performers (Supplementary Table 2). 
Interestingly the genotype BAGCE82, with the highest NIT con-
tent, also showed a high mean TFW (64.8 Mg ha−1).

The output from the field evaluation trial in Bishoftu, Ethiopia, 
has previously been reported (Habte et al. 2020). Among the shared 
genotypes, BAGCE53, 86 and 97 performed well regarding TFW in 
the trials in both Brazil and Ethiopia. PCA and clustering analyses 
were conducted among the subset of genotypes from Embrapa 
(Fig. 1). In this analysis divergence was observed based on growth, 
forage yield and nutritional quality traits. The PCA identified the 
first 3 components, explaining 77% of the cumulative variation 
(Supplementary Table 3). The first principal component (PC1) ac-
counted for 40.1% of the total explained variance, PH (0.43), CEL 
(0.84), ADF (0.95), and NDF (0.78) were the main contributing traits 
for this component. Likewise, the second principal component (PC2) 
accounted for 21.1% of the total explained variance and PH (0.54), 
TFW (0.89), TDW (0.93), HCEL (0.48), and DM (0.36) were the main 
contributors for this component (Supplementary Table 3).

A PCA biplot shows the degree of correlation among measured 
traits, with those in the same dimension and a tight angle between 
vectors indicating a high and positive correlation (Fig. 1a). The 
strongest positive correlation was found between TDW and 
TFW. Furthermore, CEL and ADF were also highly and positively 
correlated. TFW, TDW, NDF and PH appeared in the same dimen-
sion with a positive correlation with each other, and CEL and ADF 
were negatively correlated with NIT and ash (Supplementary Fig. 
1). Based on data from 2 seasons and 5 harvest cycles of mean va-
lues of 12 quantitative traits, the clustering analysis revealed 4 
major clusters, cluster I, composed of 2 major sub-clusters, con-
sisted of 40 genotypes; cluster II contained 3 major sub-clusters 
and consisted of 19 genotypes; cluster III contained 3 major sub- 
clusters and was composed of 31 genotypes; and the cluster IV ex-
hibited a distinct genetic profile, forming an isolated group con-
taining a single accession (Fig. 1b). Top ranking genotypes, in 
terms of TFW/TDW, such as BAGCE2, BAGCE60, and BAGCE64, 
were in cluster III. Interestingly, BAGCE58, which clustered in 
group IV, by itself, scored the lowest mean TFW and TDW (18.8 
and 5.9 Mg, respectively) and the highest NIT content (0.66%).

Genome-wide SNP discovery and their 
distribution across assembled chromosomes
Illumina 150-bp paired-end reads were generated from 450 Napier 
grass genotypes. The average sequencing depth was 15–20 ×  per 
accession. Nearly ∼170 million variants (SNPs and Indels) were 
generated and from these variants, ca. 1 M hard-filtered SNPs 
were mapped across the 14 assembled chromosomes of Napier 
grass (Supplementary Fig. 2). These markers were used for genetic 
diversity and marker-trait association analyses. The number of T
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SNPs per chromosome was variable, with more SNPs mapped on 
the longest A01 and B01 chromosomes (Supplementary Table 4). 
The SNP density was similar for all chromosomes with 1 SNP de-
tected for every 1,830 bases. We have generated a comprehensive 
Napier grass genome variation dataset, identifying numerous 
SNPs from diverse landraces, varieties, and progenies.

Genetic variation and relationship
The PCA revealed a clear pattern of genetic structure, with 3 major 
clusters and a noticeable degree of aggregation based on the re-
gion of origin (Fig. 2). PC1 accounted for the largest proportion of 
genetic variation in the dataset (69.9%) while PC2 explained an 
additional 29.9%, together capturing nearly all of the total vari-
ation among the genotypes. Separation along PC1 primarily dis-
tinguished genotypes by admixture groups (Supplementary 
Table 5), with Q3 and Q10 forming distinct clusters apart from 
Q1 and Q7. In contrast, PC2 differentiated Q2 and Q5 from Q4 
and Q8, which appeared as well-separated sub-clusters in the 
PCA space. The Q5 cluster consisted of mainly genotypes from 
Kenya, alongside 2 admixed genotypes sourced from ILRI while 
Q8 was predominantly composed of Brazilian accessions, with 2 
samples representing USDA collection.

Interestingly, the 8 reported interspecific hybrid genotypes 
(Supplementary Table 6) did not form a distinct cluster, instead 
scattering across the PCA space. Similarly, genotypes sourced 
from ILRI were distributed among various clusters, reflecting their 
diverse global origins. Progeny genotypes were primarily grouped 
within Q10, although several appeared in other sub-clusters, 
mainly in Q3, suggesting varying degrees of relatedness or admix-
ture. Notably, the admixed group (the largest, with 152 genotypes) 
encompassed accessions from germplasm banks in Ethiopia, 
China, and Brazil, as well as breeding lines and progeny. This 
group also included 5 of the 7 purple-colored genotypes 
(CN96273, CN96211, CN94131, CN93182, and CN93081), highlight-
ing its genetic and phenotypic diversity.

Population structure among global Napier 
grass genotypes
Population structure analysis divided the 450 genotypes into 10 
subgroups according to CV errors (Fig. 3a). Clustering at K = 6 
(Fig. 3b) which separated some genotypes from Embrapa (Brazil), 

Kenya, and ILRI from the rest. However, a high admixture was no-
ticed within the overall collection. A similar trend was observed in 
the phylogenetic tree, where genotypes were distributed regard-
less of their region of origin (Fig. 4). For example, 2 genotypes of 
Chinese origin (cpReyan4 and PgJujun) clustered together with 
genotypes sourced from genebanks in Embrapa, Kenya, and 
ILRI. Interestingly, the reference genome CpPurple, a purple var-
iety and all other purple varieties were clustered close to each 
other except BA97. Furthermore, CpPurple showed a high similar-
ity with BAGCE105 (a purple accession from Brazil) indicating that 
these 2 could be related genotypes although currently grown on 
different continents. Progeny genotypes from ILRI showed a 
mixed trend in the phylogenetic tree; even those originating 
from the same mother plant did not cluster together. A high level 
of genetic similarity among Kenyan genotypes was observed indi-
cating possible duplications in the Kenyan collection.

Marker-trait associations
For the field evaluation carried out in Brazil, the marker-trait asso-
ciation analysis was carried out independently for dry and wet sea-
sons for each of the 12 quantitative traits (Fig. 5). Significantly 
associated SNP loci [−log10(P) > 5], were identified for 10 traits 
scored in more than 1 association model for either of the seasons 
(Supplementary Fig. 3). Interestingly, significant QTL were recorded 
for some traits such as TFW and ADF [−log10(P) > 5] mainly in the 
dry season (Supplementary Table 7).

A GWAS was also carried out for the trial conducted in Ethiopia, 
and the results revealed interesting associations for the 9 traits 
scored. All traits significantly associated with QTL were identified 
under dry and wet seasons and also under 2 soil moisture condi-
tions. A QTL significantly associated with ST was identified during 
the wet season and under both soil conditions in the dry season 
(Supplementary Table 8). Likewise, SNPs were identified to be sig-
nificantly associated with TFW under both dry and wet seasons, in 
both soil conditions. For the binary trait, leaf color (green vs. pur-
ple), a total of 494 SNP loci were determined to be significantly as-
sociated [−log10(P) > 7.3] using 3 different GAPIT models 
(Supplementary Table 9). In general, a total of 207 SNP loci were 
significantly associated with other traits, excluding the leaf color, 
using 3 GAPIT models, for the trial carried out in Ethiopia 
(Supplementary Fig. 4). Forty-seven of those marker trait 

Fig. 1. Principal component a) and cluster analysis b) of 91 Napier grass accessions evaluated in the Brazil trial, based on agro-morphological and 
nutritional traits. Accessions are grouped into four clusters shown in arbitrary colours for distinction.
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associations (MTAs) were significantly associated with more than 
1 trait and were also significant in more than1 GAPIT model. Three 
traits, PH, TFW and TDW were measured in both field trials in 
Ethiopia and Brazil, and the combined data were used to carry 
out a GWAS analysis that led to the identification of additional 
QTL (Supp. Fig. 5). Interestingly, significant QTL were identified 
for all 3 traits at a higher threshold [−log10(P) > 7.3] in the dry sea-
son. In contrast, a significant QTL was only identified for TDW in 
the wet season.

From the significantly associated QTLs, 13 were associated with 
multiple phenotypic and feed quality traits with more than 1 
GAPIT model. The search for those significant MTAs has revealed 
sequence similarity with proteins of various functions in the 

Phytozome database. For instance, a region around a QTL asso-
ciated with TDW and TFW showed sequence similarity with a 
Gag-Pol-related retrotransposon. Similarly, another QTL signifi-
cantly associated with traits such as ADF, IVDMD, and LIG showed 
similarity with a WDSAM1 protein (Supplementary Table 10). 
Additionally, a QTL highly correlated with leaf color exhibited 
similarity with the Zinc-finger domain of a monoamine-oxidase 
A repressor R1 and carotenoid synthesis regulator regions.

Discussion
Tropical forages, compared to temperate counterparts like peren-
nial ryegrass and alfalfa, remain under-researched. 

Fig. 2. PCA of 450 Napier grass accessions based on approximately 1 million SNPs. The scatter plot shows the relationship between PC1 (explaining 69.9% 
of the variance) vs PC2 (explaining 29.9% of the variance). Data points color-coded by country of origin, and shapes represent distinct groups defined 
through ADMIXTURE analysis. Genotypes labeled “UNK” indicate unknown country of origin.
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Consequently, most small-scale farmers, especially in Africa, rely 
on landraces, which may lack adequate adaptation to the current 
and future climate conditions (Simeão et al. 2021). Among tropical 
grasses, Napier grass (also known as Elephant grass) is widely 
grown in SSA due to its high biomass, resilience to heat and water 
scarcity, and ability to regrow for up to 6 harvests annually 
(Kamau 2007; Habte et al. 2022).

Field evaluation of Napier grass genotypes
The evaluation of Napier grass genotypes from ILRI (Ethiopia) and 
Embrapa (Brazil) highlighted important phenotypic performance 
and diversity. These evaluations were essential for identifying 
promising candidates for breeding, with a focus on improving bio-
mass, drought resilience, and feed quality traits such as high 
crude protein and low LIG. Consistent with previous findings 
(FAO 2010; Njuki and Sanginga 2013; Lamb et al. 2018), traits like 
PH, TFW, and TDW were higher during the wet season compared 
to the dry season. In contrast, feed quality traits like CEL and ash 
content remained stable across seasons. Notably, genotypes such 
as BAGCE2, BAGCE64, and BAGCE60 showed the highest TFW and 
TDW, performing well in both dry and wet seasons, suggesting 
strong genetic potential. BAGCE30, which was shared between 
the trials in Brazil and Ethiopia, demonstrated resilience to 
drought, producing consistently high biomass in both countries, 
further supporting its potential for performance across diverse 
environments (Habte et al. 2022).

Feed quality traits such as crude protein (calculated as % nitro-
gen × 6.25) and LIG contents are key forage traits. In a trial con-
ducted in Brazil, the highest NIT was recorded for accession 
BAGCE58, although it ranked the lowest for TFW and TDW 
(Supplementary Table 2). Positive correlations were observed 
between traits, such as TFW and TDW, CEL and ADF 
(Supplementary Fig. 1), consistent with findings by Habte et al. 
(2022). Conversely, CEL and ADF were negatively correlated 
with NIT and ASH.

Napier grass is a promising bioenergy crop due to its high CEL, 
HCEL, and LIG contents. In this study, CEL content across geno-
types ranged from 36.9 to 43.1%, with BAGCE83, BAGCE6, and 
BAGCE59 having the highest levels, making them suitable for 
ethanol production. Pioneiro, a Brazilian livestock forage cultivar, 
had the lowest CEL content, along with BAGCE104, BAGCE106, and 
BAGCE62, suggesting potential for improving digestibility through 
breeding. Genotypes clustered into 4 groups based on agro- 
morphological and feed quality traits. Cluster IV, containing 
BAGCE58, had the lowest TFW and TDW but the highest NIT con-
tent, which could be valuable for nitrogen production in breeding 
programs. High-yielding genotypes like BAGCE2, BAGCE60, and 
BAGCE64 were in Cluster III, showing strong potential for future 
breeding.

Genomic tools for Napier grass
Previous genotyping by sequencing (GBS) studies on Napier grass 
identified around 100 K SNP markers, with lower SNP density 

a

b

Fig. 3. a) Cross validation error plot from ADMIXTURE analysis across K values ranging from 2 to 10, used to determine the optimal number of genetic 
clusters. b) Admixture bar plot showing population structure of 450 Napier grass accessions at K = 6 and K = 10.
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compared to the current study (Paudel et al. 2018; Muktar et al. 
2019,2022, 2023). WGS of 450 global Napier grass genotypes, most-
ly landraces, generated over 100 million variants, revealing signifi-
cant genetic diversity. In the present study, an average of 1 SNP 
was detected every 1803 bases across all chromosomes 
(Supplementary Table 4). After a complex filtering, nearly a mil-
lion SNPs were retained, evenly distributed along the 14 Napier 
grass chromosomes. These genome-wide SNPs can be used as a 
DNA fingerprinting tool in the germplasm bank collections and 
to verify the trueness-to-type of cultivars. As an allotetraploid 
(2n = 4× = 28, A′A′BB sub-genomes), Napier grass shares high 
homology with the pearl millet A genome (Cenchrus americanus, 
2n = 2× = 14, AA), suggesting that genomic tools developed here 

could be useful for both Napier grass and pearl millet improve-
ment or hybrid development (Gupta and Mhere 1997). The WGS 
approach applied in this study has the potential to generate 
more SSR markers compared to the previous GBS-based approach 
(Paudel et al. 2018).

Inter-population structure and phylogeny among 
global Napier grass genotypes
PCA of filtered SNPs revealed 3 major clusters (Fig. 2), but these did 
not align with region of origin. This may be due to clonal propaga-
tion of Napier grass and limited genetic selection in the samples, 
which were sourced from 18 different countries. A similar finding 
was reported by Muktar et al. (2023) using GBS genotyping and 

Fig. 4. Phylogenetic relationships among 450 Napier grass accessions based on approximately 1 million filtered SNPs. Accessions with purple background 
exhibit purple leaf coloration, including the reference accession CpPurple which is among the purple-coloured accessions.
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Wanjala et al. (2013) with AFLP markers, where genotypes did not 
cluster by region of origin. However, some genotypes, such as Q4 
and Q6, representing only Kenyan samples from different districts 
(Kiambu and Murang’a), showed regional aggregation. This likely 
reflects the historical and ongoing exchange of root splits through 
Kenya’s informal seed system as noted by Muktar et al. (2023). An 
interesting finding from the PCA was that progenies from 14 
mother plants grouped separately and did not show a distinct pro-
file reflecting their sexual origin. A similar result was reported by 
Muktar et al. (2023) using GBS genotyping, where progenies did not 
cluster with their respective mother plants. Several ILRI geno-
types aggregated closer to the Embrapa elite breeding lines, which 
contributed to cultivars like BRS Capiacu and BRS Kurumi (Pereira 
et al. 2017), suggesting their genetic potential for cultivar improve-
ment. This study also included 8 hybrids (Cenchrus purpureus ×  
Cenchrus americanus), but they did not cluster independently, indi-
cating a possible error in their acquisition or management. 
However, further taxonomic and/or cytology characterization is 
needed to confirm their hybrid status.

Population structure analysis was conducted to better under-
stand the relationships among genotypes, landraces, breeding 
lines, and progeny plants. The analysis divided the 450 genotypes 
into 10 subgroups based on CV error values from an ADMIXTURE 
analysis (Fig. 3b), which separated some of the Embrapa genotypes 
from ILRI genebank materials (Supplementary Table 5). A similar 
trend was reported by Muktar et al. (2023), who used GBS to distin-
guish Embrapa and ILRI collections. Additionally, Negawo et al. 
(2018) observed 2 sub-populations in nearly 2 hundred Napier grass 
genotypes from the same collections using SSR markers. This find-
ing suggests that the ILRI and Embrapa collections represent 2 inde-
pendent gene pools with slight admixture, indicating that heterotic 

breeding for desirable traits would be effective. Interestingly, most 
progenies were distributed across different sub-clusters, consistent 
with the PCA analysis. This pattern may be due to gene recombin-
ation during hybridization, a similar unorthodox clustering of pro-
genies was also noted by Muktar et al. (2023).

A phylogenetic tree of the 450 genotypes confirmed previous 
findings, showing no clustering based on region of origin. It re-
vealed 2 main clusters: 1 cluster with 5 genotypes and the other 
containing all remaining samples. The first cluster included 
CpPurple (the reference genome), 2 Embrapa genotypes and 2 ac-
cessions, from Kenya and from ILRI. Notably, CpPurple (a purple 
variety) showed high genetic similarity to BAGCE105, another 
purple genotype, despite being sourced from China. Similarly, 
Pioneiro and BAGCE116 clustered closely, even though 
BAGCE116 was selected from a different elephant grass popula-
tion. BAGCE116 has distinctive yellow-green striped leaves, sug-
gesting it may be a mutant variant of the Pioneiro cultivar, 
though further validation is needed.

As seen in the PCA, hybrid-labeled genotypes (IL16835, IL16837, 
IL16834, IL16838, IL15357, IL16840, and IL14982) did not cluster to-
gether in the phylogeny tree, failing to reflect a distinct hybrid pro-
file. This aligns with findings by Muktar et al. (2019). Additionally, a 
high level of genetic similarity or possible duplication was ob-
served among Kenyan-sourced genotypes. Muktar et al. (2023)
similarly reported low genetic diversity among Kenyan genotypes, 
despite their collections from different districts.

Napier grass exhibits self-incompatibility (Martel et al. 1997; 
Hanna et al. 2004) and is obligate outcrossing in nature (Yan 
et al. 2021). The phylogenetic tree generated from this study can 
aid in selecting distantly related parents to develop hybrid var-
ieties. Hybrid breeding has been effective in temperate forages 

Fig. 5. Significantly associated SNPs for the 12 quantitative traits evaluated during the dry a) and wet b) seasons in Brazil. Manhattan plots constructed 
with BLINK model. The GWAS analysis were performed for the following traits: ADF, ASH, CEL, DM concentration, HCEL, plant height (PH), IVDDM, LIG, 
NDF, NIT, TDB, and TGB. The horizontal lines represent the thresholds with P-value of; lower 0.05 [−log10(P) > 4] and upper; 0.01 [−log10(P) > 6], 
respectively. CEL, cellulose; ASH, ash; LIG, lignin; ADF, acid detergent fiber; DM, dry matter; NDF, neutral detergent fiber; HCEL, hemicellulose; IVDDM, in 
vitro dry matter digestibility; NIT, nitrogen; ASH, ash; TDB, total dry weight; TGB, total fresh weight
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like ryegrass (Foster 1971; Pembleton et al. 2013) and could similar-
ly benefit Napier grass, its vegetative propagation allows for target 
traits to be fixed at the F1 stage. Overall, the phylogeny aligns with 
PCA and ADMIXTURE analyses, confirming the genetic diversity in 
this collection without clear clustering by region of origin.

Genome-wide association studies identified key 
QTL in two different collections
Despite its resilience to various biotic and abiotic stresses, 
Napier grass production faces challenges from head smut and 
stunt diseases, recurrent droughts, and feed quality issues. 
Developing high-yielding, nutritious, and stress-resilient var-
ieties is essential for improving animal performance, particular-
ly in the SSA region. However, field characterization is time 
consuming and labor-intensive, mainly due to its perennial na-
ture (Habte et al. 2020), large size (unsuitable for greenhouse 
studies; Rengsirikul et al. 2013), and obligate outcrossing repro-
duction (Martel et al. 1997).

Molecular markers are crucial for accelerating breeding and 
reducing resource use. Studies on wheat have shown that 
genomic-assisted selection significantly improves yield compared 
to traditional phenotypic selection (Tessema et al. 2020). While 
only a few GWAS have been conducted on Napier grass (Muktar 
et al. 2019; Rocha et al. 2019; Muktar et al. 2022), the high-density 
genome-wide SNP markers reported here will improve identifica-
tion of markers linked to key traits, such as total fresh and dry 
weight (TFW, TDW) and WUE. In this study, a GWAS was per-
formed on the 2 independent collections, revealing important 
marker trait associations (MTAs). For the field evaluation in 
Brazil, SNPs [−log10(P) > 5] were significantly associated with all 
measured traits in at least 1 GAPIT model across both seasons 
(Fig. 5). Overall, 318 SNPs were linked to 12 traits under both 
dry and wet conditions (Supplementary Table 7). These MTAs 
could aid future Napier grass breeding efforts in Brazil and be-
yond. Additionally, the associated SNPs may help identify genes 
underpinning important traits, providing targets for gene edit-
ing, a key tool for improving animal productivity in the tropics 
(Camargo and Pereira 2022). However, we acknowledge the lim-
itations of our sample size and future work incorporating larger 
and more diverse panels will be valuable for further validating 
these results.

In the Ethiopian trial, a higher number of QTL were identified 
for key agronomic traits such as TFW, TDW, and TN, all critical 
for Napier grass improvement. Significant associations were ob-
served across dry and wet conditions and under moderate 
(MWS) and severe (SWS) soil moisture stress (Supplementary 
Table 8). Muktar et al. (2022) previously reported QTL linked to 
yield, WUE, and feed quality traits, with significant MTAs for 
TDW under dry and SWS conditions on Chr5, Chr9, and Chr13. 
This study identified additional MTAs across most of the Napier 
grass chromosomes (Supplementary Table 8).

ST showed significant QTL [−log10(P) > 5] during the wet season 
harvests and under both MWS and SWS in the dry season 
(Supplementary Fig. 4). Notably, GWAS identified 494 highly 
associated SNPs [−log10(P) > 7.3] for the binary leaf color trait 
(green vs. purples), distributed across all chromosomes 
(Supplementary Table 9). Muktar et al. (2022) also reported GBS 
markers linked to purple leaf color, but this study identified a 
greater number of SNPs across both sub-genomes. Since purple 
pigmentation in Napier grass results from high anthocyanins con-
tent, which has potential health benefits for both humans and an-
imals (Kruger et al. 2014; Yao et al. 2016), these MTAs could be 
valuable for feed quality improvement. Three traits, PH, TFW, 

and TDW were measured in both Ethiopian and Brazilian field 
trials. The combined analysis revealed QTLs that were consistent 
across environments. Interestingly, during dry-season treat-
ments, significant QTL were identified for all 3 traits at a higher 
threshold [−log10(P) > 7.3], while in the wet season, significant 
QTL were detected only for TDW (Supplementary Fig. 5). One of 
the SNPs significantly associated with leaf color (A01_63825491) 
was located in a region syntenic with homologs encoding protein- 
serine/threonine kinases (Supplementary Table 10). These pro-
teins act as central regulators, processing environmental and ex-
ternal cues to influence gene expression, metabolism, growth, 
development, fertilization, and immunity (Hardie 1999; Jose et al. 
2020; Liu et al. 2024).

Another SNP (A01_ 63717178) linked to leaf color was found in 
the region associated with genes involved in the carotenoid bio-
synthesis pathway, which plays a key role in producing photosyn-
thetic pigments, stress hormones, and protective compounds in 
grass species like rice (Shumskaya and Wurtzel 2013; Stanley 
and Yuan 2019). Carotenoids also have antioxidant properties, 
helping to reduce diseases incidence in both plants and animals 
(Abdelali and Zakir 2016). The SNP markers identified in this study 
could aid in developing nutritionally enhanced Napier grass 
cultivars.

Conclusions
Limited access to high quality forages significantly impacts live-
stock performance in SSA. Indigenous species like Napier grass, 
which is familiar to smallholder farmers, require low inputs and 
adapt well to various agro-ecologies and production systems, 
are recommended. Our results reveal genomic differences and 
marker trait associations in global Napier grass genotypes, likely 
due to adaptation to diverse environments and breeding. We be-
lieve that the genomic tools developed, including the diversity 
profile and identified QTL, alongside recently available reference 
genomes, will promote the use of molecular markers in Napier 
grass improvement. These resources are also vital for managing 
genetic diversity and advancing conservation programs both in 
situ on farms and ex situ in genebanks.
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All data generated and analyzed in this study are publicly available. 
The raw sequencing reads have been deposited in the European 
Nucleotide Archive (ENA) under the accession number 
PRJEB73794: https://www.ebi.ac.uk/ena/browser/view/PRJEB73794.

The complete SNP dataset is accessible via the European 
Variation Archive (EVA) under the accession number PRJEB88573: 
https://www.ebi.ac.uk/eva/?eva-study=PRJEB88573.

Supplemental material available at G3 online.
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