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ABSTRACT
The use of optical radiation sensors is a promising strategy for nitrogen management as it reduces the costs of chemical analyses
and allows quick decision‐making in the supplementary application of N to irrigated rice. By combining three spectral
reflectance bands (red, far‐red, and near‐infrared), 22 vegetation indices (VIs) were computed and assessed for their effec-
tiveness in estimating the nitrogen status of rice crops. The results indicated that the selected VIs considerably underestimated
dry leaf biomass (DLB) and did not efficiently estimate N status parameters, such as leaf N concentration (LNC) and leaf N
uptake, at the vegetative stage. The large variations in these N status parameters can be explained by the VI in subsequent
stages. The VI selected in the parametrisation process was promising for explaining variation in DLB and leaf area index at the
reproductive and grain‐filling stages. However, the VI showed low performance in estimating LNC at the reproductive stage.
The modified red‐edge soil‐adjusted VI and normalised difference red‐edge index showed high performance in estimating the N
nutrition index in the growth stage and across the whole crop cycle. These results show the importance of using active sensors
for effective crop N status estimation.

1 | Introduction

The excessive use of nitrogen fertilisers in rice production
areas is a critical problem. Nitrogen (N) overuse results not
only in low N use efficiency, but also causes environmental
disturbances, increases the susceptibility of crops to pests and
diseases, reduces cooking and nutritional qualities and conse-
quently reduces the economic return. The monitoring of ni-
trogen status in irrigated rice through indices derived from
field plant sampling and laboratory analyses—such as dry leaf
biomass (DLB), leaf area index (LAI), leaf nitrogen content
(LNC), and leaf nitrogen uptake (LNU)—has limited practical
application in large‐scale crop production due to the difficulty
of obtaining real‐time measurements. The nitrogen status of

rice (Oryza sativa L.) can be assessed by calculating the ni-
trogen nutrition index (NNI), obtained by the ratio of the
plant's nitrogen concentration to the critical nitrogen concen-
tration in the crop [1]. Although chlorophyll metres have been
used for real‐time determination of crop nitrogen status, they
typically rely on measurements from specific leaves. However,
these leaves may exhibit varying metabolic activities even
within the same plant, making it challenging to apply this tool
effectively on a large scale [1–3]. Rationalising nitrogen supply
in both space and time presents a significant challenge in
large‐scale rice production. This highlights the need for the
development of technologies that enable rapid, real‐time
diagnosis of nitrogen status throughout the entire growth
period [3–5].
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The use of optical radiation sensors is a promising strategy for
nitrogen management, as it reduces the costs of chemical ana-
lyzes and allows quick decision‐making in the supplementary
application of N to irrigated rice [6, 7] compared to plant N
monitoring based on indices derived from laboratory analyses or
chlorophyll metres. Another advantage of using canopy sensors
is that, as they are artificially activated, they are not dependent
on the availability of ambient light [6].

The literature highlights the use of various sensors, such as the
GreenSeeker sensor (Trimble Navigation Limited, Sunnyvale,
California, USA), Crop Circle ACS‐210 (Holland Scientific Inc.
Lincoln, Nebraska, USA), and Crop Spec (Topcon Positioning
Systems Inc., Livermore, California, USA), for obtaining
vegetation indices (VIs) and estimating nitrogen status in rice
[8, 9]. While these sensors are widely used, they are limited in
their ability to capture radiation across a narrow range of
bands—typically only two fixed bands (e.g., red and near‐
infrared (NIR), NIR and green, or NIR and far red). This
limitation restricts the number of indices that can be derived,
with the most commonly used being the normalised difference
vegetation index (NDVI), green difference vegetation index
(GDVI), red edge difference vegetation index (REDVI), and
vegetation ratio index (RVI, NIR/Red). This may be a limita-
tion because optimal wavelengths and vegetation indices vary
for different biophysical crop parameters and growth stages. In
this context, sensors capable of capturing more than two
spectral bands may enhance the prediction of nitrogen status
by generating multiple spectral VIs [3, 10–12]. Growing maise
under different N and water management conditions Shir-
astsuchi et al. [13] determined two VI calculated from three
spectral bands capable of differentiating the nitrogen state of
the crop. Cao, Miao, Wang et al. [14] found that the VI
MCARI1 calculated from three spectral bands (green, far red
and NIR) of Crop Circle ACS 470 was consistent correlations
with rice biomass and plant N uptake in different years, vari-
eties and growth stages. In this study, four additional indices
demonstrated comparable performance in estimating the rice
nitrogen nutrition index (NNI).

The aim of this study was to investigate whether radiation bands
and their respective combinations, known as vegetation indices,
can be used to estimate the nitrogen status of irrigated rice at
different growth stages. This was achieved using linear models,
which offer lower mathematical complexity [15], allowing for
faster estimates and more efficient decision‐making in diag-
nosing the nitrogen status of irrigated rice plants. Linear
regression is commonly used to establish relationships between
vegetation indices and nitrogen status parameters [2, 6, 7, 11].

2 | Materials and Methods

2.1 | Description of Experiments

We conducted six field experiments at the Brazilian Agricultural
Research Corporation (Embrapa) Rice and Beans, Goiás, from
2014 to 2017. According to Köppen's classifications [16], the
region is a tropical savanna and the soil is type Dystrophic
Haplic Gleysol. The experiments were designated as follows:
GO_14/15 (1, P), GO_14/15 (2, V), GO_15/16 (1, V), GO_16/17
(1, V), GO_16/17 (2, V), and GO_17/18 (1, P), where numbers
separated by slash (14/15, 15/16, 16/17, and 17/18) represent the
crop season and the number (1 or 2) and letter (P or V) inside
the parentheses are the number of experiments per crop season
(1 or 2) and model parametrisation (P) and model validation
(V), respectively. GO_14/15 (1, P) and GO_17/18 (1, P) were
selected for parametrisation because data collection in these
experiments was performed at shorter intervals. More details
about these experiments can be found at Santos, Zanon et al.
[17], Santos, Heinemann et al. [3] and Table 1.

2.2 | Sensor, Data Collection and Vegetation
Indices (VI)

The Crop Circle ACS‐430 active sensor (Holland Scientific Inc.,
Lincoln, NE, USA) that simultaneously incorporates red, near‐
red, and infrared spectral bands was used to collect canopy
reflectance across growth stages. Details about the sensor used
in this study and your operation have been reported by Santos,
Heinemann et al. [3]. Using the three reflectance measurement
bands incorporated in the Crop Circle ACS‐430 sensor it is
possible to calculate various VI [18]. We selected 22 spectral VIs
for this study listed in Table 2 and also in Santos, Heinemann
et al. [3].

2.3 | Crop Periods and N Status Parameters

We divided the rice crop cycle into four periods: beginning of
vegetative stage (V1 to V9, around 40 days after emergence), end
of vegetative stage (V10 to R1), reproductive stage (R2 to R4),
and grain‐filling stage (R5 to R8). We also analysed all crop
cycles, V1 to R8. Five N status parameters were used to measure
the VI efficiency in rice crops: dry leaf biomass (DLB), leaf area
index (LAI), leaf N content (LNC), leaf N uptake (LNU),
and NNI.

To calculate N status parameters, samples at 0.5‐m depth were
collected from each plot after obtaining readings using the ACS‐
430 sensor. Collections were performed weekly for para-
metrisation and fortnightly for the validation experiments.
Subsamples of fresh plants (50% of the collected material) were
separated into green leaf blades (leaf), dry leaf blades (dead
leaf), culm þ sheath (tiller), and panicles. Leaf area (LA, m2)
was measured using the LI‐3100 (LI‐COR) photoelectric area
metre, and the LA index (LAI) was calculated using
Equation (1).

LAI = LA/SA (1)

Summary

� This paper highlights the systematic evaluation of 22
vegetation index (VI) for their efficiency in estimating N
in rice.

� The M_RESAVI and NDRE indices showed efficiently
in estimating N nutrition index in irrigated rice.

� The use VI in linear models is effective for estimating
the N status of the crop.
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where LA is the sampled leaf area, and SA is the soil area
corresponding to the LA sample collected.

After collection, fresh samples were dried in a forced ventilation
oven at 75°C to a constant mass. A part of DLB (~250 g) was used
to determine the LNC using the standard Kjeldahl‐N method
[28]. LNU was calculated by multiplying N concentration with
DLB. The NNI was calculated as described by Lemaire et al. [1]:

NNI = Na/Nc (2)

where Na is the actual N concentration measured as a per-
centage of DLB, and Nc is the critical N concentration as a
percentage of DLB (%), as described by Sheehy et al. [29]:

Nc = 5.18 ∗ W−0.52 (3)

where W is the DLB in Mg ha−1. The nitrogen nutrition index
(NNI) reflects the nitrogen status of the crop, with values greater
than 1 suggesting a non‐limiting nitrogen status, while values less
than 1 indicate nitrogen deficiency. It serves as a valuable tool for
improving the diagnosis of nitrogen status in crops [3, 30].

2.4 | Statistical Analysis

Data collected from parametrisation experiments (GO_14/15(1,
P)) and (GO_17/18(1, P)) were mainly used to develop linear,
quadratic, logarithmic, exponential, and power regression
models, and data collected from validation field experiments
were subsequently used to validate the selected regression
models. The coefficients of determination (R2) for the relation-
ships between VI and the N status parameters in rice crops
(DLB, LNC, LAI, LNU, and NNI) were calculated using
R software [31]. R2 was used for parametrisation as it
correlates with the percentage of variability of the indicator that
can be explained by an index, and indices with a high per-
centage of explanation of this variability were sought (> R2).
Few studies [2, 27, 32] applied this statistical index for model
parametrisation. Only the nine best models (highest R2) that

explained the variability between N status parameters and VI
were selected for the validation process.

The models' performance for the validation process was evalu-
ated by comparing the root mean square error (RMSE, Equa-
tion (4)), percent bias (PBIAS %, Equation (5)), and Willmott's
index of agreement (d, between 0 < d < 1, Equation (6)). These
statistical indices measure the model's ability to predict the
response of interest with independent data and are more
effective for evaluating the models' performance than R2.

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑
n

i=1
Yi − Oi( )

2

√
√
√

(4)

where P and O are, respectively, the predicted and observed
values.
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∑
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(5)

Percent bias (PBIAS) measures the average tendency of the
simulated data (sim) to be larger or smaller than their observed
counterparts (obs).

d = 1 −
∑
n

i=1
Pi − Oi( )

2

∑
n

i=1

⃒
⃒Pi − O

⃒
⃒ +

⃒
⃒Oi − O

⃒
⃒( )

2
(6)

where P and O are, respectively, the predicted and observed
values.

They measure the difference (error) between predicted and
observed values (RMSE), the percent deviation between the
predicted and observed values (PBIAS), and the agreement (d)
of the model, that is, to what extent the model can adapt to a
situation that was not targeted by the parametrisation [27, 33].

TABLE 1 | Description of experiments and data set used in this study for parametrisation and validation.

Experiment
ID

Crop season
(year)

Cultivars
IDa

Sowing/
Transplant

date (day/month)
Date of phenological

stages
Harvested

date

Parametrisation

GO_14/15(1, P) 14/15 1, 2, 3, 4 18/12 05/02b, 21/02c, 20/03d 30/03/2015

GO_17/18(1, P) 17/18 1, 5, 6, 7 27/10 05/01b 03/02c, 01/03d 06/03/2018

Validation

GO_14/15(2, V) 14/15 1,2, 3, 4 10/11 03/01b, 24/01c, 17/02d 26/02/2015

GO_15/16(1, V) 15/16 1, 2, 3, 4, 5 28/09 27/11b, 20/12c, 16/01d 24/01/2016

GO_16/17(1, V) 16/17 1, 5 27/09 04/12b, 30/12c, 25/01d 30/01/2017

GO_16/17(2, V) 16/17 1, 5 18/10 16/12b, 16/01c, 10/02d 19/02/2017
aCultivar ID: 1 = BRS Catiana, 2 = BRS Jaçanã, 3 = BRS Pampa, 4 = BRS Taim, 5 = IRGA 424, 6 = BRS Pampeira, and 7 = A 702 ‐ CL.
bCorrespond to panicle initiation.
cFlowering.
dMature stages.
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However, if the best fit function is non‐linear, the sensitivity of
the VI to the N status indicator is not constant and, therefore,
d and RMSE may be misleading [27, 34]. In this case, PBIAS is
considered a better indicator of the performance of VI in esti-
mating plant N status. The higher the d values in the perfor-
mance and the lower the RMSE and PBIAS values (absolute
value), the greater the precision and accuracy of the model in
predicting the crop N status.

3 | Results

3.1 | Variability of Rice N Status Parameters

The nitrogen status parameters showed significant variation
across the analysed periods (indicated by high coefficient of
variation (CV) values, Table 3). The variability of N status pa-
rameters across seasons and cultivars was fundamentally related
to climate variation in seasons and cultivars used in this study.

Throughout the entire crop cycle, the LAI exhibited the highest
coefficient of variability. In the beginning of vegetative stage
(V1–V10) DLB and LNC exhibited greatest variability, whereas
LNU, LAI, and NNI displayed the highest variability at the
grain‐filling stage (R5 to R8). LNCs decreased across crop cycle.
In contrast, the average values of N status parameters (DLB,
LNU, LAI, and NNI) increased from the beginning of vegetative
to the reproductive stage and decreased again at the grain‐filling
stage (Table 3). The values NNI for all crop stages was bellow 1,
which indicates N deficiency in production environments [35].

3.2 | Parametrisation of VI and N Status
Parameters

At the beginning of the vegetative stage, the calculated VI
proved efficient (R2 ≥ 0.60) in estimating N status parameters in
rice plants (Table S1). However, at the end of the vegetative
stage, the VI was not efficient (R2 ≤ 0.20). In the other periods,

TABLE 2 | Calculated spectral vegetation indices (VI) selected for this study.

ID VI Equation References
1 Normalised difference vegetation index (NDVI) (NIR − R)/(NIR þ R) Holland scientific [18]

2 Ratio vegetation index (RVI) NIR/R Holland scientific [18]

3 Chlorophyll index red‐edge (CHL) (NIR/RE) − 1 Holland scientific [18]

4 Simple ratio index red (SRI) NIR/R Holland scientific [18]

5 Non‐linear vegetation index (NLI) (((NIR2) − R)/((NIR2) þ R)) Holland scientific [18]

6 Re‐normalised difference vegetation index (RDVI) ((NIR − R)/(NIR þ R)1/2) Holland scientific [18]

7 Modified simple ratio (MSR) ((NIR/R) − 1)/(((NIR/R)1/2) þ 1) Holland scientific [18]

8 Water invariant chlorophyll index 1 (WICI1) (NIR − RE)/(NIR þ R) Holland scientific [18]

9 Water invariant chlorophyll index 2 (WICI2) (NIR − RE)/(RE þ R) Holland scientific [18]

10 Near infra‐red band reflectance (NIR) NIR Holland scientific [18]

11 Red‐edge ratio vegetation index (RERVI) NIR/RE Jasper et al. [19]

12 Red‐edge difference vegetation index (REDVI) NIR − RE Cao, Miao, Wang et al. [14]

13 Normalised difference red‐edge (NDRE) (NIR − RE)/(NIR þ RE) Barnes et al. [20]

14 Red‐edge wide dynamic range vegetation index
(REWDRVI)

(a � NIR − RE)/(a � NIR þ RE)
(a = 0.12)

Cao, Miao, Wang et al. [14]

15 Optimised vegetation index 1 (Vplot 1) 100 � (lnNIR − lnRE) Jasper et al. [19]

16 Red‐edge chlorophyll index (CIRE) NIR/RE − 1 Gitelson et al. [21]

17 Modified red‐edge simple ratio (MSR_RE) (NIR/RE − 1)/ROOT(NIR/RE þ 1) Cao, Miao, Wang et al. [14]
modified of Chen [22]

18 Red‐edge soil adjusted vegetation index (RESAVI) 1.5 � [(NIR − RE)/
(NIR þ RE þ 0.5)]

Cao, Miao, Wang et al. [14]
modified of Sripada et al. [23]

19 Modified RESAVI (M_RESAVI) 0.5 � [2 � NIR þ 1 − ROOT
((2 � NIR þ 1)2 − 8 � (NIR − RE))]

Cao, Miao, Wang et al. [14]
modified of Qi et al. [24]

20 Red‐edge optimal soil adjusted vegetation index
(REOSAVI)

(1 þ 0.16) � (NIR − RE)/
(NIR þ RE þ 0.16)

Cao, Miao, Wang et al. [14]
modified of Rondeaux et al. [25]

21 Red‐edge Re‐normalised different vegetation
index (RERDVI)

(NIR − RE)/ROOT(NIR þ RE) Cao, Miao, Wang et al. [14]
modified of Roujean and

Breon [26]

22 Modified REWDRI (REWDRVI2) (a � (NIR − RE))/(a � (NIR þ RE))
(a = 0.12)

Adapted of Cao, Miao, Feng
et al. [27]

Source: Santos, Heinemann et al. [3].
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the VI also efficiently explained the variation in N status pa-
rameters, except for LNC, which had the lowest capacity of
variation explanation by the VI, compared with that at the
beginning of vegetative stage. The ranking of the best VI varied
with N status parameters among the crop periods, and these VI
were generally higher (> R2) than NDVI (Normalised Difference
Vegetation Index) and RVI (Ratio Vegetation Index) to explain
the N indicator variability (Table S1).

Saturated effects were observed regarding the relationship of
DLB and LAI with NDVI equal to 0.70 (Figure 1). The variability
in leaf N concentration was best explained at the beginning of
the vegetative stage, with a sharp drop in its measurement using
models selected for other growth periods (Table S1).

3.3 | Validation of VI and N Status Parameters

The performances of the selected models in the calibration
process are listed in Table S2. Considering the crop cycle, the
most promising VI for BFS were CIRE (Red‐Edge Chlorophyll
Index) and MSR_RE (Modified Red‐Edge Simple Ratio), which
presented values closer to 1 for the statistical index d in com-
parison with the other indices (Table S2). Both VI were linearly
adjusted. These indices also provided the lowest RMSE values
(Table S2). For LNC, the performance of the selected indices
was similar (Figure 2). For LAI and LNU estimations, NDVI and
RVI showed a worse performance than the other VI selected.
This was also observed for NNI (Table S2), which was estimated

most efficiently by the M_RESAVI (Modified Red‐Edge Soil
Adjusted Vegetation Index) index (d = 0.62).

The selected models considerably underestimated the DLB at
the beginning (−63.8 < PBIAS < −74.1) and end (−22.4 <
PBIAS < −23.4) of the vegetative stage (Table S2). Better con-
vergences (low bias) between simulated and observed DLB
values were obtained using NDVI and RVI during the repro-
ductive stage. However, for the grain‐filling stage and all crop
cycles, these indices were lower than the others (Table S2). LAI
estimated by the selected models was only effective (−0.8 <
PBIAS < 4.6) in the reproductive stage, suggesting that the N
status indicator is not likely to be determined by VI in all growth
periods or even using a generalist model for the entire cycle.

LNC and LNU were not estimated efficiently (−53.5 <
PBIAS < 79.6 and −22.8 < PBIAS < −50.1, respectively) at the
initial vegetative stage. For the other stages and all crop cycles,
there was an improvement in the convergence between the
simulations from the models adjusted with the validation data
(Table S2). For these indicators, the performance of VI con-
trasted between growth periods and all crop cycles, and the
estimation performance for LNU using NDVI and RVI was
lower than that for other indices.

From the N status parameter in rice, NNI could be best esti-
mated by the VI selected in the crop growth periods as well as in
all crop cycles. NDVI and RVI performed better than the other
VI at the beginning of the vegetative stage (accuracy ≥ 97.5%

TABLE 3 | Statistical description of N status parameters (dry leaf biomass (DLB), leaf area index (LAI), leaf N content (LNC), leaf N uptake (LNU),
and N nutrition index (NNI)) across growth stages (beginning of vegetative: V1–V9; end of vegetative: V10–R1; reproductive: R2–R4 and grain filling:
R5–R8), whole crop cycle (V1–R8), cultivars and years.

N status

Growth stages
Beginning of vegetative

stage (n = 40)
End of vegetative
stage (n = 52)

Reproductive stage
(n = 105)

Grain filling
(n = 83)

Range Mean SD
CV
(%) Range Mean SD

CV
(%) Range Mean SD

CV
(%) Range Mean SD

CV
(%)

DLB
(kg ha−1)

185.5–
2683.1

1238.4 647.4 52.3 774–
3305

1877.4 657.5 35 1581–
5156

2524 704 27.9 599–
3838

1936 850 44

LNC
(g kg−1)

20.4–
53.3

35.7 10.03 28.1 19.5–
36.6

29.2 4.1 14 19.1–
36.3

26.6 2.86 10.7 14.36–
32.1

23.5 4.5 19.3

LNU
(kg ha−1)

9.6–
68.2

40.2 17.5 43.5 22–
87.2

54.2 19.2 35.4 39.1–
161

67.6 23 34.1 8.6–
106

47 24 51

LAI
(m2 m2)

0.29–
5.47

2.27 1.41 62.2 1.22–
5.74

3.07 1.16 37.8 1.69–
8.3

3.74 1.51 40.4 0.46–
7.69

2.6 1.85 71.1

NNI 0.41–
1.05

0.70 0.18 26.1 0.48–
1.06

0.76 0.17 21.7 0.53–
1.45

0.83 0.17 20 0.21–
1.07

0.64 0.22 34.5

N status
V1 – R8 (n = 280)

Range Mean SD CV (%)
DLB (kg ha−1) 185–5156 2046 850 41.6

LNC (g kg−1) 14.3–53.3 27.5 6.4 23.4

LNU (kg ha−1) 8.6–161 55.1 24.2 44

LAI (m2 m2) 0.29–8.32 3.07 1.64 53.6

NNI 0.21–1.46 0.74 0.20 27.2
Note: n represents the sample numbers.
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FIGURE 2 | Scatterplot for leaf N content and the vegetation indices: (a) NVDI, (b) RVI, (c) WICI1, and (d) WICI2. Empty and filled black circles
and squares represent the beginning of vegetative stage (V1–V9), end of vegetative stage (V10–R1), reproductive stage (R2–R4), and grain filling stage
(R5–R8) across cultivars and crop season.

FIGURE 1 | Scatterplot for dry leaf biomass (DLB, upper panel) and leaf area index (LAI, bottom panel) and vegetation index (NVDI, RVI, CIRE,
MSR_RE). Empty and filled black circles and squares represent the beginning of vegetative stage (V1–V9), end of vegetative stage (V10–R1),
reproductive stage (R2–R4), and grain filling stage (R5–R8) across cultivars and crop season.

6 of 11 Modern Agriculture, 2025
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and d > 55). These indices were not promising at the end of the
vegetative stage (they did not even adjust to explain the vari-
ability), and in the other stages, although they presented
considerable precision (accuracy ≥ 90), they showed low ag-
gregation to the models selected for estimating NNI, revealing
inconsistency in performance with the increase in VI variation
(Figure 3a and 3b). In this sense, it is worth highlighting
M_RESAVI and NDRE indices, which showed an accuracy of
≥ 85% when used in exponential and power models, respec-
tively, at the beginning of vegetative stage and the reproductive
stage or in 1st degree linear models at the end of vegetative stage
and throughout the crop cycle (Table S2).

4 | Discussion

The use of the NDVI for estimating of the DLB and LAI is less
effective because of the saturation [14, 36] (Figure 1 and
Table S2). The saturation effect is influenced by the choice of
spectral bands and the normalisation applied in the VI equation
[37]. The relationship between VI and N status parameters is
affected by growth stages [4, 6, 27, 38]. Figures 2 and 4 show
that the vegetative stage considerably differs from the repro-
ductive and grain‐filling stages, forming two clusters when LNC
and LNU were plotted against the VI.

VI explained the variation in the N status parameters at the
beginning of the vegetative stage (V1 to V9). However, for the
validation process, all VI selected were inefficient in estimating
the N status parameters in irrigated rice at the beginning and

the end of the vegetative stage, except for NNI. Probably, the
reflectance effect of the water depth on the ground surface was
higher at this stage and has a higher impact on spectral band
sensors. The estimation performance of the N status parameters
by the selected VI improved considerably at the reproductive
and grain‐filling stages, where the canopy partially covered the
field (Table S2). At these stages, we observed an improvement in
LNC estimation based on the VI selected in the validation
process. Cao, Miao, Wang et al. [14] also reported that the
variation in N content in irrigated rice is more explained by the
VI at the reproductive stage (R2 = 0.34) than at the vegetative
stage (R2 = 0.08). Despite the improvement in performance
compared with the vegetative stage (beginning and end of
vegetative stage), the explanation for the variation in LNC by the
VI selected in the validation process was weak (R2 = 0.26 and
0.45 in the reproductive and grain‐filling stages, respectively).
Biomass accumulation is not accompanied by N absorption,
resulting in canopy‐dominant biomass, which affects the
reflectance of small leaves and, thus, the N content estima-
tion [38].

Overcoming the saturation effect of NDVI under moderate to
high biomass is a great motivation to search for VI that may be
more effective in assisting in the precision management of N. In
this study, RVI had lower saturation than NDVI in estimating
DLB for the whole cycle (Table S2). Similar to RVI, the indices
MSR_RE and CIRE were less sensitive to the saturation effect
than NDVI in DLB estimation. The saturation effect is related to
the selected spectral bands and the effect of normalisation
incorporated in the VI equation [37]. The authors suggest that

FIGURE 3 | Scatterplot for nitrogen nutrition index (NNI) against vegetation indices: (a) NVDI, (b) RVI, (c) M_RESAVI, and (d) NDRE. Empty
and filled black circles and squares represent the beginning of vegetative stage (V1–V9), end of vegetative stage (V10–R1), reproductive stage (R2–R4),
and grain filling stage (R5–R8) across cultivars and crop season.
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saturation can be minimised by utilising near wavelengths,
which have a greater ability to penetrate the plant canopy. The
results obtained in this study for DLB estimation based on VI
are similar to those obtained by Gnyp et al. [37] showing that
the normalisation equation applied (RVI vs. NDVI) and near
spectral bands used (NIR and FR, see MSR‐RE and CIRE in
Table 2) can reduce the NDVI saturation effect.

VI showed similar performance for LNC estimation over the
crop cycle and reproductive stage. The NDVI showed the worst
performance among the selected VI at the end vegetative and
grain‐filling stages (Table S2). Li, Miao et al. [39] and Cao, Miao,
Feng et al. [27] found the same results for winter wheat. Ac-
cording to Yao, Miao, Huang et al. [6], for rice, VI explained less
than 40% of the N variation in the plant, which is in agreement
with the results obtained in this study. The performance of VI
selected in the parameterisation and validation process and
their explanatory capacity for estimating the agronomic
parameter LNC showed that they were efficient only at the
reproductive stage. Identification of VI for estimating LNC in
the reproductive stage (R2‐R4: before flowering), when there is
still any plant response to N supplementation, can lead to effi-
cient N management, especially of cultivars with high demand
for this nutrient.

All VI showed similar performance for estimating the agro-
nomic parameter LNU at the beginning and end vegetative
stages. However, none of the VI effectively explained LNU

variation in the rice plant. In the reproductive and grain‐filling
stages and the whole crop cycle, NDVI and RVI were less effi-
cient than other indices in both the parametrisation and vali-
dation processes (Figure 4, Tables S1 and S2). This information
allows us to estimate the LNU per unit area for several VI,
allowing a timely supply of N, especially when deficiency is
identified at the beginning of the reproductive stage. Better
performance by NDVI and RVI for the whole crop cycle was
observed in this study for estimating LNU. Cao, Miao, Feng
et al. [27] and Yao, Miao, Cao et al. [40] also reported that the
variation in LNU was 78%–82% and 70%–73% in winter wheat
and rice, respectively. This shows that these VI are more sen-
sitive to variations across sites, cultivars, growth stages, and
crop seasons than other VI. Another limitation of NDVI is that
this index can saturate with high biomass and become even
more inefficient in the estimation of N status parameters.

Although DLB, LAI, LNC, LNU, and NNI are all N status pa-
rameters, NNI is considered the best indicator for the assess-
ment of N nutrition in crops [1, 14]. NNI is related to a critical N
amount that ensures plant growth. The need for destructive
sampling and chemical analysis for N determination has raised
the interest in remote sensing technology to estimate NNI in a
non‐destructive way [39, 41]. Three main approaches can be
applied to estimate NNI in a non‐destructive manner using
detection technologies. The first approach is to estimate the
biomass accumulation and N content of the plant. It is possible
to determine the critical N concentration using the estimated

FIGURE 4 | Scatterplot for leaf N uptake against vegetation indices (a) NVDI, (b) RVI, (c) MSR_RE, and (d) REDVI. Empty and filled black circles
and squares represent the beginning of vegetative stage (V1–V9), end of vegetative stage (V10–R1), reproductive stage (R2–R4), and grain filling stage
(R5–R8) across cultivars and crop season.
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biomass, where NNI is calculated as the ratio between the actual
N concentration and the predicted critical N concentration for
the accumulated biomass [14]. The results of this study suggest
that rice DLB can be estimated at the reproductive and grain‐
filling stages (R2 = 0.69 and 0.74, respectively) based on VI.
However, the variation in LNC was only moderately explained
by VI (R2 = 0.37–0.45), and this parameter had the lowest
percent bias (PBIAS ≤ 6.6 for the best indices, Table S2) at the
reproductive stage. Except in the reproductive stage, this
approach would not be efficient in estimating NNI. The esti-
mation of crop N status using remote sensing technologies has
been a challenge, especially at the vegetative stage [9, 14]. The
second approach refers to the use of canopy detection technol-
ogies to estimate biomass and N content in plants. Based on the
estimated biomass, critical N absorption can be calculated using
the critical N absorption curve [1]. In this method, the NNI is
determined as the ratio of the plant's actual nitrogen uptake
(specific to the cultivar and known in advance for the given
growth stage) to the estimated critical uptake. The results of this
study (Tables S1 and S2) show that LNU was well estimated by
the VI, except at the vegetative stage. This finding indicates that
this approach may work well to estimate INN indirectly at key
growth stages (stem elongation, panicle initiation, and grain
filling). The actual and critical N concentrations can be used to
measure excess or deficiency of N and help determine the
amount of N topdressing. The third approach involves using
sensing technology to directly estimate the NNI, similar to how
chlorophyll metres operate [41, 42] and active canopy sen-
sors [43].

The performance of VI for estimating NNI was satisfactory for
all growth stages (d = 0.37–0.77) and the whole crop cycle
(d = 0.51–0.62). NDVI and RVI showed better performance for
estimating NNI at the beginning of the vegetative stage. At the
end of the vegetative stage, M_RESAVI showed better perfor-
mance for estimating NNI. Among the VI applied in this study,
M_RESAVI and NDRE stood out from the 22 VI for estimating
NNI (Tables S1 and S2). At the reproductive and grain‐filling
stages and the whole crop cycle, these VI explained on
average NNI variation of 7%, 13%, and 13% greater using
adjusted models 8%, 15%, and 8% more aggregated to the in-
dependent validation data compared with the NDVI and RVI,
respectively. Yao, Miao, Cao et al. [40] also found that the VI,
NDVI, and RVI are inefficient for estimating NNI in rice. Our
results are similar to the results of Cao, Miao, Feng et al. [27],
who estimated NNI satisfactorily using M_RESAVI and
demonstrated encouraging performance results for rice crop
(R2 = 0.78).

Our results infer that VI adequately estimated NNI, with R2

equal to 0.52 in the parametrisation process for the whole crop
cycle, achieving 0.80 at the reproductive stage. The validation
results in data from independent experiments were also prom-
ising (d = 0.62) for the whole crop cycle. This demonstrates that
active sensors with more than two fixed bands, especially
incorporating the RE spectral band, are better for estimating the
crop N status. In Brazil, for irrigated rice areas with high yields,
indices such as M_RESAVI and NDRE may be more suitable for
managing precision applications and optimising the cost of
chemical analysis to determine crop N status as well as for
topdressing, which may be reduced over the cycle. More studies

are needed to further evaluate the performance of these VI in
estimating NNI under different environmental conditions and
management.

There is growing interest in strategies that optimise the use of
synthetic and natural resources such as N in rice production
environments, especially under the irrigated system, which al-
lows for higher yields than rainfed cultivation. The results ob-
tained with this research allow us to infer that the management
of N status in tropical irrigated rice can be done based on the
NNI estimated by the M_RESAVI and NDRE indices. Recent
technologies have suggested the combined use of remote
sensing information with handheld remote‐controlled devices.
This combination presents itself as a promising approach for
quantitative and spatially distributed diagnostics to support the
application of N at variable rates, enabling the creation of NNI
maps. In Italy, the application of N at variable rates through this
approach made it possible to reduce the environmental impact
of nitrogen fertilisation from 13.6% to 11% in rice cultivation
[44]. The possibility of estimating the NNI of irrigated rice by
spectral technologies has also been reported in China [4]. Once
the NNI of the crop is accurately estimated, the established
models become useful to provide theoretical bases for the pre-
cise management of nitrogen fertilisers contributing to an in-
crease in crop yield. Therefore, interest in technologies that
allow the non‐destructive estimation of NNI in large areas is
growing and promising.

5 | Conclusions

The VI calculated in this study considerably underestimated
DLB (−74.1 < PBIAS < −63.8 and −23.4 < PBIAS < −22.4) at
the beginning and end vegetative stages, respectively. In addi-
tion to DLB, LNC and LNU were not efficiently estimated at the
vegetative stage (PBIAS > 10%). Larger variations in these in-
dicators are explained by the VI in the subsequent growth
stages. The selected VI were promising for explaining DLB and
LAI variability at the reproductive and grain‐filling stages. The
lowest performance was achieved by the VI for estimating LNC
at the reproductive stage. NDVI and RVI were less efficient for
estimating LNU at the reproductive and grain‐filling stages, and
the whole crop cycle than the other VI. M_RESAVI and NDRE
had the best performance for estimating NNI.
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