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Abstract: Spectral indices such as NDRE (Normalized Difference Red Edge Index), CCCI
(Canopy Chlorophyll Content Index), and IRECI (Inverted Red Edge Chlorophyll Index),
derived from the Red Edge band of MSI/Sentinel-2A (B05, B06, B07), are critical for coffee
monitoring. To align the Red Edge band (20 m resolution) with the NIR band (10 m
resolution), the nearest neighbor, bilinear, cubic and Lanczos resampling methods were
used, available in the Terra package in the R software(4.4.0). This study evaluates these
methods using two original BO5 images from 24 November 2023, and 21 September 2023,
covering the “Ouro Verde” (15 ha) and “Canto do Rio” (45 ha) farms in Bahia, Brazil. A
total of 500 random points were analyzed using PSE, linear models, and cross-validation
with R?, MAE, and RMSE. PSF analysis confirmed data integrity, and the cubic method
demonstrated the best performance (R2 = 0.996, MAE = 0.008 and RMSE = 0.012 in the
“QOuro Verde” Farm and R? = 0.995, MAE = 0.007 and RMSE = 0.011 in the “Canto do Rio”
Farm). The results highlight the importance of selecting appropriate resampling methods
for precise remote sensing in coffee cultivation, ensuring accurate digital processing aligned
with study objectives.

Keywords: remote sensing; precision coffee growing; spectral indices

1. Introduction

Studies on remote sensing (RS) in coffee production have advanced in several coun-
tries, contributing to the improvement of production area management and increasing
competitiveness in the global market [1,2].

This is especially important for Brazil, as the world’s largest producer and exporter
of coffee beans, with 54.76 million 60 kg bags produced in 2024. In total, there are more
than 330,000 coffee producers, 78% of whom are small-scale farmers, spread across approx-
imately 1900 municipalities [3,4].

These advancements are due to the introduction of precision agriculture (PA), which
refers to the use of geotechnologies for efficient, profitable, and sustainable rural manage-
ment. When applied to coffee production, PA is referred to as precision coffee farming
(PCF) [5,6].
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Among these geotechnologies is orbital RS, conducted using satellite imagery. The
applications of this technology range from identifying zones of productive potential and
management areas, mapping and classifying areas, crop forecasting, and productivity
estimation, to identifying diseases and pests, verifying leaf nitrogen content, and analyzing
the spatial variability of crop attributes [7,8].

Several spectral indices are employed in remote coffee monitoring, particularly those
incorporating the Red Edge spectral band, such as NDRE (Normalized Difference Red
Edge Index), CCCI (Canopy Chlorophyll Content Index), and IRECI (Inverted Red Edge
Chlorophyll Index) [9-12].

One of the main sources for obtaining these indices is the MSI (Multispectral Instru-
ment) onboard Sentinel-2A, which includes three Red Edge bands (B0O5—Red Edge 1,
B06—Red Edge 2, B07—Red Edge 3) captured at a 20 m spatial resolution [13]. To compute
these indices, resampling is required to match the spatial resolution of the NIR band (10 m),
a key reference in vegetation analysis. This process involves adjusting spatial resolution
using interpolation methods such as nearest neighbor, bilinear, cubic, and Lanczos [14,15].

The characteristics and effects of these methods will be detailed in the Materials and
Methods section. However, based on the characteristics of the methods, it is hypothesized
that the nearest neighbor model might achieve good results, not because it is the most
suitable model, but due to its characteristic of preserving the original image data.

Each of these interpolation methods has specific characteristics that define how spatial
information is reconstructed. For instance, the nearest neighbor model preserves the pixel
values, resulting in minimal alteration of the original data. However, in terms of RS coffee
farming, bilinear interpolation has been applied to resample B05 band from 20 to 10 m
resolution to evaluate the effects of hailstorms on Arabica coffee plantations using NDVI
and NDRE indices [16].

This study employed the Semi-Automatic Classification (SPC) plugin in QGIS and con-
cluded that NDRE is more sensitive than NDVI in demonstrating variations in vegetation
index values across different Arabica coffee varieties. The same procedure was followed by
other researchers [17]. Although the effects of these methods are well documented in the
literature, they have been overlooked in studies on RS of coffee farming that utilize the Red
Edge spectral band from the MSI/Sentinel-2, as well as in the validation of these methods,
depending on the specific objectives of the resampling.

On the other hand, research on the topic has been conducted, including reviews of
resampling methods applied to different types of images and their forms of quantitative
and qualitative validation, both in hyperspectral and multispectral images, as is the case
with the MSI/Sentinel-2 sensor [18]. Another study [19] has already shown that cubic
interpolation is particularly effective for agricultural applications, where smooth transitions
between pixel values are essential for accurate vegetation analysis. Similarly, it has also
been observed [20] that the choice of resampling method can significantly impact the
quality of spectral indices, especially when dealing with high-resolution data like those
from Sentinel-2.

In addition to the resampling methods mentioned above, other procedures have been
applied in RS studies, such as spline interpolation, Kriging, and convolutional neural
networks (CNNs), which have shown promising results in various applications. For
instance, spline interpolation has been effective in generating smooth surfaces with high
geometric precision, which is particularly useful for capturing subtle spectral variations in
agricultural monitoring [21]. Similarly, Kriging, a geostatistical method, has been applied
to account for spatial autocorrelation in heterogeneous landscapes, such as coffee farms
with varying growth stages [22]. On the other hand, CNNs have demonstrated superior
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performance in preserving fine details and reducing artifacts in resampled images, although
they require significant computational resources and training data [23].

In this context, this technical note aims to test and validate different resampling
methods for the Red Edge spectral band of the MSI/Sentinel-2, with the objective of
obtaining indices for monitoring coffee farming and enhancing digital processing for this
purpose. In this regard, this study contributes to the field by providing a systematic
evaluation of resampling methods specifically for the Red Edge band of Sentinel-2, with a
focus on coffee farming.

2. Materials and Methods

This study used images from the MSI (Multispectral Instrument) sensor on the Sentinel-
2A satellite, which has 13 spectral bands, including three bands in the Red Edge range:
705 nm (B05), 740 nm (B06) and 783 nm (B07), all with a spatial resolution of 20 m. The
spectral characteristics are detailed in Table 1. The images used were obtained at the L2A
processing level, already atmospherically corrected for surface reflectance, dispensing with
additional correction steps.

Table 1. Spectral band characteristics of MSI/Sentinel-2A: band number, spectral band, wavelength,
and spatial resolution.

Spectral Wavelength Spatial
Band Number I];and (nm) 8 ReSOlIl)ltiOIl (m)
BO1 Costal aerosol 443 60
B02 Blue 490 10
B03 Green 560 10
B04 Red 665 10
B05 Red Edge 1 705 20
B06 Red Edge 2 740 20
B07 Red Edge 3 783 20
B08 NIR 842 10
B8A NIR narrow 865 20
B09 Water vapor 945 60
B10 Cirrus 1380 60
B11 SWIR 1 1910 60
B12 SWIR 2 2190 20

The workflow comprises four main steps: (1) image acquisition and preparation;
(2) generation of random sample points; (3) application of resampling methods and extrac-
tion of spectral values; and (4) statistical validation of the results. Two B05 band images
with 0% cloud cover were selected, corresponding to Arabica coffee (Coffea arabica L.) pro-
duction areas in the state of Bahia, Brazil: the “Ouro Verde” Farm (15 ha), located in Barra
do Choga (southwest), and the “Canto do Rio” Farm (45 ha), in Luis Eduardo Magalhaes
(west), acquired on 24 November and 21 September 2023, respectively. Figure 1 shows the
geographic locations of the corresponding B05 images.

Initially, 500 randomly distributed sampling points were generated within the geo-
graphic extent of the original B05 images. The spectral values at these points were extracted
from both the original B05 image (20 m) and the resampled images (10 m), using the nearest
neighbor, bilinear, cubic, cubic spline and Lanczos resampling methods, available in the
terra package (version 4.4.0) of R. These resampling techniques were selected due to their
wide application in remote sensing and their distinct interpolation properties, facilitating a
complete evaluation of their effects on coffee crop monitoring. Figure 2 shows a detailed
visualization of the processed images, and a supplementary location map of the farms
provides spatial context for the study sites.
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Figure 1. In this figure, we see the map of Brazil, the map of the Bahia State, and the location of the
satellite images corresponding to the “Canto do Rio” and “Ouro Verde” farms.
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Figure 2. These are original images from the BO5 band and the rural properties used as reference:
(a) Image of the “Ouro Verde” Farm; (b) Image of the “Canto do Rio” Farm.

For each sample point, the native spectral values were compared with the correspond-
ing resampled values. The extraction was performed directly on the sample points, not
selecting a specific pixel among the four generated by the resampling, but rather consid-
ering the exact position of the point in both resolutions. The objective was to evaluate
the spectral fidelity maintained or distorted by each interpolation technique. Alternative
approaches, such as Kriging or deep-learning-based interpolation methods, were not con-
sidered in this study. The resampling process was applied uniformly to all images, using
the same kernel size and interpolation window. Table 2 provides a comparative summary
of the main attributes and differences between these methods [14,15].

Spatial analysis of the distribution patterns of the sample points was conducted using
the spatstat package in R. The second-order spatial functions Ripley’s K, G function (distance
to the nearest neighbor), and F function (distance from a random point to the nearest sample
point) were applied.

These analyses were performed directly in geographic coordinates (WGS84 system);
therefore, the parameter r was interpreted in decimal degrees. This precaution ensures
consistency with the unit of measurement of the non-reprojected spatial data.
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Table 2. Description of resampling methods and their effects.

Resampling Methods Characteristics

Assigns the value of a pixel based on the nearest
neighboring pixel, thereby preserving the original image
data. However, this approach can lead to duplication of
values, potential loss of fine details, and slight spatial
misalignment, requiring careful application depending on
the study’s objectives.

Nearest Neighbor

Determines a new pixel value by interpolating between the

four nearest points, using a weighted averaging approach.

This method provides smoother transitions between pixels
but may introduce slight blurring effects.

Bilinear

Computes the value of a new pixel by considering the
16 nearest neighbors, applying weighted averaging. This
approach enhances image smoothness and reduces
pixelation, albeit at a higher computational cost.

Cubic

Uses a high-quality Lanczos kernel to interpolate signal
values, effectively preserving image details while reducing
Lanczos aliasing effects. Although this method requires increased
processing time, it generally yields superior visual and
spectral quality in resampled images.

Recognizing that the random distribution of the points may include mixed pixels
located at radiometric edges, the study adopted a conservative approach: the points were
extracted randomly and broadly, without spectral or spatial filters. This choice represents a
limitation, but it was maintained to preserve the heterogeneity of the analyzed scenario.
To reduce possible spatial biases and rigorously assess the performance of the resampling
methods, the extracted data were normalized and subjected to a validation strategy in two
complementary stages:

(1) Initial division into 70% for training and 30% for testing, applied to the normal-
ized data set extracted from the sample points. This stage aimed to simulate a real
prediction scenario, using a fraction of the data not observed in the training.

(2) K-fold cross-validation (k = 5, with 5 repetitions), applied only to the training subset.
This approach allowed for the adjustment and validation of the linear regression mod-
els with greater statistical robustness, minimizing the effect of random partitioning.
The final results refer exclusively to the performance obtained on the test set (30%).

All statistical analyses were performed in R, using the packages caret (for modeling
and cross-validation), metrics (for calculating metrics such as RMSE, MAE and R?), and
ggplot2 (for visualization). The metrics used are defined as: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and Coefficient of Determination (R?).

MAE (Equation (1)) expresses the average of the absolute errors between the observed
(original) and predicted (resampled) values, and is a direct metric of accuracy. RMSE
(Equation (2)) calculates the mean squared error and penalizes larger errors more heavily,
which makes it more sensitive to outliers. R? (Equation (3)) measures the proportion of
the variability of the original data explained by the regression model. The lower the MAE
and RMSE values, and the closer the R? value is to 1, the better the performance of the
evaluated method [24].

The equations used are:

RMSE = \/z Y i =9, (1)
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MAE = — ) [y; = 9il (2)
i=1
Y res
RZ=1- 3
Y tot ®)

where y; represents the original value of the spectral index; ¥, is the value resulting from
the resampling; ¥ is the average of the original values; n is the number of points analyzed.

3. Results

After resampling in R, all output images had a 10 m spatial resolution, according to
the methods used. Then, it followed for the evaluation of the sample points.

3.1. Results of the Family Health Program (FHP) Evaluation
3.1.1. “Ouro Verde” Farm

In the Ripley’s K function (Table 3; Figure 3b), the density of points is measured as
a function of distance r, with an assessment of clustering or dispersion. According to
the data, the distance ranges from 0 to 27,450 decimal degrees in the WGS84 coordinate
system, characterizing a wide scale that allows the identification of patterns at short and
long distances.

Table 3. Results Ripley’s K function.

Theo Border Trans iso
Min. 0 0 x 10° 0 x 10° 0 x 109 0 x 109
1st Qu 6.862 x 10°  1.48 x 101 1.47 x 10" 146 x 101 1.46 x 101!
Median 1.3725 x 10* 592 x 10! 6.01 x 101 6.00 x 1011 5.98 x 101!
Mean 1.3725 x 10* 790 x 101 7.86 x 101 790 x 1011  7.87 x 101!
3rd Qu 2.0588 x 10* 133 x 102 133 x 102 133 x 102 132 x 1012
Max 2745 x 104 237 x 1012 233 x 1012 237 x 1012 2.36 x 1012
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Figure 3. (a) Random sample points; (b) Ripley’s K function; (c) G function; (d) F function.

Theoretically, density increases with distance, indicating a random pattern. The mean
values (border, trans, iso), in turn, vary between 7.86 x 101! and 7.90 x 10!, and are above
the expected values at some scales. Regarding clustering, the maximum observed density
ranged from 2.33 x 10'? to 2.37 x 10'2, suggesting strong clustering at larger scales. There
is a tendency for points to cluster at larger scales (r > 2.0 x 10%) and behave close to random
at smaller scales.

In the G function (Table 4; Figure 3c), we observe the proximity between points, with a
highlight on local clusters. The data show that short distances r vary from 0 to 9400 decimal
degrees, and that the means (~0.73) and medians (~0.93) are slightly below the theoretical
value, indicating proximity between points at small scales (han, rs, km).

Table 4. Results G function.

r Theo Han rs km Hazard Theohaz

Min. 0 0.0000 0.0000 0.0000 0.0000 0.0000000 0.0000000
1st Qu 2350 0.5130 0.5175 0.5131 0.5134 0.0000000 0.0006124
Median 4700 0.9438 0.9353 0.9357 0.9300 0.0000000 0.0012248
Mean 4700 0.7383 0.7290 0.7278 0.7267 0.0006211 0.0012248
3rd Qu 7050 0.9985 10.000 10.000 10.000 0.0004483 0.0018371
Max 9400 10.000 10.000 10.000 10.000 0.0377538 0.0024495

The mean value in hazard is almost 0, suggesting the absence of significant gaps. In
the distribution, the median of 0.93 is close to the theoretical value (0.94), pointing to a
tendency of slight or subtle local clustering at small scales.

Through the F function (Table 5; Figure 3d), we can measure the distribution of the
nearest points in the total space and verify if there is uniformity or dispersion. Regarding
the values of (1), there is a variation between 0 and 9436 decimal degrees.

Table 5. Results F function.

r Theo cs Rs km Hazard Theohaz

Min. 0 0.0000 0.0000 0.0000 0.0000 0.0000000 0.0000000
1st Qu 2359 0.5157 0.5254 0.5244 0.5226 0.0003114 0.0006147
Median 4718 0.9450 0.9542 0.9548 0.9541 0.0009524 0.0012294
Mean 4718 0.7345 0.7387 0.7390 0.7382 0.0009808 0.0012294
3rd Qu 7077 0.9985 0.9977 0.9978 0.9978 0.0012554 0.0018441
Max 9436 10.000 10.000 10.000 10.000 0.0064643 0.0024588
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A linear growth can be observed, indicating uniformity. The mean values (cs, rs, km)
at ~0.73 suggest a uniform distribution with denser local areas. In hazard, the mean value
of almost 0 indicates the absence of large empty areas. In the distribution, the median of
~0.95 shows that the points are close to uniformity, but with variable local density.

3.1.2. “Canto do Rio” Farm

The results of the PSF evaluation of the Canto do Rio Farm were similar:

The values of r range from 0 to 27,450 decimal degrees in the WGS84 coordinate
system, in the results Ripley’s K function (Table 6; Figure 4b). In the observed average
density (border, trans, iso), there is proximity to the theoretical density, but with some
deviations, which may indicate slight clustering or dispersion tendencies at specific scales.

Table 6. Results Ripley’s K function.

r Theo Border Trans iso
Min. 0 0 0 0 0
1st Qu 6862 1.48 x 101 147 x 10" 148 x 1011 1.48 x 101!
Median 13,725 592 x 101 592 x 1011 588 x 1011 5.85 x 10!
Mean 13,725 7.90 x 101 790 x 10 7.89 x 1011 7.83 x 101!
3rd Qu 20,588 133 x 102 1.33 x 1012 133 x 102 1.32 x 1012
Max 27,450 237 x 1012 236 x 1012 2.38 x 1012 2.37 x 10!2
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Figure 4. (a) Random sample points; (b) Ripley’s K function; (¢) G function; (d) F function.
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The maximum observed density (2.37 x 10'?) exceeds the theoretical (7.90 x 10'1),
indicating clustering at larger scales. Thus, it is possible to infer that the border, trans, and
iso methods present similar values and consistent results. The points show tendencies
of slight clustering at larger scales (r > 2.0 x 10%)), but close to the random pattern at
smaller scales.

In the analysis of short distances, the values of r vary from 0 to 9400 decimal degrees,
in the results G function (Table 7; Figure 4c). The theoretical function increases linearly up
to 1.0, which represents a random pattern. The average values of 0.73 in han, rs, and km are
slightly below the expected, indicating greater proximity between points at smaller scales.

Table 7. Results G function.

r Theo Han rs km Hazard Theohaz
Min. 0 0.0000 0.0000 0.0000 0.0000 0.0000000 0.0000000
1st Qu 2350 0.5130 0.5088 0.5000 0.5003 0.0000000 0.0006124
Median 4700 0.9438 0.9451 0.9447 0.9412 0.0000000 0.0012248
Mean 4700 0.7383 0.7382 0.7368 0.7355 0.0006246 0.0012248
3rd Qu 7050 0.9985 10.000 10.000 10.000 0.0004799 0.0018371
Max 9400 10.000 10.000 10.000 10.000 0.0377538 0.0024495
Regarding the median, the observed (0.94) is close to the theoretical (0.94), indicating a
strong clustering of points, with slight proximity between short distances. There is a slight
tendency of proximity at small scales, without forming highly dense patterns.
The results of the F function (Table 8; Figure 4d) show a variation of r between 0 and
9436 decimal degrees. While the theoretical function grows up to 1.0, the observed (cs, 1s,
km) shows that average values (0.73) are slightly below the expected, with a more dispersed
pattern in some areas.
Table 8. Results F function.
r Theo cs rs km Hazard Theohaz
Min. 0 0.0000 0.0000 0.0000 0.0000 0.000 0.0000000
1st Qu 2359 0.5157 0.5224 0.5197 0.5180 225 x 1072 0.0006147
Median 4718 0.9450 0.9496 0.9469 0.9461 6.14 x 10~1  0.0012294
Mean 4718 0.7345 0.7363 0.7353 0.7344 843 x 10~!  0.0012294
3rd Qu 7077 0.9985 0.9998 0.9997 0.9994 1.15 0.0018441
Max 9436 10.000 10.000 10.000 0.9997 3.78 0.0024588

Hazard values (minimum of 0.00078) and maximum (0.0032) indicate that there are
a few significant empty areas. In the distribution, it is observed that the median (0.94) is
almost identical to the theoretical (0.94).

The points are relatively uniform, but there are locally denser areas. In this context,
it is possible to observe that the results of the two points samples follow similar patterns,
with slight local clustering at G scales, strong clustering at larger scales (K), and overall
uniformity at F. The main difference between the two samples is at G, which is more evident
in the Ouro Verde farm sample.

3.2. Cross-Validation Results and Metrics Evaluation

The cross-validation test and metric evaluation confirmed the hypothesis regarding
the nearest neighbor resampling method, with perfect results (R> = 1, MAE = 0, RMSE = 0)
for both the Ouro Verde farm and Canto do Rio farm images. The other methods also
yielded strong results, with slight variations between the two farms.
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3.2.1. “Ouro Verde” Farm

For the Ouro Verde farm (Figure 5), the cubic method (a) performed best (R? = 0.995,
MAE = 0.007, RMSE = 0.011), followed by the bilinear method (R? = 0.994, MAE = 0.008,

RMSE = 0.013), Lanczos (R* = 0.994, MAE = 0.008, RMSE = 0.013), and cubic spline
(R? =0.991, MAE = 0.010, RMSE = 0.015).

Original vs cub

Original vs bi
R2 = 0.99568 R2 = 0.99456
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Figure 5. (a) Original image x cubic; (b) Original image x bilinear; (c) Original image x Lanczos;
(d) Original image x cubic spline; (e) Original image x nearest neighbor.

3.2.2. “Canto do Rio” Farm

For the Canto do Rio farm (Figure 6), the cubic method also showed the highest
performance (R? = 0.995, MAE = 0.007, RMSE = 0.011), followed by bilinear (R? = 0.994,

MAE = 0.007, RMSE = 0.012), Lanczos (R? = 0.993, MAE = 0.008, RMSE = 0.013), and cubic
spline (R? = 0.991, MAE = 0.009, RMSE = 0.015).
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Figure 6. (a) Original image x cubic; (b) Original image x bilinear; (c) Original image x Lanczos;
(d) Original image x cubic spline; (e) Original image x nearest neighbor.

4. Discussion

The analysis of the results of the resampling methods revealed only minor variations
among them in terms of accuracy, appearing to be generally reliable. Similar results
were found in studies examining sugarcane crop classification and discrimination using
MSI/Sentinel-2 imagery [14].

However, the authors highlight that simpler methods, such as bilinear and near-
est neighbor, which require less processing time, may be preferable to more complex
techniques, such as cubic and Lanczos, which demand more processing time. However,
advancements in cloud processing can mitigate concerns about computational intensity.

Nearest neighbor, bilinear, and cubic methods have been widely applied in satellite
image processing. For instance, Boggione and Costa [25] employed such methods for
interpolating RapidEye and CBERS imagery, aiming to assess changes in grayscale values.

They noted that resampling alters digital values (DVs) of the pixels in the output image,
which in turn influences statistical results.
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Similar effects were observed in a study using the Indian remote sensing (IRS) satellite
images [26], which aimed to determine which resampling technique preserves the image
quality the most, regarding mean absolute error and peak-to-noise ratio. Alterations in DVs
were shown to be dependent on the original spatial resolution and specific image operations
(scaling and rotation), emphasizing that resampling-induced changes are method- and
context-dependent.

Additionally, mixed pixels and potential resampling artifacts introduced by inter-
polation methods were observed, particularly in areas with abrupt spectral transitions,
such as field boundaries and vegetated regions. These factors must be considered when
interpreting the results, as they could lead to unintended smoothing or spectral distortions.

Beyond traditional methods, resampling has been employed to generate high-resolution
images from coarse-resolution satellite data. Lezine, Kyzivat, and Smith [27] explored the
use of generative adversarial networks (GANSs), comparing the results with cubic resampling
for surface water mapping. Results suggested that GAN-based resampling can achieve
comparable or superior performance to cubic resampling when high-resolution Planet CubeSat
images were downscaled and subsequently resampled to their original resolution.

Resampling methods also address challenges such as spectral mixture discrimination,
where multiple spectral features are captured within a single pixel. For example, in [28],
a comparison of cubic convolution and nearest neighbor resampling on Landsat imagery
found no statistically significant differences in the errors associated with pixel spectral
response estimation, concluding that the results had no influence on using one method
over another.

In the current study, the spectral mixture issue was more evident in areas with vegeta-
tion transitions, where interpolation methods influenced the spectral reflectance values,
potentially altering vegetation index calculations. This highlights the need for caution
when resampling spectral data for precision agriculture applications.

Another important application of resampling is upscaling imagery for various pur-
poses. Guo et al. [29] explored the influence of spatial resolution on soil organic carbon
(SOC) mapping using hyperspectral airborne imagery, upscaling the original 1 m resolu-
tion images by means of nearest neighbor, bilinear interpolation, and cubic convolution.
Their study found that the use of different resampling methods has minor effects on the
predictions of SOC against spatial resolution degradation.

While Lanczos resampling is less frequently used, likely due to its computational
complexity, Madhukar and Narendra [30] evaluated Lanczos resampling alongside nearest
neighbor and other methods for satellite remote sensing images, based on entropy, mean
relative error, and execution time metrics.

They showed that Lanczos with a parameter achieved superior results, reducing
aliasing, preserving sharpness, and minimizing ringing effects. These findings highlight
the potential of Lanczos as a high-quality resampling option.

In summary, while all tested resampling methods showed minor differences in accu-
racy for this study, the impact of resampling on pixel values, particularly in the presence of
mixed pixels and interpolation artifacts, should not be overlooked. These factors may affect
subsequent spectral analyses and model predictions, emphasizing the need to balance
computational efficiency with output quality when selecting a resampling method.

It is also important to highlight that, although the data used are specific to coffee crops,
the methodological approach adopted, focused on the comparison between resampling
methods applied to Red Edge images, can be generalized to other crops or applications in
agricultural remote sensing, as long as the spectral and spatial conditions of the images
are similar.
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In addition, we recognize that resampling can significantly affect the calculation of
derived spectral indices, such as NDRE, especially in areas with high intra-pixel variability.
Resampling that smooths spectral transitions can attenuate extreme values or introduce
artifacts, directly impacting agronomic analyses. Therefore, we suggest caution when
applying these methods in operational contexts, recommending complementary analyses
with NDRE and other spectral metrics as a future line of this work.

5. Conclusions

Red Edge band resampling for calculating indices such as NDRE, CCCI, and IRECI
in coffee crop mapping can be performed using the terra package in R through nearest
neighbor, bilinear, cubic, cubic spline, and Lanczos methods, which showed minimal
differences in results.

However, the nearest neighbor method, while preserving original image data, may
not be the most reliable for remote sensing of coffee crops. Based on the results, the cubic
method proved to be the most suitable, followed by bilinear, Lanczos, and cubic spline.

Resampling influenced pixel DVs, affecting spectral responses and analyses. The extent
of these changes varied by interpolation method, highlighting the need for careful selection
based on study objectives. While no single method was deemed the best, considering DV
modifications is crucial when choosing a resampling approach.

Future research can explore machine-learning-based resampling to enhance accuracy
in coffee crop monitoring and evaluate method performance under different environmental
conditions, refining remote sensing applications in precision agriculture.
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