Avaliação de tensiômetros automáticos para monitoramento dopotencial matricial do solo⁽¹⁾

<u>Jonatan Alves Pereira</u>⁽²⁾; Wenceslau Geraldes Teixeira⁽³⁾; Alexandre Ortega Gonçalves⁽⁴⁾

(¹) Trabalho executado com recursos de Projeto ARRAS II - Embrapa. (²) Estudante de Engenharia Ambiental, Cefet-RJ, Ensino médio técnico, Bolsista PIBIC, Embrapa Solos - Rio de Janeiro. (³) Agrônomo, Doutor em Agroecologia,, Pesquisador, Embrapa Solos - Rio de Janeiro. (4) Agrônomo, Doutor em Engenharia de Sistemas Agrícolas, Pesquisador, Embrapa Solos - Rio de Janeiro.

Resumo – O tensiômetro desempenha um papel crucial na medição da tensão com que a água é retida nos espaços e pelas partículas do solo, essa tensão é conhecida como potencial matricial do solo. E tradicionalmente avaliadas com tensiômetros de leitura manual. Ao estabelecer uma relação entre o conteúdo de água presente no solo e a tensão a que este está sujeito, almeja-se aprimorar a precisão das decisões relacionadas à irrigação. Esta pesquisa se propõe a investigar a factibilidade do uso de tensiômetros automáticos, especialmente no que se refere a vazamentos e à consistência e calibração das leituras automáticas. Os resultados preliminares deste estudo apontam para a necessidade de calibração individual dos tensiômetros automáticos

Palavras-Chave tensão, calibração, datalogger, .

Introdução

Considerando os desafios enfrentados em relação à escassez ou ao excesso de água para as plantas, o tensiômetro surgiu como uma inovação crucial para o monitoramento da disponibilidade de água no solo. Esse dispositivo revolucionou a forma como medimos a água disponível para as plantas, oferecendo uma solução eficaz para os problemas associados à gestão hídrica.

A dinâmica da água no solo está diretamente ligada à tensão da água. A água, tanto no solo quanto na superfície, sempre se desloca de áreas com maior potencial para áreas com menor potencial (UMS, 2011). Essa movimentação é uma característica fundamental que influencia a forma como a água é distribuída e utilizada pelas plantas.

A maioria dos fluxos de água no solo acontece em condições de pequenas tensões de água (Zonta et al., 2019) Portanto, é essencial utilizar equipamentos que possam medir com precisão essas pequenas variações. Os tensiômetros são os instrumentos que possibilitam a medição direta e precisa dessas tensões mínimas, permitindo uma gestão mais eficaz da água disponível para as plantas.

Além disso, é importante reconhecer que os solos são naturalmente heterogêneos. Vários fatores contribuem para essa heterogeneidade, incluindo a distribuição dos tamanhos das partículas, a presença de rachaduras, acompactação, e as cavidades presentes no solo. Esses elementos não só afetam a maneira como a água se move, mas também fazem com que a tensão da água no solo varie de maneira significativa. Assim, a medição precisa e a compreensão dessas variações são essenciais paraa gestão adequada dos recursos hídricos no cultivo de plantas.

Esta pesquisa estudou a integridade de tensiômetros automáticos, especialmente no que se refere a possíveis vazamentos e à consistência e calibração das leituras automáticas.

Material e Métodos

Estão sendo utilizados quatro tensiômetros automáticos (Figura 1) (T8 - Meter, EUA), conectados ao sistema coletor de dados CR1000 (Campbell Sci, EUA) (Figura 2 e 3). O script do programa (Figura 4) para a coleta automática de dados do tensiômetros T8 e registro horário foi feito no ShortCut. Os registros são automaticamente salvos em valores médios (mV) horários.

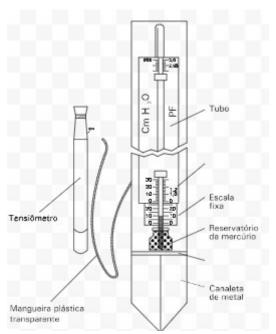
As cápsulas porosas dos tensiômetros foram previamente saturadas em água e colocadas no ar e, posteriormente foram enterradas no solo até a entrada do ar e perda da tensão. Os dados são apresentados em gráficos que relacionam a variação da tensão (mV) no tempo e serão utilizados para a calibração. Será utilizado um tensiômetro manual como o manômetro de mercúrio (Figura 5). Os registros serão convertidos de mV(Milivolt) para dados de potencial em hPa (hectopascal).

218 Eventos Técnicos & Científicos 2

Figura 1. Tensiômetros T8 Eletrônico.

Figura 2. CR1000 Registrador de dados (Datalogger).

Figura 3. CR1000KD Keyboard/Display.


(Fonte:

Software Pc400)

```
Program: Tensiomentro_4.cr1
      'CR1000
      'Created by Short Cut (4.4)
     'Declare Variables and Units
    Public BattV
Public PTemp_C
Public T8_1
Public T8_2
    Public T8_3
Public T8_4
     Units BattV=Volts
     Units PTemp_C=Deg C
     Units T8_1=mV
Units T8_2=mV
Units T8_3=mV
14
     Units T8 4=mV
     'Define Data Tables
DataTable(Table1,True,-1)
19
21
        DataInterval(0,2,Min,10)
22
        Average (1, T8_1, FP2, False)
Average (1, T8_2, FP2, False)
Average (1, T8_3, FP2, False)
24
        Average(1, T8_4, FP2, False)
    DataTable(Table2,True,-1)
        DataInterval(0,2,Min,10)
Minimum(1,BattV,FP2,False,False)
31
32
    EndTable
34
      'Main Program
     BeginProg
36
37
        Scan(5,Sec,1,0)
'Default CR1000 Datalogger Battery Voltage measurement 'BattV'
39
           Battery (BattV)
            'Default CR1000 Datalogger Wiring Panel Temperature measurement 'PTe
40
           PanelTemp(PTemp_C,_60Hz)
'Generic Differential Voltage measurements 'DiffVolt'
41
42
43
           VoltDiff(T8_1,1,mV2500,5,True,0,_60Hz,1,0)
44
           VoltDiff(T8_2,1,mV2500,6,True,0,_60Hz,1,0)
           'Generic Differential Voltage measurements 'DiffVolt 3'
VoltDiff(T8_3,1,mV2500,7,True,0,_60Hz,1,0)
'Generic Differential Voltage measurements 'DiffVolt 4'
46
48
           VoltDiff(T8_4,1,mV2500,8,True,0,_60Hz,1,0)

'Call Data Tables and Store Data
CallTable Table1
49
51
           CallTable Table2
53
        NextScan
54 EndProg
```

Figura 4. Programa Tensiômetro

Figura 5. Manômetro de mercúrio (Fonte PDF: Embrapa Cerrados)

220 Eventos Técnicos & Científicos 2

Resultados e Discussão

A primeira fase de testes com os tensiômetros noar (Figura 6) foi bem-sucedida ao identificar a redução dos valores registrados quando da entrada de ar na cápsula. Esse estudo também permitiu identificar algumas cápsulas que apresentavam rachaduras e foram inutilizadas.

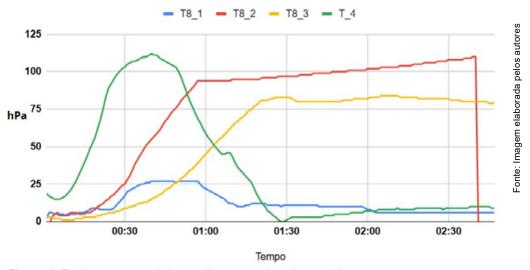


Figura 6. Evolução temporal das avaliações em kpa dos tensiômetros no ar.

Para a segunda fase, os tensiômetros foram instalados no solo (figura 7), num canteiro da coleção de Plantas Medicinais do Jardim Botânico do Rio de Janeiro. Dois tensiômetros foram posicionados próximos a um aspersor (TENS. 1 e 3)e dois mais distantes (TENS 2 e 4). Foi possível observar que, ao acionar o aspersor a água que caía nas proximidades desses dois tensiômetros, o potencial matricial reduzia ligeiramente indicando o funcionamento adequado dos instrumentos. A queda abrupta de pressão no TENS 2 às 11 horas revelou o momento em que a pressão excede o ponto de borbulhamento e há entrada de ar na capsula.equipamento

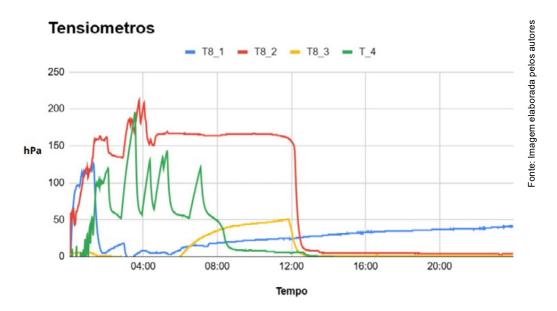


Figura 7. Evolução temporal das avaliações em hPa dostensiômetros no solo.

A transformação de mV para hPa foi feita utilizando os dados técnicos fornecidos pela UMS (Figura 8), fornecedora do equipamento.

Conclusões

Ao final da fase de testes, foi possível inferir que há necessidade de uma calibração específica para cada tensiômetros. Os valores tanto no potencial zero - 0 hPa (cápsulas saturadas) apresentam valores diferenciados (mV). A entrada de ar na cápsula indicada pela queda na subida do potencial também apresenta valores distintos (mV). Portanto, serão ajustadas equações específicas para a calibração individual de cada tensiômetro.

Ajuste fino na calibração serão feitas com a instalação simultânea dos tensiômetros automáticos e manual como o manômetro de mercúrio, devido à sua alta precisão nos resultados desse equipamentode referência.

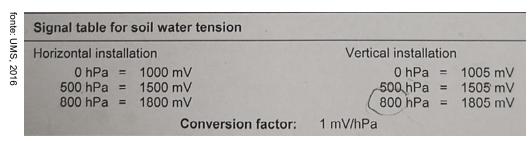


Figura 8. Tabela de conversão de mV para hPa

Agradecimentos

Aos Integrantes do Laboratório de Avaliação e Modelagem da Água no solo, LAMAS. A pesquisadora Viviane Kruel do JBRJ pela permissãoda instalação dos equipamentos e apoio na pesquisa.

Referências

AZEVEDO, J. A. de; SILVA, E. M. da. Tensiometro: dispositivo prático para controle da irrigação.

Planaltina, DF: Embrapa Cerrados, 1999. 39 p.(Embrapa Cerrados. Circular Técnica, 1).

UMS. User Manual T8 Long-term Monitoring Tensiometer. 2011. Munique, Alemanha: 2011. Disponível em: https://library.metergroup.com/Manuals/UMS/T8_Manual.pdf. Acesso em: 17 out 2023.

UMS. Using T8 on the EM50 configuration and setup. 2016. Munique, Alemanha: 2011. Disponívelem: https://library.metergroup.com/Sales%20and%20Support/Support/UsingT8with EM50.pdf. Acesso em: 19 out 2023.

ZONTA, Jonathan Henrique; HORA, Vinícius Martinsda; BARBOSA, Cláudio de Souza. Produtividade e relação solo-água na cultura do arroz em sistemas de produção com níveis diferentes de intensificação agrícola. Pesquisa Agropecuária Brasileira, Brasília, v. 54, p. 1-12, 2019. Disponível em: https://www.scielo.br/j/pab/a/WRYdxCzr5P8MGDJWFKrMF3c/?format=pdf&lang=pt. Acesso em: 29 ago.2024.