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Abstract

Reliable remote sensing-based Land Use and Land Cover (LULC) information is crucial for
assessing Earth’s surface activities. Brazil’s agricultural dynamics, including year-round
cropping, multiple cropping, and regional climate variability, make LULC monitoring a
highly challenging task. The country has thirteen remote sensing-based LULC products
specifically tailored for this purpose. However, the differences and the results of these
products have not yet been synthesized to provide coherent guidance in assessing their
spatio-temporal agricultural dynamics and identifying promising approaches and issues
that affect LULC analysis. This review represents the first comprehensive assessment of
the advantages, challenges, and limitations, highlighting the main issues when dealing
with contrasting LULC maps. These challenges include incompatibility, a lack of updates,
non-systematic classification ontologies, and insufficient data to monitor Brazilian LULC
information. The consequences include impacts on intercropping estimation, diminished
representation or misrepresentation of croplands; temporal discontinuity; an insufficient
number of classes for subannual cropping evaluation; and reduced compatibility, compara-
bility, and spectral separability. The study provides insights into the use of these products as
primary input data for remote sensing-based applications. Moreover, it provides prospects
for enhancing existing mapping efforts or developing new national-level initiatives to
represent the spatio-temporal variation of Brazilian agriculture.
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1. Introduction
Land Use and Land Cover (LULC) refers to the physical and biological characteris-

tics of Earth’s surface cover (Land Cover), including natural, semi-natural, and human-
modified areas (Land Use), as well as their socioeconomic purpose, such as industrial,
urban, commercial, agricultural, mining, forestry, livestock, and energy [1,2]. Given the rel-
evance of this information, LULC mapping initiatives have increased since the 20th century,
driven by technological developments, especially in the computing and remote sensing
fields. The advances in sensor resolutions [3,4], data transmission, satellite capabilities, and
satellite constellations have enabled more reliable target identification and cost-effective
LULC products [5–7]. These advances have improved our understanding of the impact of
natural and human-induced processes (e.g., disasters, climate change, deforestation, flood,
and agriculture, among others) on Earth’s systems [8–15].

The increased focus on global issues such as climate change and sustainability (as
represented by the United Nations Sustainable Development Goals) has driven LULC map-
ping efforts with diverse characteristics and applications [13,16–21]. Open data policies in
remote sensing, along with cloud computing platforms for big Earth observation data man-
agement and analysis—such as Google Earth Engine (GEE), Sentinel Hub, Open Data Cube
(ODC), System for Earth Observation Data Access, Processing and Analysis for Land Moni-
toring (SEPAL), Open Source Earth Observation Data Interface (openEO), the Joint Research
Centre Earth Observation Data and Processing Platform (JEODPP), and the Cloud-enabled
High-performance Remote Sensing Data Processing System (pipsCloud)—have further
facilitated access to these products for research, providing consistent, frequent, and exten-
sive Earth system measurements to support the decision making [16,17,22–26]. However,
the utility of maps derived from orbital remote sensing is limited by sensor characteristics,
target variability, atmospheric effects, scale, and intended application [27,28].

In the context of agricultural remote sensing, several factors may influence the analy-
sis, including crop type, complexity of existing cropping systems, field size, agricultural
calendar, edaphoclimatic variability, regional management practices, land fragmentation
(smallholder farms), and phenological dynamics [29,30]. These factors imply the use of
images with increasingly refined spatial and temporal resolutions. Such images are crucial
for capturing the spectral–temporal characteristics of these targets across both space and
time [31–33]. In this sense, improvements in methods and techniques for classifying re-
mote sensing images jointly with advances in sensor systems have revolutionized the way
agricultural landscapes and their dynamics are monitored and analyzed, enhancing our
ability to gather detailed data on crop characteristics, soil properties, and field conditions
for precision and digital agriculture [33–38]. This wealth of information has paved the way
for more sophisticated approaches to promote crop mapping and monitoring, allowing for
more precise and timely assessments of crop health, yield estimation, sustainability, and
land changes [36,39–43].

Building on these technological capabilities, accurate crop mapping estimates emerge
as a crucial tool for gathering comprehensive information about croplands, supporting the
supply chain that is fundamental to establishing public policies related to product prices,
stocks, food security, and decision making [44,45]. Nevertheless, in applications such
as yield estimation and productivity, cultivated area estimation, and rural development
for small to large producers, the use of reliable and accurate information on the extent
and location of crops allows decision makers to formulate profitable, sustainable, and
transparent strategies to address internal and external markets [46–48].

The importance of accurate LULC data is particularly evident in countries with signifi-
cant agricultural production and relevance in the international commodities market, such
as Brazil, which ranks among the top 20 global commodities exporters, leading in soybean
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exports and holding the position of eighth-largest maize producer [49]. Moreover, Brazil
continuously expands its agricultural frontier, demonstrating its territorial capacity for
increasing production [50]. Brazilian croplands range from extensive large-scale farms to
smallholder arable lands, creating a diverse agricultural landscape [51]. This heterogeneous
context (Figure 1), characterized by edaphoclimatic variability, vast vegetation gradient,
and diversity in cropping systems poses significant challenges for LULC mapping [52].

Figure 1. Brazilian mesoregions division and physiographic characteristics. Inset maps display
variables associated with topography and climate: (a) elevation, (b) mean temperature (T), (c) mean
solar radiation (Srad), and (d) mean precipitation (P). Elevation data were acquired from SRTM at
15-arcsecond resolution [53] and climate data from WorldClim at 30-arcsecond resolution [54].

Brazil’s continental dimensions create significant solar energy balance, temperature,
and precipitation gradients that directly influence agricultural zoning and crop selec-
tion [55]. The southeastern region experiences lower temperatures, while the semi-arid
northeastern regions experience higher temperatures with distinct seasonal patterns, which
led to the development of specialized agricultural zones in Brazil, with subtropical crops
concentrated in the southern regions and tropical varieties dominating the central and
northern areas [55]. The study by Silva et al. [56] indicates that soybean production in-
creases when climate parameters (e.g., temperature) are above average, potentially raising
soybean production by 44% in the municipalities in the Cerrado and Amazon biomes.
Tropical regions benefit from exceptional soil (e.g., topographic patterns, soil potential,
water retention, and humidity) and climate conditions (e.g., abundant summer solar radia-
tion, rain regimes, and high temperatures) throughout the year, which favor specialized
intensive cultivation systems, allowing multiple harvests annually, enabling the potential
expansion of areas, increasing productivity, and mitigating impacts on land [57,58]. In
Brazil, this regime allows the practice of agricultural calendars at different timelines along
the crop year (Figure 2) with a wide diversity of grain, fiber, coffee, and sugarcane crops
aimed at production, agricultural stock, domestic consumption and export [59]. The agri-
cultural calendar can include many different types of crops spanning between one to three
crop years (e.g., corn, soybeans, and beans).
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Figure 2. Agricultural calendars for the planting and harvesting of Brazil’s main annual grain crops,
aggregated by mesoregion, where (a) north; (b) northeast; (c) central-west; (d) southeast; and (e) south.
The calendars begin in October of the beginning year and end in October of the next year. Brazil’s
seasonality regime occurs in the following periods: Spring (22 September–21 December), Summer
(21 December–20 March), Autumn (20 March–21 June), and Winter (21 June–22 September). Crop
planting (green) and harvesting (orange) calendars vary according to the mesoregion’s agricultural
management practices and may occur early or late (yellow) across seasons. Beans and corn can
have up to three harvests per year. Adapted from Brazilian National Supply Company (CONAB)
agricultural calendars [59].

Recent advances in the integration of remote sensing products and statistical method-
ologies have resulted in significant achievements for agricultural monitoring and crop
estimation in Brazil. Adami et al. [60] presented a robust methodology for estimating
soybean crop area across the states of Maranhão, Tocantins, Piauí, and Bahia, leverag-
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ing multi-source satellite imagery, including Terra MODIS, OLI Landsat series, and MSI
Sentinel-2, processed through platforms such as GEE and R computing. The study suc-
cessfully combined objective mapping with field-based validation, enabling the timely
generation of crop area estimates with high accuracy (98.7%) and strong agreement with
official statistics, as evidenced by a mere 1.1% difference from CONAB’s estimates on the
regional scale. The research underscores the effectiveness of integrating remote sensing
products and statistical sampling in delivering reliable, transparent, and auditable agricul-
tural statistics, thereby supporting informed decision making in both public and private
sectors [60].

Furthermore, Campos et al. [61] expanded these advances by applying a comprehen-
sive methodology that integrates remote sensing, machine learning, and geostatistics to
map and estimate soybean cultivated areas across major producing Brazil’s states, including
Mato Grosso, Mato Grosso do Sul, Goiás, Rondônia, and the MATOPIBA region. Their
approach, which combined multi-source satellite imagery, stratified random sampling, and
in situ field data, enabled the production of high-accuracy soybean maps and robust area
estimates with coefficients of variation generally below 10%. Overall accuracy exceeded
96% in all regions and reached 98.7% in MATOPIBA. These results further highlight the
value of integrating advanced geotechnologies and statistical frameworks to support timely,
reliable, and transparent crop monitoring, thereby reinforcing the foundation for effective
agricultural policy and sustainable land management in Brazil [61].

Currently, we know that approximately 60% of the Brazilian territory remains as native
vegetation [62,63]. However, there are uncertainties regarding the exact areas occupied by
croplands. Nationwide initiatives still lack updated time series LULC information [64] to
effectively answer the questions of “what”, “where”, “when”, and “how” crop development
occurs in the country. A deeper understanding of spatio-temporal cropland dynamics is
essential for sustainable agricultural development, effective policymaking, and ensuring
Brazil’s continued position in global agriculture while preserving its unique ecosystems
and natural resources [65]. This study represents the first comprehensive assessment of the
suitability of LULC initiatives for Brazil, focusing on tropical agricultural dynamics.

Given this, the objective of this review article is to explore and assess recent freely
available LULC global, national, and regional initiatives for mapping purposes, with
a special focus on Brazilian agriculture. To the best of our knowledge, this is the first
study to analyze the specific characteristics, methodologies, and approaches behind these
maps, evaluating their suitability and potential applicability for mapping Brazil’s tropical
agricultural dynamics. Notably, this pioneering review includes national-level initiatives in
Brazil, covering governmental products that have only been briefly addressed in previous
studies and remain largely unknown to the global academic community. We highlight
key challenges and limitations that arise when integrating, analyzing, and comparing data
from multiple sources. This review provides a comprehensive synthesis of the state-of-
the-art LULC mapping in Brazil across different temporal and spatial scales, emphasizing
the datasets, data sources, methodologies, classification systems, temporal and spatial
extents, and accessibility. Our goal is to identify reliable and suitable LULC products
for agricultural mapping in Brazil, ensuring their accuracy and usability. Additionally,
we share our practical experiences with these datasets, offering valuable insights into
real-world challenges and limitations when using this information to produce maps that
accurately represent agriculture in Brazil.
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2. Satellite-Based Mapping Products for Land Use and Land Cover and
Agriculture Purposes
2.1. Overview of Map Products Initiatives

For decades, researchers have been dedicating efforts to proposing new techniques
and methods aimed at producing LULC maps and systematizing the production and
availability of these data. This scenario marks an evolution in the quantity of datasets
available at different levels of legend (global, continental, regional, and local) and scales [66].
In this way, various initiatives have emerged to promote LULC monitoring through the
production of maps derived from single images as well as time series remote sensing data.

Global initiatives that produced maps on specific dates include several projects, such
as the University of Maryland Land Cover Classification (UMD-LC) [67], Global Land
Cover Characterization 2.0 (GLCC) [68], Global Land Cover 2000 (GLC2000) [69–71], Land
Degradation Assessment in Drylands (LADA LUC) [72], and the Global Land Cover-
SHARE (GLC-SHARE) [73], with 1 km spatial resolution. CROPGRIDS is another exam-
ple of a single-date, global, georeferenced dataset, comprising the spatial distribution of
173 or 175 harvested and crop (physical) areas at 0.05◦ (approximately 5.6 km at the equator)
and 10 km spatial resolutions for the years 2000 and 2020, respectively [74]. As an example
of crowdsourcing mapping initiative with a specific date, we can cite the 300 m spatial
resolution Geo-Wiki Hybrid maps [75].

Regarding global initiatives that produce time series maps, we can highlight Global
Land Surface Satellite Global Land Cover (GLASS-GLC) [76], Land Cover Climate Change
Initiative (LC-CCI) [77], Global Land Cover 30 (GLC30) and 250 (GLC250) [78–81],
MODIS/Terra + Aqua Land Cover Type (MCD12Q1) [82–84], Global Land Cover by Na-
tional Mapping Organization (GLCNMO) [85,86], ESA Global Land Cover (GlobCover) [87],
Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) [88,89],
and Copernicus Global Land Service Dynamic Land Cover 100 (CGLS-LC100) [21,90], with
different spatial resolutions.

Currently, high spatial resolution (<30 m) global LULC products have become in-
creasingly accessible, such as the 10 m Sentinel-2-based initiatives Google Dynamic World
(GDW) [20], produced by Google; World Cover (WC), produced by the European Space
Agency (ESA) [91,92]; and the 10 m Annual LULC (ESRI-10m LULC) [18], produced by
Environmental Systems Research Institute (ESRI). The OpenStreetMap (OSM) LULC prod-
uct is a single-date product that also has a finer spatial resolution of 10 m but particularly
derives from collaboratively and voluntarily collected geodata or Volunteered Geographic
Information (VGI) at the field level [93].

The University of Maryland (UMD) is one of the pioneering institutions in LULC
mapping. Its first map was produced in 1994 using data from the Advanced Very High
Resolution Radiometer (AVHRR) with a coarse spatial resolution of one degree [94] and,
subsequently, two improved maps using 1 km resolution data from the same sensor [67].
Currently, UMD produces time series maps from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) and Landsat imagery with a moderate spatial resolution of up to
30 m [5,31,95,96].

The accuracy of these products to monitor LULC changes at local or global levels has
been discussed in the literature. Venter et al. [97] and Xu et al. [19] suggest a critical and
careful evaluation by users regarding desired applications, considering the trade-offs (e.g.,
performance, class definition, ability to handle landscape elements, and level of detail in
different morphologies) that a high-resolution thematic mapping may entail.
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Concerning the characterization of agricultural cover, a variety of global thematic
products have been produced, with a significant focus on providing information on the
extent, percentage of cover, and expansion/retraction of agricultural areas, with some of
these products also providing information on the management of irrigated areas. Some of
these global products include the 1 km International Institute for Applied Systems Analysis–
International Food Policy Research Institute (IIASA-IFPRI) Cropland Product [98,99]; the
250 m Global Cropland Extent (GCE) [100]; the 1 km Global Food Security-support Analysis
Data Crop Mask (GFSAD1KCM) and Crop Dominance (GFSAD1KCD) [101,102]; the 1 km
Anomaly hot Spots of Agricultural Production (ASAP) Land Cover Masks [103]; the 500 m
Global Rainfed, Irrigated, and Paddy Croplands (GRIPC) [104]; the 500 m Self-adapting
Statistics Allocation Model (SASAM) Global Synergy Cropland Map [105,106]; the 250 m
Unified Cropland Layer (UCL) [107]; the 30 m GFSAD Cropland Extend [108,109]; and the
30 m Global Maps of Cropland Extent [13].

These datasets are quite limited due to their low to moderate spatial resolutions and
insufficient mapping intervals (most of them are based on a single image), which hamper
their potential application and thematic classification. Only the GCE had a longer mapping
period of eight years, making it less susceptible to temporal variability when analyzing
thematic classification for monitoring purposes. The GFSAD1KCM and GFSAD1KCD maps
are the only ones comprising five or more classes focusing on cropland, even though they
only refer to agricultural extension and dominance. All these products have no planned
updates and potential for change detection analysis.

There are also many other initiatives for nationwide LULC mapping, such as the
CORINE Land Cover in Europe [110,111], the AFRICOVER in Africa [112], and the
United States Land Change Monitoring System Database [113]. Regionally, there exist
the Land Cover Map [114] for North America and the Soybean Maps [95] for South Amer-
ica. In Brazil, TerraClass [115] and MapBiomas [116,117] can be cited as examples of
LULC initiatives.

These products present issues linked to regular updates, especially on global and
national scales. Concerning croplands, they focused on large-area representation instead
of detailed-scale mappings due to the coarse spatial resolution of the sensors available at
the time. This scenario reinforces the need to understand their usability and applications
before using them for thematic purposes.

2.2. Map Products at Global and Continental Levels
2.2.1. Copernicus Global Land Cover Service (CGLS) Dynamic Land Cover

The Copernicus Global Land Cover Service (CGLS) Dynamic Land Cover is a 100 m
spatial resolution map initiative derived from PROBA-V Analysis-Ready archives fusion
using Random Forest and regression as classification methods for generating the An-
nual Consistent Land Cover Maps and Cover Fraction Layers (CGLS-LC100) products.
CGLS maps were released annually from 2015 (base map) to 2019, with subsequent years
processed using the 2015 base map. The five available maps provide 10 major thematic
classes in which all crop types are assembled into a single class named “cropland” as a
result of a generalization. CGLS classified “cropland” as lands covered with temporary
crops followed by harvest and a bare soil period at single and multiple cropping sys-
tems. Perennial woody crops were appropriately classified as forest or shrubland cover
types. The overall accuracy (OA) results for these maps reached 80.6% in 2015 and 80.3%
in 2019 [21,118].
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2.2.2. Google Dynamic World (GDW)

The Google Dynamic World (GDW) map produced by Google in partnership with the
World Resources Institute [20] is generated using a near real-time automated classification
approach on Sentinel-2 imagery, combining a cloud-based system and a deep learning fully
convolutional network technique [20]. A key characteristic of the GDW map is the ability
to generate near real-time predictions, which are continuously updated as new images are
acquired. Since the methodology is based on a semi-supervised machine learning approach,
the generation of diverse and balanced training dataset annotations requires a large volume
of spatial data (over 20,000 image blocks) from the data augmentation process [20]. GDW
annotations are considered to be taxonomic classes inspired by other widely used LULC
classification systems [78,116,119–121]. Since 2017, the GDW has provided classified LULC
images and estimated probability information for nine classes, with agriculture occupying
the class “crops” (row and paddy crops). The map OA is greater than 73.8% [122].

2.2.3. ESRI Maps for Good Initiative 10 m Annual LULC (ESRI-10m LULC)

The ESRI-10m Annual LULC maps are part of the Maps for Good Initiative, developed
by the ESRI and the Impact Observatory (IO) to generate annual maps from 10 m Sentinel-
2 classified images using deep learning and cloud computing approaches from 2017 to
2024 [123]. The methodology is based on a U-Net convolutional neural network (CNN)
architecture trained from scratch using 100 epochs parameters, 20,000 Sentinel-2 tiles,
and a geographically balanced hand-labeled dataset including ten classes collected across
fourteen major biomes. Annual products with nine LULC classes can be downloaded at no
cost [124,125], whereas annual or subannual products with fifteen classes are available for
purchase via an on-demand system through the IO store [123]. Agriculture is represented
as a one-level class named “crops” for the nine-class product, while the fifteen-class maps
also include “inactive cropland” and “active cropland” classes. The class includes human-
planted and plotted cereals, grasses, and crops not at tree height (e.g., corn, wheat, soy,
and fallow plots of structured land). The products achieved OAs of over 85% across ten
classes [18].

2.2.4. The University of Maryland Global Land Cover (UMD-GLC)

UMD’s Global Land Analysis and Discovery (GLAD) laboratory produced two-decade
(2000–2020) bitemporal LULC change maps that characterize the distribution, properties,
and change regarding dominant LULC types globally. Using a consistently processed
Landsat ARD time series, a set of phenology metrics was derived to enable global model
calibration and application. Different supervised classification models were implemented
to map separated thematic classes: individual decision tree models for mapping croplands
and perennial snow and ice, regression trees for detecting forest heights, and a deep
learning U-Net CNN algorithm for identifying built-up lands. The four maps for the
2000, 2005, 2010, and 2015 periods are updated every four years, in which agriculture is
mapped as “cropland” class. Cropland is defined as land used for annual and perennial
herbaceous crops for human consumption, forage (including hay), and biofuel according to
the FAO arable land class (temporary crops, meadows, and fallow). The definition excludes
perennial woody crops, permanent pastures, and shifting cultivation. The product’s OA
is over 85.0% [5], which was accessed via an independently validated statistical sample
analysis. The dataset is publicly available at 10 × 10 degree tiles archive in the GLAD’s
repository web portal and GEE platform [126,127].
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2.2.5. Global Pasture Watch (GPW) Global Grassland Class and Extent Maps (GPW)

The Global Pasture Watch (GPW) Global Grassland Maps is a mapping initiative
developed by the Land & Carbon Lab research consortium and by experts around the
globe. The initiative meets the need for global-scale monitoring of grassland products,
supporting researchers in creating monitoring solutions on topics like degraded landscape
restoration, agriculture and food system improvement, natural ecosystem protection, and
greenhouse gas emissions reduction [128,129]. GPW maps were produced using Earth
Observation (EO) data combined with covariates obtained from climate, landform, and
proximity data statistics for an annual time interval evaluation from 2000 to 2022. The EO
data encompass GLAD Analysis-Ready Data (ARD-2) 30 m Landsat image archives and
1 m spatial resolution MODIS MOD11A2 and MCD19A2 products [128,129]. Independent
machine learning algorithms (Random Forest, Gradient-boosted Tree, and Artificial Neural
Network) were trained using visually interpreted Google and Bing Very High Resolution
(VHR) images. Three major classes are represented: Grassland classes are classified as
cultivated grassland (CG), natural/semi-natural grassland classes (NSG), and “other Land
Cover” (OLC), where only the first two of them are agriculture-related (pasture). The
accuracy results showed Random Forest as the best model, with an F1 score of 64% and
75% for the CG and NSG classes, respectively. In terms of prediction results, the achieved
precision and recall were both approximately equal to 64% and 76% for CG and NSG
classes, respectively [128].

2.2.6. The University of Maryland South America Soybean Maps (UMD-SASM)

The UMD’s GLAD laboratory also produced the South America Soybean Maps, a result
of the “Commodity Crop Mapping and Monitoring in South America” project focused on
mapping annual soybean cover over the Southern Hemisphere of South America extent at
30 m spatial resolution and a temporal interval from 2000 to 2019 (the first map was created
in 2001). This project mapped soybean, first-season corn, and second-season corn areas
across South America, aiming to identify patterns of land intensification and expansion
and to assess their role as drivers of natural vegetation loss, including deforestation,
degradation, and land use conversion in the South America biomes (Amazonia, Atlantic
Forest, Cerrado, Chaco, Chiquitania, Pampas, Pantanal, and Caatinga). Combined methods
of regression, visual interpretation, and decision trees were applied to produce 30 m
detailed maps of soybeans in a 2000–2023 time interval using Landsat, MODIS, and Sentinel-
2 imagery datasets. The twenty-four maps have two main classes: 0—no data (other
classes)—and 1—agriculture (first-season soybean crop and second-season corn crop) [96].
The OAs were determined using field data selected based on a stratified two-stage cluster
sampling design over the images sampled pixels, achieving above 94% [31].

2.2.7. European Space Agency World Cover (ESA-WC)

The European Space Agency (ESA) World Cover provides global land cover maps
for 2020 and 2021 at 10 m spatial resolution based on Sentinel-1 Synthetic Aperture Radar
(SAR) and Sentinel-2 (optical) satellite imagery. The methodology involved three main
steps: data pre-processing, classification, and map generation. The pre-processing step
involved Sentinel-1 and Sentinel-2 image correction from cloud cover and terrain, while
the classification step was based on a gradient-boosted decision tree algorithm (CatBoost)
for labels and class probabilities prediction under multiple scenarios. Finally, the different
scenarios were combined into a final land cover map through the application of different
expert rules from auxiliary datasets. There are inconsistencies between the 2020 and
2021 maps, which were due to changes in the algorithm used—versions v100 and v200,
respectively. ESA-WC comprises eleven land cover classes, conceptualized based on
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the UN-FAO Land Cover Classification System (LCCS), where agriculture is classified
as “cropland”. Cropland was defined as land covered with annual crops harvestable at
least once in a 12-month period after the sowing and planting date and can sometimes
be combined with some tree or woody vegetation fractions due to the production of an
herbaceous cover. The reported OAs for ESA-WC OA are 74.4% and 76.7% for the 2020
v100 and 2021 v200 products, respectively [91,92].

2.2.8. European Space Agency WorldCereal Crop and Irrigation Mapping
(ESA-WorldCereal)

WorldCereal is a dynamic open-source system initiative founded by the ESA with the
aim to generate reproducible information about crop and irrigation mapping at a global
level, including temporary crop extent, seasonal maize, seasonal cereal maps, seasonal
irrigation maps, seasonal active cropland maps, and model confidence layers for product
quality insights [130,131]. The products were derived from EO optical (Sentinel-2), radar
(Sentinel-1), and thermal (Landsat 8) satellite time series data, comprising mainly 2021.
Image preprocessing was applied using cloud and shadow masks at regular intervals tem-
poral compositions (10 days for optical, 12 days for radar, and 16 days for thermal). Spatial
and temporal stratifications were performed, dividing the globe into 203 homogeneous
Agro-Ecological Zones (AEZs) based on global crop calendars for maize and cereals and
simulated in areas lacking existing data coverage. Spectral indices were calculated for
temporary crop mapping, along with temporal statistics (percentiles, interquartile range,
and temporal profile characteristics). Seasonal crop features (start, peak, and end dates
of the crop cycle) and metrics related to evapotranspiration, precipitation deficit, and soil
moisture were added to the analysis. The 2021 Annual and Seasonal maps were generated
employing a binary classification modeling from the CatBoost algorithm (e.g., 1-temporary
crop vs. 0-other land cover types). For crop types and irrigation, independent datasets
and qualitative comparisons with existing maps and national statistics were used to en-
sure consistency. Agricultural features were represented as temporary (one-year cycle)
crops, winter cereals, spring cereals, main-season maize, and second-season maize layers.
The results showed global user and producer accuracies of 88.5% and 92.1%, respectively.
The global OA for annual crops reached 97.8%, while for seasonal crops, the value was
82.5% [130].

A summary of the information of the abovementioned global and continental levels
products from Sections 2.2.1–2.2.8 is presented in Table 1. These initiatives are particularly
poor at detecting croplands, especially low agriculture intensification areas and small farms,
due to spectral similarity with grassland patterns and the small number of agricultural
classes. An exception is WorldCereal, which is devoted to pasture classification. Agriculture
is often represented by the generalist classes, mixing perennial and temporary crops,
fallow areas, and pasture. The number of classes is insufficient, not allowing for the
spectral separation of agricultural targets, as well as their cycle, crop year, and even type of
crop practiced.
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Table 1. Summary specifications of available LULC and agriculture products at global and continental levels.

Product
Spatial

Resolution
[m]

Available
Temporal
Interval

Update
Interval

Reference
System
(EPSG)

Methodology
Approach

Total
Number of

Classes

Number of
Agriculture

Classes
Capability Accuracy

[%] Reference

CGLS 100 2015–2019 Annual 4326 Hybrid 10 1 Mixed temporary crops ≥83.3 [21,90,118,132,133]

GDW 10 2017–present Near-real-time 1 Window-related Deep Learning 9 1 Row crops and paddy crops ≥73.8 [20,122,134,135]

ESRI-10m
LULC 10 2017–2024 Annual or

Sub-annual 2
32,600 North;
32,700 South Deep Learning 9 or 15 2 1 Mixed human-planted cereals,

grasses, and non-tree-height crops ≥85.0 [18,123,125,136,137]

UMD-GLC 30 2000, 2005,
2015, 2020 Quadrennial 4326 Machine Learning 7 1

Arable land (annual and perennial
herbaceous crops, meadows, and

fallow)
≥85.0 [5,126,127]

GPW 30 2000–2022 Biennial 4326 Machine Learning 3 3 2 Natural and semi-natural pasture
64.0 (CG)

76.0 (NSG)
≥91.0 (OLC)

[128,129]

UMD-SASM 30 2000–2023 Annual 4326 Hybrid 2 1 First season soybean and
second season corn ≥94.0 [95,96]

ESA-WC 10 2020–2021 Annual 4326 Machine Learning 11 1 Annual cropland mixed with some
tree or woody vegetation

2020: 74.4
2021: 76.7 [91,92,138]

WorldCereal 10 2021 Annual (A) and
Seasonal (S) 4326 Machine Learning 5 4 5 Temporary crops, winter cereals,

spring cereals, maize
(A) 5: 97.8
(S) 6: 82.5 [130,131]

Note: 1 Updated according to the temporal resolution/availability of new Sentinel-2 images. 2 Only products acquired by order can achieve a total of 15 mapped classes with both
annual and subannual temporal monitoring in the time interval. 3 Cultivated grassland (CG), natural/semi-natural grassland (NSG), and “other Land Cover” (OLC) class. 4 Refers to the
product layer name (one class per layer). All layers, except for the temporary crops map, have an associated active irrigation map. 5 Overall accuracy varies according to the mapped
world region. Lower values were achieved for Africa (97.2%), while higher values were achieved for Australia and Oceania (99.0%). 6 Overall agreement in validation at the global level.
Accuracy varies according to WorldCereal products datasets classes: other crops (75.5%), maize (85.8%), and cereals (93.6%).
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2.3. Map Products at Brazilian National and Regional Levels
2.3.1. National Institute for Spatial Research Deforestation, Warnings, and Vegetation for
Brazilian Biomes (PRODES, DETER)

The Brazilian Amazon Forest Satellite Monitoring Program (PRODES) and the Real-
time Deforestation Detection System (DETER) are two of the three operational projects of
the Amazon and Other Biomes Monitoring Program (PAMZ+) developed by the National
Institute for Space Research (INPE) to monitor deforestation in the Brazilian Legal Amazon
(BLA) using remote sensing images [139–142]. PRODES started in 1988 with the primary
objective of estimating the annual deforestation rate of primary vegetation in the BLA, while
DETER started in 2004 to serve as a warning system supporting inspection by mapping
forest suppression and degradation in the BLA and areas with suppression of primary
natural vegetation in the Cerrado biome. The current PRODES methodology identifies and
quantifies annual deforestation rates based on satellite imagery from 30 m Landsat-8, 30 m
Landsat-9, 10 m Sentinel-2, and/or 56 m CBERS-4/4A. The deforestation rates reflect the
deforestation that happened between August 1st of the previous year (year T) and July 31st
of the mapping year (year T + 1), known as the “PRODES year”. These images undergo
RGB compositing, enhancement, and expert visual interpretation to delineate deforestation
polygons with an area over 1 hectare using specific criteria. To ensure data consistency
across the entire historical series beginning in 1988, only polygons exceeding 6.25 hectares
in the Amazon are published and included in the rate calculation. Deforestation features
are subsequently classified.

The DETER system uses a methodology based on the interpretation of satellite imagery
from 250 m MODIS (until 2015), 56 m CBERS-4/4A, and 64 m Amazônia-1 (since 2015).
By employing RGB band compositions, the system identifies vegetation cover changes,
specifically deforestation and degradation. Additionally, a Linear Spectral Mixture Model
(LSMM) is applied to estimate the fractional portions of soil, shadow, and vegetation
within the images, assisting photo interpreters in identifying features. In this way, DETER
provides daily notifications about vegetation changes affecting areas of at least three
hectares. Agriculture classes are mixed as “non-forest area”, whereas PRODES and DETER
use TerraClass agricultural masks to define deforestation (conversion by suppression of
areas of primary vegetation by anthropogenic actions). The OAs of PRODES and DETER
mapping are 93.0% [139].

2.3.2. Brazilian Agricultural Research Corporation (EMBRAPA) LULC in the Amazon and
Cerrado Biomes (TerraClass)

The TerraClass project derives from a technical partnership between INPE and EM-
BRAPA to address the Brazilian Federal Government’s demand to monitor LULC changes
in the BLA and the Cerrado biome. It complements the PAMZ+ PRODES with systematic
information about the spatial distribution and regional statistics of LULC in deforested
areas, providing scientific information for studies on biological impacts, socioeconomic
dynamics, land change implications, and drivers in deforestation/post-deforestation quan-
tification processes [143]. The TerraClass methodology combines high spatial and temporal
resolution products to increase LULC mapping in Amazon and Cerrado biomes. The first
edition maps from 2008 to 2016 were based on 30 m Landsat series imagery supported by
250 m MODIS MOD13Q1 and MYD13Q1 time series products [143,144]. Currently, Terra-
Class maps from 2018 to present are based on MSI Sentinel-2 time series and OLI Landsat-
and Landsat-9 imagery. Polygons defined as deforestation areas in PRODES [139] are used
in the classification process to produce a mask using geoprocessing methods. Currently,
the TerraClass methodology is based on a hybrid approach that uses visual interpretation
processes for complex classes (e.g., mining and urban areas) and automated processes for
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broader and larger classes, such as pastures, agriculture, and secondary vegetation. These
processes rely on time series classification employing robust machine learning algorithms,
mainly deep learning and Random Forest, combined with the Satellite Image Time Series
(SITS) package version 1.5.2 [145] and Brazil Data Cube (BDC) [146] project workflows
and structure as a basis. Agriculture is represented by “temporary agriculture crops” in
Amazon products, while the Cerrado map also includes “perennial agricultural crops”,
“semi-perennial agricultural crops”, “temporary agricultural crops of 1 cycle”, and “tempo-
rary agricultural crops of more than 1 cycle” classes. The class “pasture” is differentiated
from agriculture features. The “pasture” class is distinct from agricultural features and is
subdivided into “shrub/arboreal pasture” and “herbaceous pasture” only for the Amazon
product. The OAs were 76.64% for maps produced up to 2008 [143]. New maps have
reported better accuracy results: 90.9% ± 1.6% for 2022 Cerrado [147] and 93.9% ± 1.2%
for 2022 Amazonia [148].

2.3.3. MapBiomas Project Initiative Collection

MapBiomas is a project of the Greenhouse Gas Emission Estimation and Removal
System (SEEG) initiative from the Climate Observatory, co-created by a network of non-
governmental organizations (NGOs), universities, and technology companies, to produce
annual LULC maps for Brazil, offering significant improvements in terms of cost, speed,
and timeliness while also capturing the historical land record of recent decades [116]. The
project currently has nine map collections [117,149] through a methodology that consists of
seven main steps, where the classification is performed for each resource space attribute
based on the Random Forest algorithm and/or U-Net CNN (aquaculture, mining, irrigation,
rice, citrus, and palm oil classes only) based on 30 m Landsat series imagery. The products
were hierarchically integrated based on prevalence rules by analyzing LULC transitions
and changes, and spatial–temporal filters were reapplied to the integrated maps. Final
maps were then analyzed statistically, considering different spatial categories, and their
accuracies were measured using the best practices principles [150–152]. For MapBiomas
collections eight (c.8) and nine (c.9), the classification scheme encompassed up to four
categorical levels, where level 1 of the hierarchical classification is composed of six classes
(forest, non-forest natural formation, farming, non-vegetated area, water, and not observed),
while level 2 has sixteen classes distributed among those mentioned in level 1. Agriculture
is the only class that comprises up to level 4 in the classification, with nine subclasses. At
level 3, the agriculture class includes the subclasses perennial, temporary, planted forest,
and a mosaic of other uses. Collection nine has a time interval ranging from 1985 to
2023 at 30 m spatial resolution. In total, twenty-nine classes are described. The overall
accuracy obtained for collection eight (c.8) was 90.0% for level 1 and 85.8% for levels 2 and
3 [153], while for collection nine (c.9), it was 93.0% for level 1 and 90.0% for levels 2 and
3 [149].

2.3.4. Brazilian Institute of Geography and Statistics (IBGE) Monitoring Land Coverage
and Use in Brazil (IBGE-MLCU)

The IBGE-MLCU monitoring products were derived from visual interpretation of
remote sensing imagery, using a 1 km2 statistical mapping grid as a reference, auxiliary
information produced by the Brazilian Institute of Geography and Statistics (IBGE), and
datasets from other agencies, such as the crop maps produced by CONAB. The method-
ology involved the acquisition and preparation of inputs for mapping—including data
from Embrapa’s SATVeg [154] and Landsat App [155] web platforms and Brazil’s divi-
sion into 450 × 450 km grid blocks—to perform a visual interpretation of OLI Landsat-8
images for maps integration and compatibility. Seeking to reduce regional uncertainties,
IBGE conducted field campaigns in different Brazilian biomes, determining LULC changes
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for approximately 8.7 million 1 km2 cells of the statistical grid [156]. Since the project’s
conceptualization in 2015, the products have undergone conceptual and methodological im-
provements [156,157].The older products involved annual mapping intervals (2000–2010)
and biennial intervals (2010–2012, 2012–2014, 2014–2016, and 2016–2018), with the current
series covering from 2018 to 2020 [158]. Fourteen classes are mapped, considering the
vegetation structure and phytophysiognomies that compose the Brazilian biomes. Agri-
culture is represented as a “cropland” class, being separated from the “pasture” class.
IBGE-MLCU also has the class “Mosaic of uses in forest area” and “Mosaic of uses in
grassland”, which can also relate to agriculture occurrence by mixing (generalization). The
accuracy assessment of the mapping is not reported.

2.3.5. CONAB Agricultural Mapping (CONAB-AM)

The CONAB agricultural mapping based on remote sensing currently contributes
to estimating the area and productivity of the main seasonal grains produced in Brazil,
which are cotton, irrigated rice, coffee, sugarcane, corn, soybean, other summer and winter
crops (peanut, oat, canola, rye, barley, beans, sesame, sunflower, castor bean, sorghum,
wheat, and triticale), and sugarcane mill. The results obtained from these mappings
assist in the analysis of declared information against verification data measured in the
field—estimation of agricultural areas—and facilitate crop monitoring for yield prediction
due to knowledge about the location of arable lands, agrometeorological information
(precipitation, temperature, and water storage), and spectral analysis [159]. Given the vast
territorial extent of Brazil, the mapping considers the geographical (regional) and climatic
distribution of each state, the crop type, and the crop year to which it refers. Summer and
winter grains, coffee, and sugarcane are the main Brazilian agricultural products evaluated
in surveys and monitoring processes [160]. Each crop has a distinct methodology developed
for the estimation of its area and productivity, commonly involving the recognition of crop
types through image visual interpretation, machine learning, principal component analysis,
and regression. The methodology involves spectral indices time series analysis, mainly
using MOD13Q1 MODIS, MSI Sentinel-2, and Landsat series (TM/Landsat-5, OLI/Landsat-
8, and OLI/Landsat-9) data [160]. The available time interval for each crop varies according
to the mesoregion and state of Brazil and does not constitute a continuous time series.
The mapping data are in vector format. Only coffee and soybean crops have reported
overall mapping accuracy information, with values of 97.0% (Random Forest) and 95.0%
(regression), respectively [61,160].

The abovementioned national and regional levels products from Sections 2.3.1–2.3.5
are summarized in Table 2. Unlike global and continental initiatives, the products presented
in Section 2.3 better delineate the variability and characteristics of agriculture. However,
most products are still unable to represent fallow and pasture areas. A very common
practice in these cases is the use of a “Mosaic” class to represent everything that the
model or analyst was unable to spectrally distinguish. The IBGE-MLCU and CONAB-AM
mappings are available in vector format, which is a concern when dealing with comparative
and quantitative analyses with raster format mappings information.
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Table 2. Summary specifications of available LULC and agriculture products at national and regional levels.

Product
Spatial

Resolution
[m]

Available
Temporal
Interval

Update
Interval

Reference
System
(EPSG)

Methodology
Approach

Total
Number of

Classes

Number of
Agriculture

Classes
Capability Accuracy

[%] Reference

PRODES,
DETER

20, 30 (P)
56, 64 (D) 2000–2023 Annual 4674

Visual
Interpretation (P),

Hybrid (D)
5 (P), 3 (D) 1 Non-forest area 93.0 [139,142,161–163]

[140,141,162,164]

TerraClass
Amazon (A)

and Cerrado (C)
10

2008 (A),
2010 (A),
2012 (A),
2014 (A),
2016 (A),

2018 (A, C),
2020 (A, C),
2022 (A, C)

Biennial 4674 Hybrid 18 (A), 15(C) 7
Pasture (shrub/arboreal pasture and

herbaceous); perennial, semi-perennial, and
temporary crops (1 cycle, more than 1 cycle)

93.9, 90.9 [115,143,165]

MapBiomas 30 1985–2023 Annual 4326 Hybrid 29 13

Pasture, temporary crops, soybean, sugar
cane, rice, cotton, other temporary crops,

coffee, citrus, oil palm, other perennial crops,
forestry plantation, mosaic of uses

93.0 [116,117,149,153]

IBGE-MLCU 30 2000–2020 Biennial 4674 Visual
Interpretation 12 3 Croplands, mosaic of uses in forest area,

mosaic of uses in grassland
Not

reported [156,157,166,167]

CONAB-AM 20, 30 Variable 1 Annual 2 4674 Hybrid 8 1 2 Cotton, irrigated rice, coffee, sugarcane, corn,
soybean, and other summer/winter crops Incomplete 3 [61,159,160,168]

Note: INPE’s product information can also be visualized and downloaded from the Georeferenced Information Base (BIG) Program Platform at https://data.inpe.br/ [169,170]. 1 The
mapping intervals available for the National Supply Company (CONAB) data vary according to the agricultural target (crop type), location (state and mesoregion), and mapped crop
year. For additional information, consult the references provided. 2 By crop year and mapping. 3 Information available in the mapping metadata is only for soybean (97.0% ± 1.05) and
coffee (95.0%) crops.

https://data.inpe.br/
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3. Discussion
Despite numerous initiatives to produce LULC maps, the literature reveals significant

disparities among them. These disparities often arise from issues in the representation
of phenomena due to differences in their legends (e.g., agriculture) [171], the number of
thematic classes and their spatial categorization [172], the geolocation of pixels [173], the
scale and spatial resolution [19], and other factors. All these discrepancies affect aspects
such as the quality and uncertainty of the information produced [6]. Therefore, the follow-
ing sections highlight the challenges and limitations of LULC products in characterizing
agricultural use, with a particular emphasis on Brazil.

3.1. Data Standardization and Harmonization

Regarding spatial reference, most of the initiatives listed adopt the World Geodetic
System 1984 (EPSG:4326) and the Geocentric Reference System for the Americas (SIRGAS-
2000) (EPSG:4674) as standards (Tables 1 and 2). However, since GDW involves near-real-
time analysis closely linked to the Sentinel-2 tile system, its reference system will depend
on the study area defined by the user (i.e., geographical location and the number of tiles)
at the time of classification and the subsequent download of products after classification.
ESRI-10m LULC adopted the World Geodetic System 1984 Universal Transverse Mercator
(UTM) as the reference system for grid-based data downloading [124]. This system was
designed for the entire global level, varying from 32,600 for the northern hemisphere to
32,700 for the southern hemisphere of the globe. The impact of using different reference
systems on maps during analysis leads to the need for procedures such as reprojection and
merging of adjacent tiles, which can be computationally expensive. Maps that are projected,
like the ESRI-10m LULC map, may require a reprojection process to a non-projected system
before performing any other analysis operations (crop, stack, overlay, etc.). For example,
in a country like Brazil, which has a continental territorial extent, basic geoprocessing
operations in programming environments or geographic information systems (GIS), such
as a clipping data to the country’s geopolitical boundary, require that the reference system
be geographic and non-projected.

Therefore, a significant portion of mapping initiatives at the national and regional
levels prefer geographic systems over projected systems (Table 2). Reprojection is just one of
the limitations of these products; there is also a need to perform data merging and cropping.
Merging tiles is unavoidable for Brazil when mapping products are provided individually
in projected degree granules, as is the case with ESRI-10m LULC products, or non-projected,
as in the case of UMD-GLC, UMD-SASM, CGLS, and ESA Word Cover products, at global
and continental levels. In contrast, national and regional products are available for the
entire extent of Brazil, without the need to perform merging. A clear example of this
practice is MapBiomas, which primarily provides maps within the extent of the Brazilian
political–territorial boundary. Additionally, these maps can be custom filtered into smaller
units, such as biomes, states, and municipalities. The computational and time costs for pre-
processing maps are high, as reprojecting and merging individual tiles to cover the entire
extent of Brazil demands significant processing power. Even robust processing packages
and libraries designed for handling large volumes of data, such as GDAL, often encounter
memory allocation issues when assembling the final mosaic. Progressively, this mosaic
reaches a maximum threshold that the computer can process, even using all processor
cores and parallelism strategies in languages like R version 4.3.1 and Python version
3.12.2, thus requiring the user to acquire more powerful computers. Cloud computing
can be an alternative for these operations, even though it has limitations in aspects of
how a computation workflow is managed, such as resource allocation, parallelism, data
distribution, and retries, leaving the decision of how to design and use the processing
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environment strictly to the system [174]. The GEE system can manage extremely large
computations, but scaling challenges such as the option of configuring arbitrarily large
machines not being available, the limit on the amount of data that can be brought into a
server being hard, individual objects to be cached not being able to exceed 100 MB in size,
and machine accommodation capacity at requests involving tile-based computations being
limited to avoid system users monopolization, which can limit their application [174].

Regarding spatial resolution (SR), the initiatives differ significantly based on the
choice of sensor systems used for image acquisition and subsequent map production. The
preference for using moderate (SR ≥ 30 m) to fine (SR < 30 m) spatial resolution images is
easily identified when observing the characteristics of the initiatives (Figure 3).

Figure 3. Evolution of spatial resolution (SR) in initiatives’ available time interval.

The stability observed before 2000 in Figure 3 indicates the exclusive presence of Map-
Biomas data, which cover the period from 1985 to 2023, although the project itself was only
launched in 2015. After 2000, there was a marked increase and diversification in the number
of initiatives and spatial resolutions, culminating in a peak around 2020, which underscores
the expansion and technological evolution of LULC mapping efforts in recent years. Most
initiatives fall within the 30 ≥ SR > 50 m spatial resolution class at both global (UMD-GLC,
GPW, and UMD-SASM) and national levels (MapBiomas, IBGE-MLCU, and CONAB-AM),
with emerging contributions from finer resolutions (SR < 30 m) in the last five years. The
temporal dynamics reflect broader trends in remote sensing, including the proliferation of
open-access satellite data (e.g., Landsat and Sentinel), advances in computational capacity,
and the adoption of novel classification methodologies such as machine learning, driven
increasingly by artificial intelligence models (e.g., machine learning and deep learning),
robust statistical assessments methods, and even hybrid approaches (Tables 1 and 2).

3.2. Standardization and Harmonization of Classes and Legends

When discussing the integration and comparison of LULC maps, harmonization is
a fundamental pre-processing step described in various studies [6,175,176]. As LULC
products originate from initiatives designed for specific purposes or scales to represent
phenomena for defined applications, the generated maps often become unsuitable for other
initiatives or purposes [2], which directly impacts the process of mapping correspondence.
Although some initiatives are inspired by pre-consolidated classification systems, the lack
of general standardization is a critical issue. This lack of standardization is related to
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classification purposes, systematic consistency in representing phenomena, alignment with
a common objective, and the classification approach (whether a priori or a posteriori) [2].
Ideally, these initiatives would present a single, comprehensive classification system, in-
volving the largest possible number of levels and sublevels for describing not only the cover
but also the uses, such as the UN-FAO LCCS [2]. However, many LULC mapping initiatives
highlight differences in the formulation of their classification systems for the representation
of their LULC classes. These distinctions directly impact the number of classes, the levels of
representation of the phenomena, the correct delimitation of the manifested phenomenon,
and even the composition of the legend (definition of the class names and a color palette).

The global and continental products listed in this review feature broad legends for the
phenomena they aim to represent, often underestimating the number of classes needed
to capture highly radiometrically variable phenomena (e.g., agriculture) [177]. In most
cases, they focus on representing these phenomena at the coverage level rather than the use
level. This is because the images acquired from remote sensors can highlight the surface
phenomena associated with land cover, while the task of inferring land use is left to the
analyst or specialist. This process relies on their experience in visual interpretation, which
is heavily dependent on prior field knowledge. As a result, this leads to the generalization
of a given phenomenon, implying smaller quantities of classes and greater possibilities of
discrepancies occurring when comparing LULC products with each other (Figure 4).

Figure 4. Performance scores of mapping initiatives according to resolution, accuracy, total classes, and
agricultural classes. Initiatives ranked from global to regional levels (from top to bottom). qnt = quantity.
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This generalization is a limitation when LULC maps are used for studies of phenomena
at the regional or even local level, such as small-scale agriculture, whose occurrence is
mapped poorly, or not at all, by these initiatives. CGLS maps face these limitations in
identifying both highly and minimally fragmented landscapes, particularly mixed areas
with very small cropland fields (<0.5 ha) and vastly sparse cropland fields, due to PROBA-V
100 m spatial resolution, which can lead to croplands overestimation or underestimation,
respectively [21]. Therefore, when evaluating products at the national and regional levels,
especially the initiatives carried out in Brazil, there is an improvement in the classification
hierarchy and, consequently, the composition of the legend. This involves subdividing the
coverage classes into one or more sublevels, as evidenced to a lesser extent by the IBGE
maps and primarily by the TerraClass and MapBiomas maps (Table 2).

Local initiatives such as MapBiomas and TerraClass (Amazon/Cerrado) offer a better
trade-off spatial resolution, high classification accuracy, and detailed agricultural classes,
making them ideal for fine-scale monitoring in Brazil’s diverse landscapes (Figure 4). In
contrast, global products like CGLS, GDW, UMD-GLC, and ESA-WorldCover typically
feature coarser resolution and fewer agricultural classes, though some maintain good over-
all accuracy, reflecting their broader, less granular focus (Figure 4). MapBiomas uniquely
combines thematic richness with agricultural detail, directly supporting advanced crop
monitoring, whereas IBGE-MLCU and CONAB-AM often exhibit lower accuracy and detail
due to reliance on costly census and field campaigns in a continental-scale context. Update
cycles for different local products generally follow annual or multi-year schedules for
temporal consistency, while global datasets leverage modern platforms for more frequent
updates at the expense of spatial and thematic precision (Figure 4). Ultimately, selecting
an LULC product requires balancing resolution, thematic detail, temporal frequency, and
operational feasibility relative to Brazil’s scale and resource constraints.

The CONAB initiative, aimed at mapping crops, focuses specifically on describing
agricultural use classes for this purpose (Figure 5). No differentiation or characterization
is applied between annual crops and intercrop types present in each crop field mapped
feature (vectorial data), working more like an agricultural mapping mask rather than
a product representing LULC in Brazil. The presence of intraseasonal crops cultivated
throughout the year (e.g., oats, sorghum, peanuts), as well as their spatial and temporal
occurrence, is neither reported nor characterized in the mappings, making it impossible to
assign features to these elements. However, when integrated with other mapping datasets,
these data can contribute to the refinement of the mappings, improving the identification
of agricultural targets in Brazil. CONAB-AM agricultural mapping data (Figure 5) are
available for the following Brazilian states: Bahia (BA), Distrito Federal (DF), Goiás (GO),
Maranhão (MA), Minas Gerais (MG), Mato Grosso do Sul (MS), Mato Grosso (MT), Pará
(PA), Piauí (PI), Paraná (PR), Rio de Janeiro (RJ), Rondônia (RO), Rio Grande do Sul (RS),
Santa Catarina (SC), São Paulo (SP), and Tocantins (TO).

While the importance of continuous time series analysis for land use and land cover
(LULC) monitoring is well recognized, the feasibility of implementing regular updates in
resource-constrained environments remains a significant challenge. In the specific case of
CONAB-AM (Figure 5), which relies on estimates based on census data and field campaigns
to achieve up-to-date temporal interval mapping for all crop types distributed along Brazil’s
vast territory during multiple crop years, a high financial cost would be required, which
often becomes unfeasible. The effort to produce regular sampling and updates, combined
with the limitations of the environment (e.g., relief, climate, etc.), logistical delineation (e.g.,
cooperation with farmers), sociocultural barriers, and the intrinsic dynamics of Brazilian
agriculture, is a major limitation for continuous time series analysis in a continental coun-
tries like Brazil, especially for institutions with limited governmental resources and limited
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access to advanced technological infrastructure. Also, it impacts the collection of robust
ground truth data to use as validation points, becoming a critical topic for agriculture. As a
result, the production of continuous, high-quality time series LULC data remains a major
challenge in continental-scale countries like Brazil, underscoring the need for innovative,
cost-effective approaches to support regular updates in such contexts like yield and area
estimation using remote sensing data and employing statistical and machine learning
approaches to predict the cropland variability, distribution, and/or without the need for
a great amount of ground truth data. The consequences for agricultural mappings are
critical: spatial fragmentation of the data, discontinuity in updating mappings, a lack of
data to cover a time series analysis interval, and a low representation of agriculture across
agricultural classes.

(a) 

(b) 

Figure 5. Available information for CONAB-AM initiative according to crop types practiced in Brazil
and region (states): (a) Spatio-temporal distribution. (b) Crop diversity. Agricultural mapping data
correspond to the compilation of vectorial information organized by mesoregion, state, and crop year
for main Brazilian crops: coffee, corn, cotton, irrigated rice, other winter and summer crops, soybean,
sugar cane, and sugarcane mill (Table 2). Data on winter and summer crops cover the first and second
cropping seasons.
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The spatial resolution (Figure 3) of the images used for map generation is not the sole
decisive factor in defining the classes and the classification legend, although its refinement
contributes to improved target discrimination. What stands out in this regard is the
methodology of map generation and its applicability. An example of this is the UMD-GLC
initiative, which, compared to other initiatives using medium to high spatial resolution,
defines seven classes. The classes are derived from the discretization of continuous intervals
of 255 subclasses, described in the mapping to evidence the loss and gain of classes, as
well as the percentage of vegetation cover and tree height. Therefore, the applicability of
UMD-GLC maps goes beyond LULC analysis, enabling studies focused on, for example,
forest disturbances, carbon emissions, and others. However, in the ESRI-10m LULC, GDW,
and ESA WorldCover initiatives, the use of 10 m resolution images does not impact the
generation of a significantly larger number of LULC classes (Table 1), even though the
potential existed to describe the phenomena with more detailed hierarchical levels.

Furthermore, the representation capacity of maps produced by high-resolution LULC
images should be improved to correspond to their respective spatial resolution, which
does not occur, for example, in heterogeneous areas when compared to homogeneous
areas. Xu et al. [19] point out that the existing inconsistencies in the definition of legends,
particularly classes that are notoriously difficult to separate are grouped through remote
sensing (e.g., shrubs, herbaceous and flooded vegetation, urban, and “built-up” areas).
This issue, evident in high-resolution products such as GDW and ESRI-10m LULC, leads to
low user accuracy and requires a focused look at standardizing the classes defined by these
mappings, aiming to improve the consistency and comparability of these products with
LULC maps at larger scales. Nevertheless, the need for physical and spectral differentiation
of these particularly difficult to represent classes in heterogeneous areas is highlighted,
suggesting the use of time series for dynamic analysis in their models [19]. Tubiello
et al. [178] discuss the applicability of global products in measuring cropland area. The
authors state that differences across maps to international standards limit effectiveness
in describing important trends and reduce the relevance of the monitoring process in
agriculture’s productivity and sustainability goals [178]. One of the impacts mentioned
is the ineffectiveness of using global cropland area estimation measures in analyses of
agricultural dynamics, which are reduced to mere trend analyses in arable land, since
classes such as woody permanent crops are excluded [178]. Also, heterogeneity in LULC
definitions leads to distinct trend estimates, generating mapping products with specific
cropland subcomponents like arable land and temporary crops, which is contrary to what
is reported in statistical censuses (e.g., FAOSTAT) [178].

3.3. Methodology and Product Quality Information

Reliability is one of the most important pillars in the production of maps monitoring
LULC changes, as it ensures accuracy in the representation of the information provided for
more assertive decision making by specialists, managers, and researchers. In this context,
the use of satellite images as input in map production has contributed significantly to
the faithful representation and spatial and temporal monitoring of LULC phenomena,
one of which is agriculture. However, in LULC products derived from optical remote
sensing images, areas with dense cloud cover can lead to low classification accuracy
values [28,179,180]. Moreover, the lack of filtering of shadowed pixels during the pre-
processing process can generate incorrect classification problems. The CGLS product
presents some of these problems, particularly in dealing with temporarily dry and flooded
areas and extremes, due to the inability to capture meteorological patterns such as La Niña
and El Niño events [21].
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In the process of LULC maps validation, it is crucial to quantify and account for
reference data errors, selecting validation methods that consider spatial context and dealing
with reference data uncertainty, like the ESA “Land Use and Coverage Area frame Survey”
(LUCAS) dataset [181]. Also, agricultural sampling data present a challenge in Brazil
because they encounter barriers due to territorial extent and topography, as well as financial
support to execute large field campaigns, which make such data scarce. Even with global
initiatives that use collaborative information uniting efforts from campaigns all over the
world, the quantity of available agricultural samplings for Brazil is scarce. Xu et al. [19]
suggest for products originating from high spatial resolution a shift from single-pixel
reference data to neighborhood-based approaches, especially in heterogeneous regions
to deal with mismatches. Kerner et al. [182] found disparities between eleven cropland
prediction maps from eight analyzed countries in Sub-Saharan Africa, pointing out a low
consensus in mappings. All maps mutually agreed with less than 0.5% of pixels, a smaller
estimated percentage of land that is used for agricultural purposes, with F1 scores ranging
from 0.21 ± 0.22 (Mali) to 0.71 ± 0.16 (Rwanda) and average below 0.70 [182].

Additionally, incorporating land dynamics, particularly for targets that have a high
variability through time and are spectrally and physically alike, like cropland/fallow
crops, time series analysis can improve validation reliability, capture intra- and interannual
variations and lead to fewer misclassifications. Another way to reduce data uncertainty is
to ensure the accuracy and applicability of the results by producing transparent reporting
of validation methods, showing not only the global accuracy but also the individual
class accuracy performance and the classification probability associated with each pixel of
the map.

Many of the cited products in this paper, even though they have reported a good
performance in mapping LULC classes, are made for a unique research purpose only, not
delving deeper into other mapped classes. This purpose is established at the beginning
by the researchers, guided by the question they wish to answer, defining the purpose that
mapping will achieve. Consequently, LULC products meet desirable quality metrics but
often prioritize the accuracy of certain classes over others, being high at a global level to
the detriment of local levels and limiting the applicability of the mapping to meet other
research demands. Considering that the mappings are generally available and researchers
commonly suggest that users use their products to solve LULC problems, this goal is
ultimately not achieved owing to the lower level of detail and representativeness of the
other classes relative to the primary class of interest.

3.4. Other Challenges and Limitations

To be representative of a given phenomenon, a map must be generated at the frequency
of the phenomenon’s occurrence in time and space. Thus, maps should be generated for
agricultural applications at subannual or annual time intervals, considering interannual
crop management [19]. Therefore, another limitation is the inconsistent temporal cov-
erage among LULC products, which hinders direct map comparison (Figures 5 and 6).
Products obtained from high-resolution sensors, such as the ESRI-10m LULC, GDW, and
ESA WorldCover initiatives, began their mappings in 2017—the year that the Sentinel-2B
satellite was launched and two years after the launch of the Sentinel-2A satellite. In other
words, the initiation of these mappings is directly linked to the availability of Sentinel-2
images, which shortens the period available for analysis (Table 1). For the WorldCeral
initiative, this becomes critical, because the mapping began in 2021 and remains single-
date outdated mapping (Table 1, Figure 6). On the other hand, initiatives with moderate
spatial resolutions, based on the Landsat satellite series, such as UMD-GLC, UMD-SASM,
PRODES, DETER, TerraClass (until 2018), MapBiomas, IBGE-MLCU, and CONAB-AM,
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have a longer time interval, allowing for the composition of a historical time series for
applications in studies involving the continuous monitoring of the Earth’s surface (Table 2).
With the increasing quality of spatial resolution of sensors, initiatives that used moderate to
coarse spatial resolution satellites, such as CGLS, have fallen into disuse in LULC initiatives
(Table 1). As a result, these products have distinct time intervals, meaning comparisons
between maps are only possible when they align temporally (Figures 5 and 6). Therefore,
considering the continental and global level products presented, only 2017, 2018, and 2019
mappings have temporal overlap with each other, except for the UMD-GLC product.

 

Figure 6. Initiatives timeline based on temporal interval availability. Gaps associated with unavail-
ability of data in the temporal interval. The analysis does not consider the CONAB-AM initiative due
to its highly variable time frame. CONAB-AM details are shown in Figure 5.

The absence of a continuous time series is one of the major challenges faced by
users of LULC products, as most of the mappings cited in this paper have a sequence of
maps at discontinuous intervals in time. This discontinuity appears both at the boundary
limits of the time interval (beginning and end) and in the temporal sequence (annual,
biennial) of the available maps (Figure 6). It affects the comparability and integration
of the produced information, preventing users from making assertive decisions when
selecting a product or initiative for their specific analytical purpose. Global and national
mapping initiatives exhibit temporal and update frequency discontinuities in their coverage
intervals, failing to provide a common reference year that would enable proper comparative
analysis following remote sensing best practices and statistical analyses that would typically
benchmark accuracy, applicability, confusion matrix assessment, and thematic granularity.
Figure 6 reveals the extent of this temporal fragmentation, illustrating that there is no
single year covered by all initiatives across global, national, and regional scales. Even
when grouping the initiatives by levels, i.e., global and continental in group 1, and national
and regional in group 2, no common year covers all initiatives. The nature of the data,
coverage scale, temporal discontinuity, spatial fragmentation, and the frequency of map
updates are key findings to understand the complexity in dealing with LULC mapping for
agriculture purposes. These findings reinforce methodological constraints and demonstrate
that comparative analysis is only feasible at specific scales and limited temporal windows.

The fragmentation of intervals (Figure 6), as observed, for example, in the UMD-
GLC maps (2000, 2005, 2015, and 2020 reference years), limits comparability with the
data provided by the global initiatives CGLS, GPW, GDW, ESRI-10m LULC, UMD-SASM,
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ESA-WC, and ESA-WorldCereal (Table 1), as well as national initiatives (Table 2), as the
existence of a product intersecting the same year in the evaluated interval is absent or
minimal/reduced, restricting the time series analysis to a point-in-time analysis (Figure 6).
When we think about agriculture, this limitation becomes more pronounced because
the nature of crops implies the use of at least two images at different times to evaluate
a large part of the phenomena arising from their spatial and temporal dynamics, such
as the estimation of planting and harvesting dates, quantification of the expansion or
retraction of agricultural areas, and estimation of the productivity of a given crop. Added
to this, the great variety of crop types in Brazil (Table 2, Figure 2), the particularities
of the tropical climate (Figure 1), and the agricultural calendar practiced in different
regions of the country (Figure 2) make the use of time series data almost an imposition in
the analysis of agricultural dynamics. In single-crop practice, the number of cloud-free
images required for agricultural interpretation is at least two images for the same period
(along one year) considering the crop calendar [46]. In intensive farming systems with
multiple crops (e.g., double or triple cropping), three or more cloud-free images are required
for intercropping pattern recognition considering the distinct vegetative stages of crop
growth [46]. Further, complex land features, particularly woody permanent crops and
fallow, have limited attention devoted to distinguishing within agricultural lands and, in
most cases, do not have a specifically delimitated class in the mapping, which leads to
omission and mismatches in classification contrasting to other LULC classes [178,183].

Another important point that corroborates the discontinuity of these series is the lack of
updated LULC products. This can occur due to several factors such as the discontinuation
of the mapping initiative due to the technological advancement of sensor systems (e.g.,
PROBA-V CGLS), the lack of interest or financial resources on the part of the provider to
maintain an initiative, the migration in the use of one satellite mission versus another due
to the greater availability and better characteristics of the data (e.g., Landsat to Sentinel-
2—PRODES and DETER), the achievement or not of the purpose of the initiative and/or
of its associated project, the end of a monitoring mission, trade-offs in spatial resolution
(Figure 3), and other adverse situations. An example that we cite is the CGLS initiative,
which was discontinued due to the end of the life of the PROBA-V mission in October
2021. The fact is that all mapping initiatives are subject to these possibilities of updating
issues and discontinuity, which can negatively affect research that uses these data, leading
to critical decision-making situations for the user.

3.5. Recommendations and Future Directions

Based on our findings and the current literature, we recommend that LULC users
carefully evaluate datasets not only for accuracy but also for spatial resolution, thematic
detail, class definitions, and uncertainty information, considering the specific area of interest
and its regional variations. This is particularly crucial for agricultural applications, where
understanding the specific crop types within the “cropland” class is essential for analyses
such as yield estimation, phenology, and management practices. Users should prioritize
datasets that provide clear, precise definitions for agricultural classes, ensuring that all
relevant land cover and use types are represented to avoid information gaps that could
compromise study outcomes.

For producers, we emphasize the importance of adopting standardized coverage
and use classes to promote consistency, comparability, and integration across different
LULC products and initiatives [184,185]. Validation should be conducted at multiple scales,
ensuring that maps are reliable not only in broad extents but also in smaller, heterogeneous
regions. Enhancing thematic detail and class representation, especially in products with
coarser spatial resolution, is vital for accurately capturing the diversity of agricultural
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systems. Methodological improvements, such as the integration of machine learning
and deep learning techniques, should be pursued to address these challenges, alongside
systematic reporting of uncertainty and quality metrics to strengthen the robustness of both
training and validation processes, enhance the discrimination of spectrally similar classes,
and improve the mapping of complex canopy structures [184,186–188]. In the same way,
we recognizing the value of local knowledge and the need for fine-scale data, especially in
heterogeneous regions such as the Amazon and Cerrado biomes, where we advocate for
the integration of participatory mapping approaches [189,190].

To address persistent semantic discrepancies among Brazilian LULC products, we
advocate for the implementation of automated harmonization pipelines based on machine
learning, leveraging transformer-based language models to encode class definitions and
metadata, and using graph-based algorithms to ensure semantic and structural consis-
tency [191,192]. Participatory mapping approaches, including mobile applications for
community-contributed geotagged observations, should be integrated to enhance the vali-
dation and representation of local land use practices, particularly in heterogeneous regions
like the Amazon and Cerrado biomes.

In terms of promoting product updates, establishing regular, transparent update cy-
cles ideally annually or biannually is essential to allow users to follow data releases. This
strategy should be complemented by robust user feedback mechanisms, such as online
platforms or structured forms, enabling analysts to report errors, suggest new classes, or
request region-specific improvements, thereby directly informing future product versions
and fostering a collaborative environment. Additionally, integrating automated change
detection pipelines based on machine learning can systematically identify regions of signif-
icant land cover change, prioritizing these areas for manual review, remove bias in change
detection, and allow for targeted updates in subsequent releases [193]. The development of
frameworks based on the Open Data Cube (ODC) is an alternative to provide resources
for accessing and analyzing large volumes of free, frequently updated remote sensing
data collections, allowing the integration of information from different sensors to meet the
available space–time, cloud-free image demand [146,194]. An example of usage is the Brazil
Data Cube (BDC) initiative in Brazil [146]. Also, software tools like the Web Land Trajectory
Service (WLTS) should provide LULC trajectories integration, harmonization, and met-
rics extraction from classified maps [195]. To further enhance methodological robustness,
we advocate for multi-level validation protocols and context-metrics that assess LULC
products at both global and subregional scales, ensuring their applicability and reliability
for local contexts, especially in heterogeneous landscapes [150,172,196,197]. Uncertainty
quantification, including comprehensive metrics, such as confidence intervals, confusion
matrices, and disagreement components, should be embedded within product metadata to
support robust training, validation, and decision-making workflows [150,197,198].

Finally, access to publicly accessible benchmark datasets, as well as transparent re-
porting of detailed documentation on class definitions, mapping methodologies, ontology
frameworks, and quality assessment procedures aligned with FAIR data and Open Science
principles, is crucial for reproducibility and informed use, facilitating collaboration and
integration across different remote sensing initiatives. These concrete measures should pro-
vide clear guidance for producers and users to enhance the actionability and practicability
of LULC mapping efforts.

4. Conclusions
This paper presents a review of the available LULC products, exploring the current

challenges and limitations of using pre-existing maps for land representation and moni-
toring. An emphasis is placed mainly on agricultural classes, seeking to understand the
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applicability of these LULC products to issues related to crop mapping in Brazil. We discuss
LULC map products from available sources at global, national, and regional levels, showing
their potential and the challenges faced in representing agricultural dynamics, including the
Brazilian context. Eight LULC mapping initiatives at the global/continental level (CGLS,
GDW, ESRI-10m LULC, UMD-GLC, GPW, UMD-SASM, ESA-WC, and ESA-WorldCereal)
and five initiatives at the national/regional level (PRODES, DETER, MapBiomas, IBGE-
MLCU, and CONAB-AM) have been discussed, featuring distinct conceptualization ap-
proaches, nature of data, satellites and sensors employed, classification methodologies,
legends, class representations, and reported quality.

Our discussion reveals differences in the approaches considered by the initiatives,
highlighting gaps in the mapping of agricultural classes, such as the need for standardiza-
tion in legends, missing or insufficient information about crop types mapped, scarcity of
reference field samples, discontinuities in map updates to analyze changes and trajectories,
and gaps in temporal intervals.

With advances in remote sensing, computer science, and improved classification meth-
ods, it is crucial that the production of LULC maps follows standardization to ensure the
credibility, reliability, and applicability of these map initiatives for diverse research themes,
assisting researchers in solving problems at different levels and scales in their areas of
interest. By operationalizing the recommendations evidenced in Section 3.5 through regular
product updates, harmonized classification systems, collaborative validation campaigns,
and open data sharing;both users and producers can significantly enhance the consistency,
comparability, and practical utility of LULC products for diverse applications.
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