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Abstract 

This study aimed to investigate the use of portable NIR spectroscopy with data 

mining techniques for pesticide quantification in cherry tomatoes and 

strawberries. For each product, reflectance spectra of 240 samples, composed 

of three fruits and treated with different concentrations of azoxystrobin, 

chlorothalonil, chlorpyrifos, difenoconazole, lambda-cyhalothrin, or 

tetraconazole, were obtained in the wavelength range of 900 - 1700 nm, using 

the DLP NIRscan and FieldSpec 3 spectrometers. Reference analyses were 

performed using liquid chromatography. Mathematical pre-processing techniques 

as well as variable selection were applied to the spectral data. The regression 

models were developed using Partial Least Squares Regression (PLSR), 

Orthogonal Projection for Latent Structures (OPLS), Random Forest (RF) and 

Support Vector Machine (SVM) techniques. The OPLS models with selection of 

RFE or SFM variables were able to quantify pesticides with R2p from 0.80 to 0.96, 

RMSEP from 0.01 to 0.03, RPDP from 2.24 to 4.76, and R2p from 0.73 to 0.80, 

RMSEP from 0.06 to 0.12, RPDP from 1.93 to 2.27 in samples of cherry tomatoes 

and strawberries, respectively. These results show that portable NIR 

spectroscopy, combined with data mining techniques, holds promise for 

monitoring pesticide residues in cherry tomatoes and strawberries. 

Keywords: Chemical Residues, Machine Learning, Near Infrared, Tomatoes, 

Strawberries. 

 

1. Introduction 
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Tomatoes (Solanum lycopersicum L.) and strawberries (Fragaria × 

ananassa) are among the most consumed vegetables in the world, with varieties 

that are highly attractive to the national and international market, due to their 

flavor, nutritional value, concentration of important vitamins for the body, and 

health benefits, given their anti-inflammatory, anticancer, and antioxidant 

characteristics (Shahbazi et al., 2020; Mendonça et al., 2021; Dai et al., 2023; 

Ngouana et al., 2023).  

Because they are crops very susceptible to the incidence of pests and 

diseases, it is common that in conventional production systems there is frequent 

use of chemical agents to prevent and/or combat these problems. However, the 

lack of criteria for adequate use of chemical agents has increased the risks of 

contamination of food and the environment (Guo et al., 2021; Wang et al., 2021; 

Ouakhssase & Addi, 2023).  

The excessive use of pesticides and harvesting before the minimum safety 

interval are concerns for control agencies and consumers about the presence of 

chemical residues in products available on the market. For this reason, the 

production and marketing chain needs to meet the requirements of the various 

national and international regulatory agencies (Eissa et al., 2024).  

In Brazil, country that is one of the largest consumers of pesticides in the 

world, and where crops have great economic relevance, the control of use is 

carried out by standards and control programs established by agencies linked to 

the government, and by international guidelines recommended by the Food and 

Agriculture Organization of the United Nations (FAO), World Health Organization 
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(WHO) and CODEX Alimentarius (Berlitz et al., 2023; Moreira et al., 2023; Jardim; 

Caldas, 2024). 

The Program for the Analysis of Pesticide Residues in Food (PARA) of the 

National Health Surveillance Agency (ANVISA), which is the main means of 

evaluation in Brazil, demonstrates in different reports that tomatoes and 

strawberries are among the foods with the highest levels of chemical residues. 

This information reinforces the importance of complying with the requirements 

imposed on the production chain, in order to ensure food safety. Therefore, 

producers need to comply with quality standards in terms of Maximum Residue 

Limits (MRLs), which must be achieved through constant monitoring of the 

presence of pesticides in products (Ciarrocchi et al., 2020; Berlitz et al., 2023; 

Jardim; Caldas, 2024). 

Currently, the monitoring of pesticide residues in agricultural products is 

carried out through highly complex methods, such as liquid or gas 

chromatography, mass spectrometry, and immunoassays, which are expensive 

and unfeasible for real-time analysis, as they require sample preparation, 

sophisticated reagents/equipment, large amounts of solvents, and disposal of 

other chemical substances into the environment (Zhuang et al., 2022; Dong et 

al., 2023; Liu et al., 2023). 

The near infrared spectroscopy (NIRS) has been widely used to monitor 

physicochemical quality traits in fruits and vegetables, which could also be an 

efficient method for monitoring pesticide residues in agricultural products. The 

NIRS determines quality traits through the interaction between the NIR 

electromagnetic radiation (780 - 2500 nm) with the chemical and physical traits 

of the sample. Indeed, benchtop and portable NIR spectrometers have been 
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increasingly used for non-destructive, rapid and sustainable quality control of a 

wide range of agricultural products. Many portable equipment, in addition to 

adding lower costs, greater ease of handling, reduced energy consumption, also 

have performances and sensitivities close to those of the bench, which can 

simplify the application within quality monitoring processes (Fulgencio et al., 

2022; Moraes, Cruz-Tirado, & Barbin, 2022; Ferreira et al., 2023; Funsueb et al., 

2023). 

NIRS has already been used to analyze pesticide contamination in 

products such as cucumber (Jamshidi et al., 2016), cabbage (Lu et al., 2021), 

and cocoa beans (Villanueva et al., 2023). In tomatoes, Saranwong and Kawano 

(2005) and Acharya et al. (2012) used a NIRS-associated dry extract system 

(DESIR) for detection of different pesticides, while Nazarloo et al. (2021) and 

Soltani Nazarloo et al. (2021) evaluated the potential of a Vis-NIR spectrometer 

to quantify different concentrations of another type of pesticide in fruit. In 

strawberries, Yazici et al. (2019) investigated the ability of NIR spectroscopy to 

quantify different concentrations of two types of chemical residues of a 

commercial pesticide in fruit.  

In the context of these analyses, the use of different modeling algorithms, 

such as some adopted in the present work, from the traditional approach by 

Partial Least Squares Regression and the extended approach Orthogonal 

Projection for Latent Structures, or by machine learning, from the approach by 

Random Forest and Support Vector Machine, are fundamental for the 

development of models with different forms of processing and consequently 

different results of prediction (Trygg & would, 2002; Mehmood et al., 2012; 

Boateng, Otoo, & Abaye, 2020). 
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Another fact is that while the studies cited looked at the use of NIRS to 

monitor pesticide residues on fruits, they did not assess the potential of this 

technology to detect and quantify more than two types of pesticides or the 

accuracy of low-cost portable spectrometers, compared to benchtop 

spectrometers. Therefore, this study aimed to investigate the use of portable NIR 

spectroscopy with data mining techniques to quantify different pesticide 

concentrations in cherry tomato and strawberry samples. 

 

2. Material and Methods  

 

2.1. Sample preparation 

 

A total of 1440 vegetables, represented by 720 cherry tomatoes (Solanum 

lycopersicum var. cerasiforme) and 720 strawberries (Fragaria x ananassa Duch. 

var. portola), organically grown were purchased in commercial establishments in 

Juazeiro, Bahia State, Brazil. Organic fruits were used in order to ensure the 

absence of preexisting residues related to possible other chemical compounds, 

which enabled the development of robust calibration curves, with control of the 

concentrations of pesticides used for the experiment. It is an approach already 

used in other literature, which allows isolating the spectral signals associated with 

the active ingredients of interest and minimizing other interferences. Wider 

variability in commercial samples can be added to the models within a further 

process of external analysis (Soltani Nazarloo et al., 2021; Villanueva et al., 

2023). 
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For both vegetables, 240 samples composed of three fruits were divided 

equally among four commercial pesticide treatments. Tomato samples were 

treated with chlorpyrifos, difenoconazole, lambda-cyhalothrin, and tetraconazole. 

Strawberry samples were treated with azoxystrobin, chlorothalonil, chlorpyrifos 

and difenoconazole (Figure 1).  

These pesticides are commonly recommended for pest and disease 

control during crop production and have residual recurrences in fruits after 

harvest. The fruit samples of each treatment were subdivided into the following 

groups: no pesticide spraying; pesticide spraying in a ratio of 1:1000 in water; 

pesticide spraying in a ratio of 1:100 in water; and pesticide spraying in a ratio of 

1:40 in water. 

In order to simulate real commercial conditions, and ensure greater 

variability in the pesticide residue data, 32 samples of each treatment were 

analyzed 2 hours after spraying, and 28 samples after the pre-harvest interval 

established for each pesticide (Table 1). Figure 2 shows the schematic diagram 

of the experimental system. 

 

2.2. Spectral acquisition 

 

Spectral acquisitions were performed sequentially by two spectrometers: 

first by portable DLP and then by benchtop FieldSpec 3 for all samples. The order 

of the samples was kept constant, but the three fruit replicates of each sample 

were measured in non-sequential order between both spectrometers, for greater 

randomness in the acquisition. In addition, the analyses in both spectrometers 

were carried out on the same day, to try to minimize possible temporal and 

environmental variations that could significantly influence the results. 
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2.2.1 Portable instrument 

 

Reflectance spectra were obtained on both sides of each fruit using a 

portable DLP NIRscan Nano EVM spectrometer (Texas Instruments, Dallas, 

Texas, USA) with 10 nm resolution, 248 digital resolution, 2.88 kHz maximum 

EVM scan speed, diffraction grating, single element detector, 900 to 1700 nm 

spectral range, and DLP NIRscan Nano GUI v2.1.0 software. The spectrum of 

each fruit corresponded to the average of 10 scans performed by the instrument, 

with values presented in absorbance. 

 

2.2.2 Benchtop instrument 

 

Reflectance spectra were obtained on both sides of each fruit using a 

FieldSpec 3 benchtop spectrometer (Analytical Spectral Devices, Boulder, 

Colorado, USA) with a resolution of 3 to 10 nm, a reading time of 100 ms, an 

accuracy of ± 1 nm, an InGaAs photodiode array detector, a 14.5 W quartz-

tungsten-halogen light source, and a spectral range of 350 to 2500 nm.  

To increase the quality and homogeneity of the spectral data, the 

instrument was turned on 30 minutes before the start of spectral acquisition, and 

a Spectralon® ceramic plate (Labsphere Inc., North Sutton, NH, USA) with 

approximately 100% reflectance was used as the calibration standard for the 

spectral acquisitions. To perform the analyses, the spectrometer was housed in 

a darkroom measuring 100 x 50 x 50 cm. 
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Before each analysis, the samples were placed on the ceramic plate at a 

perpendicular distance of 7.0 cm from the optical fiber of the sensor. The 

spectrum of each fruit corresponded to the average of 30 scans performed by the 

instrument within the spectral range of 900 to 1700 nm. RS3 and ViewSpec Pro 

software (Analytical Spectral Devices, Boulder, Colorado, USA) were used to 

acquire and transform reflectance data into absorbance data (log(1/R)). The 

results obtained with the data were used as a reference for comparison with the 

results of the portable NIRscan DLP spectrometer. 

 

2.3 Reference analyses 

 

The adapted QuEChERS (Quick, Easy, Cheap, Effective, Rugged and 

Safe) method was used to prepare the samples and extract the pesticides 

(Anastassiades et al., 2007). Quantifications were performed by liquid 

chromatograph LC-20 AT (Shimadzu®, Kyoto, Japan) (without pre-column) with 

autosampler (SIL-20 A) and diode array detector (DAD, SPD-M20A) associated 

with an LC-Solution® 1.0 data processing station.  

Chromatographic separations were performed at 30 °C, with a mobile 

phase composed of methanol and acidified water (0.1% formic acid), injection 

volume of 3 μL, flow rate of 0.8 mL min-1 and execution time of 30 min. The 

analytical curves were calibrated using the working standards azoxystrobin (CAS 

Number: 131860-33-8; 98% purity HPLC grade), chlorothalonil (CAS Number: 

1897-45-6; 98% purity HPLC grade), chlorpyrifos (CAS number: 2921-88-2; 98% 

purity HPLC grade), difenoconazole (CAS number: 119446-68-3; 95% purity 

HPLC grade), lambda-cyhalothrin (CAS number: 91465-08-6; 95% purity HPLC 
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grade) and tetraconazole (CAS number:  112281-77-3; HPLC grade 98% purity). 

The distribution frequencies of the different concentrations quantified in the 

tomato and strawberry samples can be seen in Figure 3. 

 

2.4 Development and performance of the regression models 

 

The raw spectral data were subjected to different types of mathematical 

pre-processing to remove noise and/or intensify the signal. To smooth the signal 

and correct the baseline in spectral segments with different window sizes, the 

Savitzky-Golay filter was applied, and the first and second derivatives with 

second-order polynomials were applied. Multiplicative signal correction (MSC) 

and standard normal variation (SNV) were used to correct for the multiplicative 

and additive effects of the spectra due to light scattering.  

The regression models were developed using the following techniques: (1) 

Partial Least Squares Regression (PLSR); (2) Orthogonal Projection for Latent 

Structures (OPLS); (3) Random Forest (RF); and (4) Support Vector Machine 

(SVM).  

Raw and pre-processed spectral data were used as independent input 

variables (X) and pesticide concentration values in tomato or strawberry were 

used as dependent output variables (y). For each treatment, the sample data set 

was split in an 80/20 ratio, with 80% allocated to training or calibration and 20% 

to prediction or external validation. Cross-validation was applied to the entire 

calibration set. 

The spectral datasets responsible for developing the best regression 

models in cross-validation were subjected to a variable selection process using 
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the methods presented in Scikit-learn (2022): (1) SelectFromModel (SFM); (2) 

Recursive Feature Elimination (RFE); (3) Recursive Feature Elimination with 

Cross-Validation (RFECV); and (4) Sequential Feature Selection (SFS). The 

wavelengths selected for the greatest contribution to the characterization of 

pesticides were used to reconstruct the models. 

The performance of the regression models was evaluated using the 

following statistical parameters: coefficient of determination (R²) (Equation 1); 

Root Mean Squared Error (RMSE) (Equation 2); and Residual Predictive 

Deviation (RPD) (Equation 3), calculated by the ratio between standard deviation 

(SD) and RMSE. The best calibration models were chosen based on the 

coefficient of determination (R2cv), error (RMSECV) and predictive deviation 

(RPDCV) in the cross-validation stage and, subsequently, they were evaluated 

by the coefficient of determination (R2p), error (RMSEP) and predictive deviation 

(RPDP) in the prediction stage. 

 

           R2 =
∑ (ŷi−ŷ)(n

i=1 yi−ȳ)2

(n−1)(σrσp)
                                                                                   (1) 

                RMSE = √
∑ (yi−ŷi)2n

i=1

n
                                                                                   (2) 

    RPD =
SD

RMSE
                                                                                                (3)                                                                                      

 

Where: 

ŷi - Value predicted by the calibration model (mg/g);  

yi - Reference value (mg/g);  

ȳ - Average of the predicted values (mg/g); 

n - Number of calibration or validation samples; 
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m - Number of predicted samples; 

σr - Standard deviation of the reference values (mg/g); 

σp - Standard deviation of predicted values (mg/g). 

 

3. Results 

 

The raw average spectra for samples not sprayed or sprayed with the 

pesticides are shown in Figures 4 and 5. The presence or absence of pesticides 

affected the intensity of absorption of the spectra by the samples but had no effect 

on the spectral pattern and the location of the absorption peaks at 970, 1200 and 

1450 nm. 

 

OPLS models with variable selection, processed from DLP data, achieved 

the best performances for pesticide quantification (Tables 2 and 3). Values of R2cv 

= 0.97, RMSECV = 0.01, RPDCV = 6.02, R2cv = 0.97, RMSECV = 0.01, RPDCV 

= 5.91, R2cv = 0.97, RMSECV = 0.01, RPDCV = 5.52 and R2cv = 0.85, RMSECV 

= 0.04, RPDCV = 2.56 were achieved with models reconstructed from 10 

wavelengths (964, 1217, 1220, 1247, 1260, 1276, 1325, 1335, 1480 and 1697 

nm), 20 wavelengths (1043,  1047, 1240, 1383, 1443, 1446, 1452, 1456, 1459, 

1467, 1471, 1561, 1631, 1651, 1664, 1667, 1670, 1672, 1681 and 1693 nm), five 

wavelengths (1189, 1240, 1313, 1325 and 1489 nm) and 15 wavelengths (908, 

1024, 1322, 1325, 1329, 1339, 1358, 1384, 1543, 1616, 1642, 1661, 1681, 1684 

and 1695 nm), selected by the RFE filter,  for chlorpyrifos, difenoconazole, 

lambda-cyhalothrin, and tetraconazole in tomatoes, respectively.  
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Values of R2cv = 0.81, RMSECV = 0.05, RPDCV = 2.27, R2cv = 0.83, 

RMSECV = 0.05, RPDCV = 2.44, and R2cv = 0.75, RMSECV = 0.11, RPDCV = 

1.98 were achieved with models reconstructed from five wavelengths (1358, 

1406, 1421, 1456, and 1564 nm), (1233, 1588, 1602, 1605, and 1697 nm), and 

10 wavelengths (1182, 1286, 1456, 1561,  1581, 1590, 1599, 1653, 1659, and 

1670 nm), selected by the RFE filter, for azoxystrobin, chlorpyrifos, and 

difenoconazole in strawberries, respectively. For chlorothalonil, values of R2cv = 

0.80, RMSECV = 0.10, and RPDCV = 2.25 were achieved with models 

reconstructed from five wavelengths (1377, 1380, 1569, 1599, and 1653 nm) 

selected by the SFM filter. 

Values of R2p = 0.80, RMSEP = 0.01, RPDP = 2.24, R2p = 0.96, RMSEP 

= 0.01, RPDP = 4.76, R2p = 0.82, RMSEP = 0.02, RPDP = 2.33, and R2p = 0.81, 

RPDP = 2.31 and RMSEP = 0.03 were achieved in the prediction of chlorpyrifos, 

difenoconazole, lambda-cyhalothrin, and tetraconazole in tomatoes, respectively. 

In contrast, values of R2p = 0.76, RMSEP = 0.12, RPDP = 2.04, R2p = 0.80, 

RMSEP = 0.06, RPDP = 2.25, R2p = 0.80, RMSEP = 0.09, RPDP = 2.27, and R2p 

= 0.73, RMSEP = 0.11, RPDP = 1.93 were achieved in the prediction of 

azoxystrobin, chlorothalonil, chlorpyrifos, and difenoconazole in strawberries, 

respectively. Graphs showing the location of selected wavelengths within the 

spectral range and the dispersion of predicted concentrations versus measured 

concentrations for the pesticides are shown in Figures 6 and 7. 

 

4. Discussion 

 

Non-pulverized fruits were responsible for the highest absorbances 

recorded for most of the treatments evaluated (Figures 4, 5A and 5B). This 
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indicated that the peaks observed at 970, 1200, and 1450 nm were due to the 

vibrations of the stretching of the O-H bond and the combined C-H and N-H 

bands, which correspond to the water and organic compounds constituting 

carbohydrates, proteins, polyphenols, and vitamins of fruits, and stood out in 

relation to the spectral responses of pesticides (Shen et al.,  2018; Włodarska et 

al., 2019; Mancini et al., 2020;  Borba et al., 2021; Najjar & Abu-Khalaf, 2021; 

Égei et al., 2022; Tan et al., 2023; Wold et al., 2024).  

The significant contributions of pesticide chemical bonds to the raw 

spectral uptake of strawberries sprayed with chlorpyrifos and difenoconazole, 

within the regions of 1400 nm and 900 to 1700 nm (Figures 5C and 5D), 

respectively, can be explained by the close relationships between the short PHI 

adopted for post-spray analysis (Table 1), with the dissipation kinetics, and 

characteristic properties compared to other sprayed pesticides (Song et al., 2020; 

El-Morsy et al., 2022). All these observations, associated with the results found 

after data modeling, showed the importance of applying different mining 

techniques for the process of quantifying pesticides on fruits (Su et al., 2017). 

For cherry tomatoes, the highest calibration and cross-validation 

performances achieved by the OPLS models with selection of RFE variables (R2c 

from 0.90 to 0.98; R2cv of 0.85 to 0.97), were similar to those of previous studies 

with DESIR (dry extract system associated with NIR spectroscopy) and PLS 

models with second derivative that presented R2c of 0.96 and R2cv of 0.95 to 

evaluate different concentrations of diclofluanide (1800 - 2500 nm) (Saranwong 

and Kawano, 2005) and metiram/pyraclostrobin (1850 - 2048 nm) (Acharya et al.,  

2012) in tomato samples, respectively. However, in these studies, DESIR aimed 

to remove water to reduce its effects on the NIR spectra of the samples, while in 
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the present study, NIR spectra were obtained non-destructively in intact fresh 

tomato and strawberry fruits, making this technology faster and more practical for 

monitoring pesticide residues under commercial conditions. 

In the prediction, the R2p performances (0.80 to 0.96) were superior to 

those reported by Nazarloo et al. (2021) for the PLS model developed without 

variable selection (R2p = 0.72) or with dimensionality reduction by Random Frog 

(RF) (R2p = 0.83). In the aforementioned study, the models were developed with 

spectra in the Vis-NIR region (460–1050 nm) to evaluate the residue of the 

pesticide profenofos sprayed on "Queen" tomatoes in the proportion of 2 per 1000 

L in water. 

For strawberries, the highest cross-validation and prediction performances 

achieved by the OPLS models with selection of RFE and SFM variables (R2cv 

from 0.75 to 0.83) (R2p from 0.73 to 0.80) were superior to those of the PLSR 

model associated with different types of mathematical pretreatments (R2cv = 0.76 

and R2p = 0.69), presented by Yazici et. al. (2019) in work with NIR spectroscopy 

(11000 - 4000 cm⁻1) to quantify pyroclostrobin in Albion strawberries treated with 

eleven different solutions of the pesticide (0-0,1-0.5-1-2-4-6-8-10-15-20 times the 

prescribed dose). 

Selected wavelengths, for example, at 964, 1358, 1406, 1446, 1452, 1456, 

1459, 1467, 1471, 1480, 1489, and 1561 nm correspond to vibrations and bonds 

by first and second harmonic O–H (H2O), CH3, first N–H overtone (CONHR, 

CONH2, and -CONH-), and primary NH amides, which are related to different 

chemical groups of pesticides (Lapcharoensuk et al.,  2023).  

The selection of wavelengths was crucial for the extraction of specific 

spectral information related to the characterization and, consequently, 
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quantification of the different concentrations of pesticides in fruits. The increase 

or maintenance of performance observed after the reconstruction of the models 

with the selected wavelengths indicates that the selection helped to reduce 

potential spectral errors 5and redundant variables in the modeling process, and 

to make the models simpler, without losing the quality of the prediction (Mishra et 

al., 2021). The best prediction of some pesticides is related to the fact that their 

molecules absorb more radiation at specific wavelengths that do not overlap with 

other molecules in the fruit. 

Higher values of R2 and RPD observed for the models developed with data 

from the portable instrument may be related to the greater sensitivity of the 

equipment in detecting vibrations related to O-H elongation in the region of 

wavelengths around 900 to 1000 nm, and/or to the difference between the lengths 

of the optical paths specified for DLP and FieldSpec (Van Kollenburg et al.,  

2021). 

High R2ps, low RMSEPs, and RPDPs greater than 2 or greater than 4 

show the high reliability of most models for pesticide quantification, and the 

feasibility of using them satisfactorily for screening or quantitative predictions of 

fruit samples (Baqueta et al., 2019; Heil; Schmidhalter, 2021; Jiang et al., 2022; 

Safaie et al., 2023).  

 

5. Conclusions 

 

In this work, portable NIR spectroscopy, combined with different data 

mining techniques was evaluated as a promising tool to monitor azoxystrobin, 

chlorothalonil, chlorpyrifos, difenoconazole, lambda cyhalothrin and 
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tetraconazole residues in cherry tomato and strawberry fruits. The OPLS models 

constructed from data collected by DLP portable spectrometer (900–1700 nm), 

and wavelengths selected by RFE or SFM filters, demonstrated high predictive 

capacity to quantify the different pesticide concentrations, from R2p values 

between 0.73 and 0.96, and RPDP between 1.93 and 4.76. Therefore, portable 

NIR spectroscopy combined with different data mining techniques is a promising 

alternative and/or complementary method for monitoring pesticide residues in 

cherry tomatoes and strawberries.  
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Tables 

 

                Table 1. Characteristics of the pesticides sprayed on cherry tomatoes and strawberries. 

 
 

Pesticide 
(active ingredient) 

 

 

Commercial 

name 

 

 

Molecular 

formula 

 

 

Class 

 
 
 

PHI 
(days) 

 

 

TC 

 

 

MRL 

(mg/kg) 

Azoxystrobin Amistar C22H17N3O5 Fungicide 1 IV 0.3 

Chlorothalonil Bravonil C8Cl4N2 Fungicide (a) IV NA 

Chlorpyrifos Klorpan C9H11Cl3NO3PS Insecticide (1b) (7c) I NA 

Difenoconazole Score C19H17Cl2N3O3 Fungicide (1d) (3e) V 0.5 

Lambda-cyhalothrin Karate Zeon C23H19ClF3NO3 Insecticide 3 IV 0.05 

Tetraconazole Domark C13H11Cl2F4N3O Fungicide 7 IV 0.2 
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PHI - pre-harvest interval that must elapse between the last application of the pesticide and harvest, 

as defined by Brazil's National Health Surveillance Agency (ANVISA); a - samples belonging to 

treatments with unauthorized pesticide for strawberries, and analyzed 1 day after spraying, considering 

this to be the longest safety interval among the pesticides authorized; b and c - samples belonging to 

treatments with unauthorized pesticide, analyzed 1 and 7 days after spraying, considering this to be 

the longest safety interval among the pesticides authorized for strawberries and tomatoes, 

respectively; d and e -  samples belonging to treatments with authorized pesticide, analyzed 1 and 3 

days after spraying, considering the safety interval for strawberries and tomatoes, respectively; TC - 

toxicological classification; MRL - Maximum Residue Limit; NA - Not authorized for the crop. 

 

Table 2. Statistical performance of the regression models OPLS developed 

for the quantification of pesticides in cherry tomatoes using two NIR 

spectrometers. 

R2c - coefficient of determination in calibration; RMSEC - root mean squared error in 

calibration; RPDC - residual predictive deviation in calibration; R2cv - coefficient of 

determination in cross-validation; RMSECV - root mean squared error in cross-validation; 

RPDCV - residual predictive deviation in cross-validation; R2p - coefficient of determination in 

Spectrometer  

(spectral range) 

Pesticide (active 

ingredient) 

Spectral 

set size 
R2

c RMSEC RPDC R2
cv RMSECV RPDCV R2

p RMSEP RPDP 

  

Chlorpyrifos 

 

Full 

RFE 

(10) 

 

1.00 

0.98 

 

0.00 

0.01 

 

57.47 

6.88 

 

0.94 

0.97 

 

0.02 

0.01 

 

4.28 

6.02 

 

0.78 

0.80 

 

0.01 

0.01 

 

2.15 

2.24 

DLP   

(900 – 1700 

nm) 

Difenoconazole Full 

RFE 

(20) 

1.00 

0.98 

0.00 

0.01 

58.07 

7.01 

0.96 

0.97 

0.01 

0.01 

4.96 

5.91 

0.92 

0.96 

0.01 

0.01 

3.59 

4.76 

 Lambda-

cyhalothrin 

Full 

RFE (5) 

1.00 

0.97 

0.00 

0.01 

85.79 

6.18 

0.97 

0.97 

0.01 

0.01 

5.40 

5.52 

0.80 

0.82 

0.02 

0.02 

2.24 

2.33 

 Tetraconazole Full 

RFE 

(15) 

1.00 

0.90 

0.00 

0.03 

22.72 

3.14 

0.74 

0.85 

0.05 

0.04 

1.97 

2.56 

0.60 

0.81 

0.05 

0.03 

1.58 

2.31 

  

Chlorpyrifos 

 

Full 

RFE 

(10) 

 

0.99 

0.95 

 

0.01 

0.01 

 

11.46 

4.48 

 

0.91 

0.94 

 

0.02 

0.02 

 

3.25 

4.23 

 

0.69 

0.79 

 

0.03 

0.03 

 

1.80 

2.20 

FieldSpec  

(900 – 1700 

nm) 

Difenoconazole Full 

RFE 

(10) 

0.97 

0.86 

0.01 

0.02 

6.25 

2.72 

0.87 

0.84 

0.02 

0.02 

2.75 

2.48 

0.69 

0.74 

0.03 

0.03 

1.80 

1.96 

 Lambda-

cyhalothrin 

Full 

SFS 

(10) 

0.96 

0.80 

0.01 

0.02 

5.32 

2.24 

0.82 

0.77 

0.02 

0.02 

2.37 

2.09 

0,62 

0.63 

0.03 

0.03 

1.62 

1.64 

 Tetraconazole Full 

RFE (5) 

0.97 

0.86 

0.02 

0.03 

5.50 

2.72 

0.74 

0.83 

0.04 

0.04 

1.96 

2.46 

0.70 

0.72 

0.06 

0.06 

1.95 

1.83 
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prediction; RMSEP - root mean squared error in prediction; RPDP - residual predictive 

deviation in prediction. 

 

Table 3. Statistical performance of the regression models OPLS developed 

for the quantification of pesticides in strawberries using two NIR 

spectrometers. 

R2c - coefficient of determination in calibration; RMSEC - root mean squared error in 

calibration; RPDC - residual predictive deviation in calibration; R2cv - coefficient of 

determination in cross-validation; RMSECV - root mean squared error in cross-validation; 

RPDCV - residual predictive deviation in cross-validation; R2p - coefficient of determination in 

prediction; RMSEP - root mean squared error in prediction; RPDP - residual predictive 

deviation in prediction. 

 

Figures 

 

(A) (B) 

Spectrometer  
(spectral 
range) 

Pesticide (active 
ingredient) 

Spectral 
set size 

R2
c RMSEC RPDC R2

cv RMSECV RPDCV R2
p RMSEP RPDP 

  

Azoxystrobin 

 

Full 

RFE (5) 

 

0.98 

0.85 

 

0.02 

0.05 

 

7.32 

2.60 

 

0.76 

0.82 

 

0.06 

0.05 

 

2.05 

2.34 

 

0.75 

0.76 

 

0.12 

0.12 

 

1.99 

2.04 

DLP   

(900 – 1700 

nm) 

Chlorothalonil Full 

SFM (5) 
0.99 

0.83 

0.02 

0.09 

9.13 

2.40 

0.81 

0.80 

0.09 

0.10 

2.31 

2.25 

0.77 

0.80 

0.06 

0.06 

2.07 

2.25 

 Chlorpyrifos Full 

RFE (5) 

0.97 

0.88 

0.02 

0.04 

5.85 

2.84 

0.81 

0.83 

0.05 

0.05 

2.31 

2.44 

0.76 

0.80 

0.09 

0.09 

2.05 

2.27 

 Difenoconazole Full 

RFE 

(10) 

0.95 

0.78 

0.04 

0.10 

4.67 

2.15 

0.71 

0.75 

0.11 

0.11 

1.84 

1.98 

0.68 

0.73 

0.12 

0.11 

1.78 

1.93 

  

Azoxystrobin 

 

Full 

SFS 

(10) 

 

0.75 

0.57 

 

0.08 

0.11 

 

2.00 

1.52 

 

0.56 

0.51 

 

0.11 

0.12 

 

1.50 

1.43 

 

0.54 

0.47 

 

0.09 

0.09 

 

1.48 

1.38 

FieldSpec  

(900 – 1700 

nm) 

Chlorothalonil Full 

RFE (5) 
0.85 

0.71 

0.07 

0.09 

2.59 

1.85 

0.66 

0.65 

0.10 

0.10 

1.70 

1.69 

0.54 

0.60 

0.19 

0.18 

1.47 

1.57 

 Chlorpyrifos Full 

SFS (5) 

0.89 

0.77 

0.05 

0.07 

2.96 

2.10 

0.73 

0.73 

0.07 

0.08 

1.94 

1.91 

0,72 

0.69 

0.06 

0.06 

1.90 

1.80 

 Difenoconazole Full 

SFS(5) 

0.80 

0.68 

0.09 

0.11 

2.25 

1.76 

0.66 

0.66 

0.12 

0.12 

1.72 

1.71 

0.59 

0.66 

0.16 

0.14 

1.55 

1.71 

Jo
ur

na
l P

re
-p

ro
of



30 
 

 

 

(C) 

 

(D) 

 

(E) 

 

(F) 

 

 

Figure 1. Structural formula for the pesticides azoxystrobin (A), chlorothalonil (B), 

chlorpyrifos (C), difenoconazole (D), lambda-cyhalothrin (E) and tetraconazole (F). 
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Figure 2. Schematic diagram of the experimental system, illustrating the sample 

preparation process, spectral acquisition instruments used and reference 

chromatographic analysis equipment. 
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Figure 3. Histogram of concentrations for the pesticides chlorpyrifos (A), 

difenoconazole (B), lambda cyhalothrin (C), tetraconazole (D) quantified for 

cherry tomatoes and azoxystrobin (E), chlorothalonil (F), chlorpyriphos (G) and 

difenoconazole (H) quantified for strawberries. 
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Figure 4. Average raw absorbance spectra for cherry tomatoes unsprayed or 

sprayed with pesticides chlorpyrifos (A), difenoconazole (B), lambda-cyhalothrin 

(C) and tetraconazole (D) 
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Figure 5. Average raw absorbance spectra for strawberries unsprayed or sprayed 

with pesticides azoxystrobin (A), chlorothalonil (B), chlorpyrifos (C), and 

difenoconazole (D). 
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Figure 6. Selected wavelengths by RFE and scatter plots of pesticide concentrations in 

cherry tomatoes measured by reference methods versus predicted by OPLS models 

for chlorpyrifos (A, B), difenoconazole (C, D), lambda-cyhalothrin (E, F) and 

tetraconazole (G, H). 
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Figure 7. Selected wavelengths by RFE or SFM and scatter plots of pesticide 

concentrations in strawberries measured by reference methods versus predicted 

by OPLS models for azoxystrobin (A, B), chlorothalonil (C, D), chlorpyriphos (E, 

F) and difenoconazole (G, H). 
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Graphical abstract  

 

 

 

HIGHLIGHTS 

 

NIRS and data mining can be used to detect pesticides residues in fresh fruits. 

 

Models developed with specific wavelengths are highly accurate in pesticide 

analysis. 

 

Portable NIR is a rapid and non-destructive method for pesticide analysis in fruits. 
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