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In Brazil, disease outbreaks in plant cultivars are common in tropical zones. For
example, the fungus Fusarium verticillioides produces mycotoxins called
fumonisins (FUMO) which are harmful to human and animal health. Besides
the genetic component, the expression of this polygenic trait is regulated by
interactions between genes and environmental factors (G × E). Genomic
selection (GS) emerges as a promising approach to address the influence of
multiple loci on resistance. We examined different manners to conduct the
prediction of FUMO contamination using genomic and pedigree data, and
combinations of these two via the single step model (B-matrix) which also
offers the possibility of increasing training set sizes. This is the first study to
apply the B-matrix approach for predicting FUMO in tropical maize breeding
programs. Our research introduced a cross-validation approach to optimize the
hyper-parameter w, which represents the fraction of total additive variance
captured by the markers. We demonstrated the importance of selecting
optimal w by environment in unbalanced datasets. A total of 13 predictive
models considering General Combining Ability (GCA) and Specific Combining
Ability (SCA) effects, resulted from five linear predictors and three different
covariance structures including the single-step approach. Two cross-
validation scenarios were considered to evaluate the model’s proficiency:
CV1 simulated the prediction of completely untested hybrids, where the
individuals in the validation set had no phenotypic records in the training set;
andCV2 simulated the prediction of partially tested hybrids, where individuals had
been evaluated in some environments but not in the target environment. Results
showed that using the B-matrix in the five tested linear models increased the

OPEN ACCESS

EDITED BY

Zefeng Yang,
Yangzhou University, China

REVIEWED BY

Yang-Jun Wen,
Nanjing Agricultural University, China
Mary-Francis LaPorte,
University of California, Davis, United States

*CORRESPONDENCE

Diego Jarquin,
jhernandezjarqui@ufl.edu

RECEIVED 03 August 2024
ACCEPTED 05 May 2025
PUBLISHED 02 July 2025

CITATION

Evangelista JSPC, Dias KOdG, Pastina MM,
Chaves S, Guimarães LJM, Hidalgo J,
Garcia-Abadillo J, Persa R, Queiroz VAV,
Silva DDd, Bhering LL and Jarquin D (2025)
Optimizing the single-stepmodel for predicting
fumonisins resistance in maize hybrids
accounting for the genotype-by-environment
interaction.
Front. Genet. 16:1475452.
doi: 10.3389/fgene.2025.1475452

COPYRIGHT

© 2025 Evangelista, Dias, Pastina, Chaves,
Guimarães, Hidalgo, Garcia-Abadillo, Persa,
Queiroz, Silva, Bhering and Jarquin. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 02 July 2025
DOI 10.3389/fgene.2025.1475452

https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1475452/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1475452&domain=pdf&date_stamp=2025-07-02
mailto:jhernandezjarqui@ufl.edu
mailto:jhernandezjarqui@ufl.edu
https://doi.org/10.3389/fgene.2025.1475452
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1475452


predictive ability compared to pedigree or genomic information. Under CV1,
increasing training set sizes exhibit superior predictive accuracy. On the other
hand, under CV2 the advantages of increasing the training set size are unclear and
the improvements are due to better covariance structures. These insights can be
applied to plant breeding programs where the GCA, SCA, and G × E interactions are
of interest and pedigree information is accessible, but constraints related to
genotyping costs for the entire population exist.

KEYWORDS

fumonisins resistance, genomic prediction, plant breeding, maize hybrid prediction,
single-step model

1 Introduction

In tropical environments such as in Brazil, outbreaks of pests
and diseases are more frequent and can exhibit significant variations
between locations, years, and seasons within the same year, directly
affecting crop productivity (Oliveira et al., 2014; Chaves et al., 2023).
Among the most frequent diseases in corn crops, ear rot, caused by
the fungus Fusarium verticillioides, is one of the most prevalent and
economically significant diseases (Jorge et al., 2022). In addition to
causing losses in productivity, the fungus produces mycotoxins.
Fumonisins (FUMO) are particularly concerned due to their
widespread occurrence and significant human and animal health
impacts (Blacutt et al., 2018). FUMO are a class of mycotoxins that
mainly affect maize grains and can contaminate derived products,
such as maize flour (Butoto et al., 2022). Therefore, it is of utmost
importance that maize breeding programs consider plant resistance
to FUMO contamination as a selection criterion (Lanubile et al.,
2014; Holland et al., 2020).

However, phenotyping this trait can be expensive and time-
consuming (Bush et al., 2004). Hence, the genomic prediction (GP)
emerges as an important alternative strategy for evaluating maize
cultivars for resistance to fumonisin contamination. Potentially, this
approach could help to increase genetic gains by reducing the
required time and associated costs in identifying the most
promising materials (Heslot et al., 2015). The GP involves
developing predictive models by integrating phenotypic and
genomic information derived from single nucleotide
polymorphisms (SNPs) - molecular markers. These models are
then applied to estimate the genetic potential of individuals
whose phenotypes have not been measured, based only on their
marker profiles (Meuwissen et al., 2001). Genomic selection (GS),
the breeding process that applies GP in breeding decisions, can be
particularly useful in hybrid breeding. In GS models for hybrids, the
effects of General Combining Ability (GCA) and Specific
Combining Ability (SCA) have been widely used (Acosta-Pech
et al., 2017; Jarquin et al., 2021; Fonseca et al., 2021; Zhang et al.,
2022; Melchinger and Frisch, 2023). The GCA refers to the average
performance of a parent in producing desirable traits in its progeny
when crossed with different parents, while SCA reflects the specific
interaction between two parents, indicating their compatibility and
ability to produce superior progeny.

GS offers the opportunity to increase the selection intensity,
expedite the breeding cycles, increase the genetic gains, and enable
the efficient allocation of resources in breeding programs (Atanda
et al., 2021; Beyene et al., 2021; Persa et al., 2021). These advantages

have led many breeding companies to incorporate GS into their
programs, including efforts focused on fungal resistance traits.
Recent research has demonstrated the potential of GS for
improving resistance to fumonisin contamination in maize,
highlighting its efficiency and cost-effectiveness compared to
traditional phenotypic selection (Butoto et al., 2022). GS exploits
the realized genomic relationships between genotypes based on the
proportions of alleles they share through the genetic matrix (G;
VanRaden et al., 2008), whose entries describe the genomic
similarities between pairs of individuals. This method provides a
more accurate representation of genetic inheritance by accounting
for Mendelian sampling, enabling the detection of genetic
differences between individuals with identical expected
similarities. In contrast, pedigree-based selection relies on a
relationship matrix (A), constructed solely on the expected
similarity between individuals (Hayes et al., 2009).

This does not mean that the pedigree information is expendable or
lacks value in data analysis. Frequently, not all the selection candidates
or parental lines are genotyped, but their pedigree is registered (Callister
et al., 2021). In this scenario, G (the matrix of genomic relationships)
can be enriched or complemented byA (the pedigreematrix) forming a
single relationship matrix B � w × A + (1-w) × G resulting in the
well-known single step model (Misztal et al., 2009; Aguilar et al.,
2010). In other words, the B-matrix combines genomic and pedigree
informationwith aweighting factor/hyper-parameter (w). Thew hyper-
parameter represents the fraction of the total additive variance not
captured by the markers (Velazco et al., 2019). To find the best way to
build the B-matrix, different values for w are considered, and the value
that returns the highest predictive ability in training sets is chosen for
performing the prediction of individuals in the testing set (Velazco et al.,
2019; Oliveira et al., 2020).

In addition, the single step approach allows combining the full
set of genotypes (genotyped and non-genotyped but with pedigree
information only) using a standard genomic selection method
resulting in an increased training set size. The Genomic Best
Linear Unbiased Predictor (GBLUP) linear predictor can be used
to implement the single-step GBLUP, or ssGBLUP (Legarra et al.,
2014) approach. Several studies highlight the potential of ssGBLUP
compared to the traditional GBLUP and ABLUP (pedigree-based
selection) for predicting untested genotypes (Ashraf et al., 2016;
Ukrainetz and Mansfield, 2020).

In this study, we analyzed a dataset consisting of 373 single-cross
tropical maize hybrids derived from 359 inbred lines. These hybrids
were evaluated over 3 years, with each year’s assessment taking place
in the same location resulting in three different environments (year-

Frontiers in Genetics frontiersin.org02

Evangelista et al. 10.3389/fgene.2025.1475452

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1475452


by-location combination). The objective was to evaluate the
effectiveness of the single-step approach (referred to as the
B-matrix) in maize breeding programs aimed at reducing FUMO
levels in grains. Wherein the deployment of GP considered the
following aims: i) optimization of the election of the w hyper-
parameter to combine genomic information and pedigree data in
prediction models via the B-matrix, where w represents the
proportion of total additive genetic variance explained by
markers; ii) comparing the predictive ability of different models
based on main and interaction effects; SNPs matrix (G), pedigree
information (A), and the hybrid matrix (B) via the single-step
model, iii) evaluating the impacts on predictive ability by
increasing training set sizes using phenotyped individuals with
pedigree information only.

2 Materials and methods

2.1 Phenotypic data

The analyzed datasets correspond to three maize trials
established at the Brazilian Agricultural Research Corporation
(EMBRAPA) Maize and Sorghum headquarters in Sete Lagoas
city at the Minas Gerais state, Brazil (19°28′S, 44°15′W). These
trials were conducted in three consecutive agronomical years (2014/
2015, 2015/2016, and 2016/2017), and each agronomical year was
considered as a different environment (E1 = 2014/2015 year; E2 =
2015/2016 year, and E3 = 2016/2017 year). Genotypes were planted
in a lattice design, with two repetitions. In total 373 single-cross
hybrids were evaluated: 146 in environment 1 (E1), 145 in E2, and
150 in E3. Furthermore, care was taken to allow connectivity

between environments: 33 hybrids are common between E1 and
E2, 15 between E1 and E3, 37 between E2 and E3, and 13 across the
three environments (Figure 1).

All 373 single-cross hybrids were scored for fumonisin
concentration in parts per million (ppm) (FUMO), and this
information was missing for the parents of these hybrids. The
determination of the FUMO trait was initially based on a 500 g
sample of corn grains that required a meticulous quantification
process. The quantification took place at the Laboratory of Food
Safety at Embrapa Milho e Sorgo where a 10 g subsample was finely
ground. Then fumonisins were extracted in a solution of 100 mL
water/methanol mixture (20/80), and 5 g NaCl using a blender for
1 min. The resulting mixture was then filtered through Whatman
paper, and an aliquot of 10 mL of the filtered extract was
subsequently diluted in 40 mL of 0.1% phosphate Tween-20
solution (phosphate buffer). This solution was then filtered again
using a 1.0 mm microfiber filter. Then a subsample of 10 mL of this
solution was passed through the FumoniTest column, which was
washed with 10 mL of phosphate buffer solution followed by a
second flow of 10 mL of phosphate buffer. The contents of the
column were eluted with 1.0 mL of methanol (HPLC grade),
collected, and mixed with 1 mL of developer. Finally, the
fumonisin concentration in the grain was quantified using the
FumoniTestTM and the Fluorometer VICAM, following the
manufacturer’s protocols (Jorge et al., 2022).

2.2 Pedigree and genotypic data

Pedigree and genomic information were available for a total of
246 hybrids originated from 236 unique inbred lines (Table 1)
belonging to two heterotic groups: 142 inbred lines from the
Flint group, and 94 inbred lines from the Dent group (see
Supplementary Figure S1 for more details about the heterotic
groups). The inbred lines were divided into two groups of
parents: P1, 30 inbred lines used as male; and P2, 211 inbred
lines used as female. A few inbred lines (only 5) were used as
both male or female; thus, these genotypes are found in both
P1 and P2 groups.

For genotyping, the young leaves of 236 inbred lines were used
for extracting genomic DNA via the CTAB method
(Hexadecyltrimethylammonium bromide; Saghai-Maroof et al.,
1984). The DNA quantification was done using a fluorometer,
following the manufacturer’s instructions. The samples were
shipped to the Genomic Diversity Facility of Cornell University
(Ithaca, NY, United States) for genotyping-by-sequencing (GBS;
Elshire et al., 2011). Using the Burrows-Wheeler alignment (BWA)
tool (Li and Durbin, 2009), the sequences were aligned with the

FIGURE 1
Representation of the allocation of the maize hybrids evaluated
in three environments (E1, E2, and E3). The inner circle presents the
common number of hybrids that were evaluated by pairs of
environments.

TABLE 1 Dataset summary of the availability of pedigree and genomic
information for Hybrids, and groups of parents (P1, and P2).

Information Hybrids P1 P2

Pedigree 127 113 21

Pedigree and genomic 246 30 211

Total 373 143 232
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B73 reference genome (AGPv3). A total of 474,367 SNPs markers
were available for analysis.

After applying quality control using TASSEL v.5.2.10 software
(Bradbury et al., 2007), discarding those molecular markers with a
Minor Allele Frequency (MAF) smaller than 10%, and a
heterozygote’s proportion per locus above 10%,
73,083 polymorphic SNPs remained in the analyses. In addition,
the SNPs with missing information were imputed using Beagle
software (Browning and Browning, 2016). The SNP markers of

the inbred lines were encoded as 0, 1, and 2, with 0 representing the
allele with the minor frequency, one for the heterozygous, and two
for the allele with the major frequency. The genotypes of the
synthetic hybrids were built by combining the markers from the
respective parental inbred lines using the expected value, which
represents the mean allele dosage across parents for each marker.

In addition, there were also available phenotypic and pedigree
information for an extra set of 127 hybrids totaling 373 when
combined with the initial set of 246 hybrids that have both

FIGURE 2
Prediction models derived from five linear predictors and four kinship matrices (H, G, A, and B). Where H is the genomic relationship matrix of the
hybrids based on synthetic marker SNPs, GP1 is the genomic relationship matrix of the P1 group; GP2 is the genomic relationship matrix of the P2 group;
GP1P2 � GP1°GP2, AP1 is the pedigree relationship matrix of the P1 group, AP2 is the pedigree relationship matrix of the P2 group, AP1P2 � AP1°AP2, B is the
single-step relationshipmatrix of the hybrid; BP1 is the single-step relationship matrix of the P1 group, BP2 is the single-step relationshipmatrix of the
P2 group; BP1P2 is theBP1°BP2, and; ° is the Hadamard or Shur product. The first two linear predictors (1 and 2) were implemented to model the hybrid
performance involving theHmatrix alone or in combinationwith pedigree via the single-stepB-matrix. The other three linear predictors (3–5) considered
the parents’ genomic and/or pedigree information via the general and specific combining ability (GCA and SCA) terms.
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pedigree and genomic data (Table 1). This set of 127 hybrids was
originated from 131 inbred lines belonging to three heterotic groups:
74 inbred lines from the Flint group, 49 inbred lines from the Dent
group, and four inbred lines from the C group. The C group is
intermediate to Flint and Dent, representing lines of several origins.
It is well known there is a good combining ability between genotypes
from the C group crossed with Dent or Flint testers (groups) (Silva
et al., 2020). There was also information available regarding the
pedigree of the ancestors of the inbred lines. Hence it was possible
compute the pedigree-based relationship matrix for the hybrids
(AH) and the corresponding matrices for the group of parents P1
(AP1), and P2 (AP2). It is worth noting that over 3 years, in the same
experiment, there were hybrids whose parents were genotyped
(246 hybrids) and hybrids whose parents were not genotyped
(127 hybrids), due to limited resources of the breeding program.

2.3 Relationship matrices

The pedigree data was used to build the additive relationship
matrix for P1 (AP1), P2 (AP2), and the hybrids (AH), according to
Henderson (1976), which utilizes genealogical information to
estimate genetic relatedness. This method is widely used in
animal and plant breeding to quantify the genetic similarity
among individuals based on their shared ancestry. The R package
AGHmatrix (Amadeu et al., 2016) was used to build the additive
relationship matrices for P1 (AP1), P2 (AP2), and the hybrids (AH).
The genomic data was used to compute the realized genomic
relationship matrix (or G matrix) for P1 (GP1), P2 (GP2), and the
hybrids (GH) following VanRaden et al. (2008). VanRaden’s method
estimates genetic relatedness based on actual genetic marker data,
providing a more precise measure of genetic similarity by

FIGURE 3
Representation of two cross-validation schemes with a five-fold assignation. Panel (A) describes the conventional cross-validation where four folds
are used formodel training to predict the fifth fold. In panel B, three folds are used formodel training, and the fourth fold is used to optimize the election of
the w value for those models involving the single-step (B) terms. Once the optimum values are found (across or within the environments of the fourth
fold), the fifth fold is predicted. The columns represent the different replicates for assigning observations/genotypes to folds. The hexagons
represent the folds, the blue hexagons correspond to the folds implemented as the training set, the blue-green hexagon corresponds to the fold used to
conduct the optimization of the w hyper-parameter when the single-step model is implemented, and the cyan hexagon represents the testing fold
(fifth fold).
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considering the genetic variation at specific loci across the genome.
In addition, a) to having a better characterization of the matrix of
genomic relationships, and b) to increasing the training set size by
including non-genotyped inbred lines, c) the single-step relationship
matrices were built for P1, P2, and the hybrid components to include
information of the ancestry of the parents as in Khanna et al. (2022).

In general, the matrix that combines genomic and pedigree data
is commonly named the H matrix (Velazco et al., 2019); however,
since this research involves the prediction of hybrids, the use of H
was reserved for denoting the genomic relationship matrix
computed with the synthetic matrix of marker SNPs (mean of

the allele dosage of the parents at each marker position). For this
reason, the resulting matrix from the single-step procedure is named
B-matrix. For example, the E + H model represents a linear
predictor that includes the main effect of the environments and
the main effect of the synthetic hybrid markers obtained as the mean
across the marker information of the two parents involved in a
specific crossing. This change was intended for an easier
understanding for the reader. On the other hand, generically, the
B (single step) matrix was built following Aguilar et al. (2010):

B � w × A + 1 − w( ) × G (1)

FIGURE 4
Boxplot of the predictive abilities of five linear predictor models in two prediction scenarios (CV1 and CV2), using two approaches to find the
optimum w parameter of the B-matrix for models M9-M13. In blue color are indicated the results from selecting the w optimum value across
environments, while in green, the results from selecting the within environments w value for the calibration sets: (A) the GOds (genomic-only dataset),
and (B) the PGds (pedigree and genomic dataset). The numbers on the vertical y-axis are the models’ predictive abilities, and the horizontal x-axis
represents models M9-M13.
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where A is the pedigree relationship matrix, G is the genomic
relationship matrix, and w is the weighting factor (i.e., the fraction
of total additive variance not addressed by the markers; Velazco et al.,
2019). Here, the B-matrix in Equation 1 can be computed considering
different sources of information. For example, combining the H and
the Amatrices, or the GP1 and the AP1 matrices, the GP2 and the AP2

matrices, and their corresponding interactions with environments,
etc. Further details about all the different combinations and model
terms considered in this study are below.

2.4 Prediction models

A two-stage approach was considered to implement the
prediction models. In the first stage, within-environment adjusted
means (best linear unbiased estimation–BLUE) were obtained with
the following model:

yikl � μ + hi + rk + bl k( ) + εikl (2)
where yikl is the phenotypic value of the ith hybrid within the lth block
of the kth replicate; μ is the constant, hi is the fixed effect of ith hybrid

(i = 1, 2, ., 373), rk is the fixed effect of replication k (k = 1, 2), bl(k) is
the random effect of the l th block within the k th replicate (l = 1, 2, . . .
,16), with bl(k) ~ N(0, σ2b), where σ2b is the block variance, and εikl is
the residual random effect with εikl ~ N(0, σ2ε ), and σ2ε as the
residual variance. A descriptive statistical analysis of the dataset
was performed to assess the variance components and FUMO
heritability for each environment and the results are presented in
Supplementary Table S1. The analysis of the variance components
employed a similar model to Equation 2 with the genetic effect of the
hybrids considered as random such that hi ~ N(0, σ2h), where σ2h
represents the corresponding variance component. The first stage
analysis was carried out using the statistical package ASReml-R v.4
(Butler et al., 2018) implemented in the statistical software R v.4.1.3
(R Core Team, 2022).

In the second stage, five different linear predictors were
considered to model the trait response, and three different ways
to account for relationships between hybrids using genomic (H, GP1,
GP2), pedigree (AP1, AP2, AP1P2), and the single-step (B, BP1, BP2,
BP1P2) information. Thirteen different prediction models resulted
from combining the five linear predictors and the three different
ways to introduce the relationships between hybrids (Figure 2;

FIGURE 5
Heatmap of the predictive abilities of 13 models in two prediction scenarios (CV1 and CV2) to predict concentration of fumonisins (FUMO); r is the
correlation between predicted and observed values, for each environment (E1 to E3) and across environments; MSPE is themean squared prediction error
across environments; GOds is the genomic-only dataset and; PGds is the pedigree and genomic dataset.
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Supplementary Table S2). In principle, the first two linear predictors
were implemented to model the hybrid performance directly,
considering i) the main effects of the synthetic markers and ii)
their corresponding interactions with environments. This model
was also implemented to model the trait response using the pedigree
matrix A of the hybrids and their corresponding interaction with
environments. Hence, four different models can be constructed by
combining the two linear predictors and the two ways to directly
model the hybrids (M1, M2, M9, and M10 in Figure 2;
Supplementary Table S2).

The other three linear predictors (3, 4, and 5) were considered
to indirectly model the hybrids via the general and specific
combining ability (GCA and SCA) terms. The GCA (P1+P2)
term attempts to model the average effect of the parents
involved in the crosses, while the SCA (P1 × P2) model term
corresponds to the interaction of these effects. Similarly to the
previous models, different sources of information were used to
model the effects of the parents involved in the crosses: 1)
molecular marker information (GP1, GP2, and GP1P2), 2)
pedigree data (AP1, AP2, and AP1P2), and 3) the combination of
these sources of information using the single-step method:
BP1 � w × AP1 + (1 − w) × GP1, BP2 � w × AP2 + (1 − w) × GP2,
and BP1P2 � w × AP1P2 + (1 − w) × GP1P2. Further details are
provided below to describe the election of the optimum value
of the w hyper-parameter. In addition, the interactions of these
terms with environments were also considered resulting in models
M3, M4, M5, M6, M7, M9, M11, M12, and M13 (Figure 2;
Supplementary Table S2).

Below, the linear predictors (1–5) and their corresponding
components (Figure 2; Supplementary Table S2) are described.

2.4.1 Linear predictor 1
Consider that �yij represents the phenotypic response (FUMO)

of the ith hybrid observed in the jth environment; depending on the
different sources of information it can be modeled as follows:

�yij � μ + Ej + ki + εij (3)

where μ is the general mean (constant effect across genotypes and
environments), Ej is the fixed effect of jth environment, ki models the
random effect of the ith hybrid, where k � ki{ } ~ MVN(0,Kσ2k). The
ki can be modeled considering different sources of information. For
example, K could represent the covariance structure computed with
the synthetic SNPs markers H, or the B-matrix of the hybrids
combiningA andHmatrices asw × A + (1 − w) × H, with σ2k being
the additive variance, and εij ~ N(0, σ2ε ), where σ2ε is the residual
variance. Thus, the possible models of this linear predictor described
in Equation 3 are M1, and M9 (Figure 2).

2.4.2 Linear predictor 2
This model is similar to linear predictor 1, but it also includes the

interaction effect between hybrids and environments (G × E) via the
reaction norm model (Jarquin et al., 2014). Considering the specific
response of the ith hybrid in the jth environment through the model
term kEij, this linear predictor can be described as:

�yij � μ + Ej + ki + kEij + εij (4)

where kEij is the random effect of the hybrid-by-environment interaction
such that kE � kEij{ } ~ MVN[0, (ZgKZ′

g )° (ZEZ′
E)σ2kE], Zg and ZE

are the incidence matrices that connect phenotypes with genotypes and
environments, respectively, σ2kE represents the variance component of the

FIGURE 6
Within and across environments weighted mean average (10 replicates of a five-fold cross-validation) correlation between predicted and observed
values (vertical y-axis) for five linear predictors and two different manners to model the different model terms (horizontal x-axis): 1) considering only the
genomic information of synthetic hybrids or from parental inbreds (M1-M5); 2) combining genomic and pedigree data via the B matrices to model the
relationship matrix between pairs of individuals (M9-M13). For the second case, two different approaches to compose calibration sets are
considered: GOds which uses in training sets only genotypes with both pedigree and genomic information; and PGds which includes phenotypic
information from genotypes with pedigree data only for increasing the calibration set sizes.
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hybrid-by-environment interaction, and ° is the Hadamard or Shur
product (the cell-by-cell product) between two matrices. Similar to the
previous model in Equation 4, different sources of information (H, or
B-matrix) can be used to model the G × E interaction term. In this case,
the resulting models of this linear predictor are M2 and M10 (Figure 2).

2.4.3 Linear predictor 3
This linear predictor was built by modeling the general

combining ability (GCA) of the male and female parents
involved in the crosses of the hybrids. Consider the ith hybrid
originated from crossing parent 1 (P1) and parent 2 (P2), with kP1i
and kP2i representing their corresponding effects. The following
linear predictor was implemented to modeling the performance of
the ith hybrid in the jth environment via the GCA of the inbred lines:

�yij � μ + Ej + kP1i + kP2i + εij (5)

where kP1 � kP1i{ } ~ MVN(0,KP1σ2P1), with KP1 representing the
kinship matrix of the P1 parent, σ2P1 being the associated variance
component; kP2 � kP2i{ } ~ MVN(0,KP2σ2P2), kP2 representing the
kinship matrix of the P2 parent, and σ2P2 being the associated
variance component. Similar to the previous models in Equation
5, different sources of information can be used to model the
relationship matrices for parents P1 (KP1) and P2 (KP2). For
example, these can be modeled using the genomic information of
the parental inbreds (GP1, and GP2), the pedigree information of the
parental inbreds (AP1, and AP2; as in Khanna et al., 2022) or the
combination of these components via the Bmatrices (BP1, and BP2).
The resulting models of this linear predictor described in Equation 6
are M3, M6, and M11 (Figure 2).

2.4.4 Linear predictor 4
This linear predictor is similar to the linear predictor 3; however,

in addition to the GCA of the inbred lines it also includes the specific
combining ability (SCA) of the parents involved in the
corresponding crossing. The SCA was modeled as the interaction
effect between the pair of parents according to Acosta-Pech et al.
(2017). Combining the assumptions from the linear predictor 3 with
the SCA term, the resulting linear predictor is:

�yij � μ + Ej + kP1i + kP2i + kP1P2i + εij (6)

where kP1P2 � kP1P2i{ } ~ MVN(0,KP1P2σ2P1P2), with KP1P2 � KP1°
KP2, and KP1 and KP2 being as previously described in the linear
predictor 3, and σ2P1P2 is the associated variance component with this
interaction term. This interaction term can be modeled using the
genomic information of the parental inbreds, the pedigree
information of the parental inbreds or the combination of these
via the B matrices. The resulting models of this linear predictor are
M4, M7, and M12 (Figure 2).

2.4.5 Linear predictor 5
One of the disadvantages of the previous linear predictor is that

it returns the same estimated predicted value for each genotype
across environments. In addition, many of the hybrids share a
common parent (either P1 or P2) but observed in other
environments. In these cases, it is possible borrow information
between hybrids sharing a common parent across environments.
Acosta-Pech et al. (2017) and Jarquin et al. (2021) showed that

inclusion of the GCA and SCA components significantly increase
maize hybrid prediction. The resulting linear predictor is an
extension of the fourth linear predictor that also includes the
interaction between the components of the GCA (kP1, kP2) and
SCA (kP1P2) terms with the environment via the reaction norm
model. The resulting linear predictor is as follows:

�yij � μ + Ej + kP1i + kP2i + kP1P2i + kEP1i + kEP2i + kEP1P2i + εij

(7)
where kEP1 � kEP1i{ } ~ MVN[0, (ZP1KP1ZP1

′ )°(ZEZ′
E)σ2P1e],

kEP2 � kEP2i{ } ~ MVN[0, (ZP2KP2ZP2
′ )°(ZEZ′

E)σ2P2e], kEP1P2 �
{kEP1P2i} ~ MVN[0, (ZP1KP1ZP1

′ )°(ZP2KP2ZP2
′ )°(ZEZ

′
E)σ2P1P2e],

ZP1, and ZP2 are the incidence matrices that connect phenotypes
with inbred parents P1 and P2; σ2P1e, σ2P2e and σ2P1P2e are the
corresponding variance components of the interaction between
the GCA (P1 and P2) and SCA (P1 × P2) terms with the
environments E. Since different sources of information can be
used to model the covariance structures KP1, and KP2, the
resulting models of the linear predictor described in Equation 7
are M5, M8, and M13 (Figure 2).

2.5 Cross-validation and B-matrix
optimization

For evaluating the model’s predictive ability, two cross-
validation scenarios were implemented: 1) CV1, which consists of
predicting hybrids that have not been tested at any of the observed
environments, and 2) CV2, which consists of predicting the
performance of hybrids that have been tested in some
environments but not in others (incomplete field trials).
Furthermore, two different ways of composing training sets
represented in Figure 3 were considered. The traditional five-fold
cross-validation scheme was implemented for the models that only
use H, G, or the A matrices (models M1-M8; Figure 3A). This
consists of a random five-fold (represented in Figure 3 by the
hexagon), where four folds were used for model training, and the
remaining fold was used as a testing set for evaluating the predictive
ability. In this case, around 20% of the hybrids were predicted using
80% of the observed phenotypes. Ten replicates were considered to
randomly assign phenotypes (CV2)/genotypes (CV1) to folds.

A slightly modified cross-validation approach was employed for
the models incorporating the B-matrix (five models M9-M13), as
depicted in Figure 3B. While maintaining the same five-fold
partition, an optimization procedure was introduced to select the
optimal w value to combining both covariance structures. In this
setup, three folds were utilized for training the model, and the fourth
fold was used to determine the optimum w value that yields the
highest correlation between predicted and observed values.
Regarding the fourth fold, a sequence of 21 values ranging from
0 to 1 (with increments of 0.05) for w was considered for
constructing B � w × A + (1 − w) × G matrices. After fitting the
models using three folds, the correlation between predicted and
observed values on the fourth fold was computed. The w value that
returned the highest correlation was chosen to construct the
B-matrix for predicting the fifth fold (testing set). Subsequently,
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the last fold was employed to assess the predictive performance of
the models (Figure 3B). This approach allocated approximately 60%
of the phenotypic data for model training, 20% for w optimization,
and another 20% for evaluating the model’s predictive ability given
the optimized w value obtained at the fourth fold.

The correlation between predicted and observed values was
computed on a trial basis (within environments); thus, the choice
of the w value can be determined using two approaches: 1) selecting
the optimum value of w across environments and 2) selecting the
optimum value of w for each environment. For the first case, the
weighted average correlation across the three environments was
computed following Tiezzi et al. (2017) (see Equation 8 for more
details), then the w value returning the highest average correlation
was used for predicting the fifth fold. For the second case, thew value
that returned the highest correlation between predicted and
observed values for each environment was selected for predicting
the remaining fifth fold. Therefore, up to three different w values
could result from selecting the optimum w value for each
environment. This procedure was repeated 10 times for each one
of the cross-validation scenarios (CV1 and CV2). The statistical
analyses were performed in R statistical package version 4.2.1 (R
core team 2022), using the package BGLR, version 1.1.0 (Pérez and
De Los Campos, 2014).

2.6 Training set composition

The single-step model has shown improvements in predictive
ability in plant breeding implementations (Legarra et al., 2009;
Cappa et al., 2019; Oliveira et al., 2020). These improvements are
attributed to the fact that i) combining genomic and pedigree
information potentially results in a better matrix describing
relationships between pairs of individuals, and ii) the ability to
increase the training set size for model calibration (Oliveira et al.,
2020). This study considered two scenarios for composing training
sets to assess the factors contributing to improving predictive ability
when considering the single-step model (B). The first scenario,
named genomic only dataset (GOds), consists of only individuals
with genomic and pedigree information (246 hybrids). While the
second scenario, named pedigree and genomic dataset (PGds),
increases the training set size by including phenotypic
information of individuals with pedigree data (373 hybrids).
Some of these have both genomic and pedigree information. For
the two training set composition scenarios, in principle, the same
training set partitions described in Figure 3 were considered;
however, for the second scenario, the training set was augmented
with the phenotypic information of non-genotyped inbreds for
whose pedigree information was available to connect with
genotyped inbreds.

2.7 Within and across environments
predictive ability

The predictive ability was assessed on a trial basis by computing
Pearson’s correlation between predicted and observed values within
the same environment. The average correlation across environments

was calculated by accounting for uncertainty and the sample size of
the environments (Tiezzi et al., 2017) as follows in Equation 8:

rϕ �
∑J

j�1
rj

V rj( )
∑J

j�1
1

V rj( )
(8)

where rj is the Pearson’s correlation between the predicted and the
observed values at the jth environment, V(rj) � 1−rj2

nj−2 corresponds to
the sampling variance, and nj is the corresponding number of
observations. Furthermore, the across-environments mean
squared prediction error (MSPE) was also computed as described
in Equation 9.

MSPE � ∑J
j�1∑

I
i�1 yij − ŷij( )

Total phenotypes
(9)

where yij is the phenotypic value of the ith hybrid at the jth

environment, and ŷij is the corresponding predicted value using
the above described 13 models (M1-M13).

2.8 Summary of the prediction strategies

Two cross-validation scenarios (CV1 and CV2) were considered
to assess the predictive ability of the prediction models. A total of
13 prediction models (M1-M13) were derived from the five linear
predictors and the three different sources of information to
modeling the different model terms. For models M1-M8, the
training set was composed of four folds, while the fifth fold
corresponds to the testing set. On the other hand, the models
M9-M13 involve single-step parameterization. Thus, these require
an optimization process to select the value of the w hyper-parameter
that returns the highest predictive ability using three folds for model
calibration and the fourth fold to evaluate different values for w
(21 values ranging from zero to one in steps of 0.05). In both groups
of models (M1-M8, and M9-M13), the same partitions were
considered for a direct comparison.

In addition, for all models using only genotypes with genomic
data (GOds) for composing the training sets, an alternative was
considered by augmenting the four folds with phenotypic
information of inbreds with pedigree data (PGds) only. Thus, in
this case, it is possible to evaluate whether the improvements in
predictive ability are because i) a better relationship matrix is
computed when combining genomic and pedigree data, or ii)
direct benefits of increasing the training set by including
phenotypic information of non-genotyped inbreds, or iii)
interaction of both events occurring at the same time.

3 Results

3.1 Optimization of the B-matrix

Two different approaches were considered to find the optimum
value of thew hyper-parameter used to blend/combine theA and the
genomic (H or G) matrices according to the different linear
predictors (1–5), the different ways for fitting the model terms
(models M9-M13), and the different manners to compose
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calibration sets (i.e., GOds or PGds). The first case consists of
optimizing w to return the highest weighted average correlation
between predicted and observed values across environments, while
the second approach focuses on finding the optimum w value for
each environment such that up to three different values can be
obtained. Figure 4 presents the weighted average (10 replicates)
correlation across the three environments for both cross-validation
schemes (CV1 and CV2), five prediction models M9-M13, two
different ways to compose training sets (GOds and PGds), and both
methods to find the optimum value of the w hyper-parameter
(across and within environments).

As expected, when comparing these two approaches, for both
prediction scenarios (CV1 and CV2) and both datasets (GOds and
PGds), the predictive ability always improved when selecting w
within environments for models M9-M13. Regarding the training
set compositions, considering only information of genotyped
individuals (GOds), under the CV1 cross-validation scheme, the
average predictive ability ranged from 0.11 to 0.21, while between
0.09 and 0.18 for CV2 when performing the selection of the w value
across environments (Figure 4A). On the other hand, when the w
value was optimized within environments, the corresponding
average predictive abilities increased, ranging from 0.18 to 0.26
(CV1) and 0.14 to 0.21 in (CV2; Figure 4A). The model that showed
the highest predictive ability, for the two approaches (within and
across environments), considering the optimization of the w hyper-
parameter in both prediction scenarios (CV1 and CV2) and
considering training sets of only genotyped individuals (GOds)
was M10 (Figure 4A).

Augmenting the training set considering phenotypic
information of individuals with pedigree data (PGds) when using
the within environments w optimum value, the average predictive
ability ranged from 0.20 to 0.32 and 0.12 to 0.21 for CV1 and CV2,
respectively (Figure 4B). The model that showed the highest
predictive ability for CV1 using w optimum across environments
was M13. Nonetheless, when using the within environments w
optimal, the highest predictive ability was shown with M10
(Figure 4B). These results indicate that the manner of computing
the optimized B-matrix influences the election of the best prediction
model. For CV2, the model that showed the best predictive ability,
for both approaches (GOds, and PGds), within and across
environments optimization, was M13. Due to the results
presented, the w optimum value computed within environments
was used on the models considering the B matrices (M9-M13) for
comparing the predictive ability of the 13 models (M1-M13) for
GOds and PGds training sets (see Figure 4).

3.2 Prediction models

For an easy visualization, Figure 5 presents the heatmap of the
within and across-environments predictive ability and the across-
environments mean squared prediction error (MSPE) of the
13 models (M1-M13) for the two predicting scenarios (CV1 and
CV2) and the two manners to compose training sets (GOds and
PGds). As mentioned before, for models M9-M13, only the results
derived from the within environments optimization are considered.

The predictive abilities varied considerably through
environments for both prediction scenarios (CV1 and CV2) and

both datasets used for model training (GOds, and PGds). Overall,
there was an improvement in the across-environments weighted
predictive ability and a reduction of the MSPE when the B-matrix
was considered (higher correlations and reduced MSPE) in models
M9-M13. Note that despite using phenotypic information from
genotyped individuals (GOds) or combining it with also individuals
with only pedigree data for increasing training set size (PGds), the
models including the B-matrix improved the predictive ability
compared with those that only used the genomic information (H
or Gmatrices) in M1-M5 models. In general, the models presenting
the best results, within and across environments, are those that
considered the interaction between the genetic (H, G, A, or B) and
the environmental component (E).

3.2.1 CV1 scheme
In the scenario of predicting untested hybrids in evaluated

environments (CV1), the across-environments predictive ability
of the prediction models using GOds data to compose training
sets ranged from 0.11 to 0.28 (Figure 5). In this case, the best
prediction models for E1, E2, and E3 were M2 (0.139), M9 (0.436),
and M13 (0.325), respectively. However, across environments, the
M10 model (E + B + BE) showed the highest predictive ability
(0.280) and a reduced MSPE (3.399) compared with most of the
models. When the training sets were augmented with individuals
with only pedigree data (PGds), the across-environments predictive
ability ranged from 0.050 to 0.321 (Figure 5), with the models
including the different B matrices showing the best results across
environments. For PGds, the model with the best predictive ability
across the environments was also M10 returning a correlation of
0.321 and a MSPE of 3.364. Note that a relative improvement in the
predictive ability of around 15% (i.e., 0.280 vs. 0.321) was
accomplished when the training set size was increased also
including phenotyped individuals (PGds) with model M10.

3.2.2 CV2 scheme
Contrary to what was initially expected (based on similar

studies), in the scenario that predicts the performance of already
observed hybrids in some environments but not in others, the
predictive abilities were lower than those from the CV1 scheme
(Figure 5), which is a more complex prediction problem. Thus, for
this particular dataset, it is better to ignore the available information
from the target hybrids observed in environments different from
those of interest and assume these as totally unobserved hybrids
across environments (CV1 scheme).

For the GOds manner of composing training sets, the across-
environments predictive ability ranged from −0.027 to 0.229. For all
environments, the models including the different Bmatrices showed
the highest predictive ability; however, different prediction models
showed the best results for each environment. The M10 showed the
highest across-environments correlation (0.229) and a low MSPE
(3.447). Regarding the PGds training sets, the predictive ability
across the different environments ranged from −0.042 to 0.223. The
corresponding models with the highest correlations for E1, E2, and
E3 were M9 (0.107), M10 (0.343), and M8 (0.298). However, across
environments, model M13 showed the highest correlation (0.233).
In this prediction scenario, it was also observed that the across-
environments results of the M13 model trained with GOds (0.213)
dataset were improved when increasing the individuals in the
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training set using the PGds set (0.233). Note that, for this model, the
correlation increased by 9.4% when using the PGds. In contrast,
model M10 did not improve the predictive ability adding
phenotypes of non-genotyped individuals (i.e., from Gods to
PGOds), showing a reduction of ~33.9% (0.229 vs. 0.171).

3.3 Impacts of combining genomic
information and pedigree data

In the previous section, across environments, mixed results were
shown with the increasing of the training set by adding those
individuals with pedigree information only. For CV1, the best
results were observed when the training set was augmented (0.321)
via the PGds data set in comparison with the GOds set (0.280).
Recalling that in both cases, for the most promising models (M10-
M13), the genomic information and the pedigree data are combined
via the B matrices (after an optimization process). However, the only
difference is that for the GOds the training set is composed for only
those individuals that have both genomic and pedigree data, while for
the PGds the previous data set is augmented by adding the phenotypic
information from individuals with only pedigree information.

For CV2, an opposite trend was observed, with GOds returning
better results (0.229) than PGds (0.171) when considering the most
promisingmodel (M10) from the previous cross-validation scenario.
However, in this case, for PGdsM13 returned the highest correlation
(0.233). In any case, for M11-M13 models, slightly improvements
were observed when using PGds vs. GOds. These differences might
not be significant; thus, no clear advantages were observed with the
increasing training set size as for the CV1 case. Figure 6 depics a
direct comparison of the effects in predictive ability i) from
combining genomic and pedigree information (GOds), ii) with
also an increased training set size (PGds) with respect to the
models based on only a single data type (H, G or A used to
describe similarities between pairs of individuals).

More specifically, in Figure 6, the results of the within and across
environments predictive ability of the five linear predictors are
depicted for single H (M1-M2), G (M3-M5) and combined with
A through B (M9-M13) covariance structures considering
phenotypic information of only individuals with genomic and
pedigree data (GOds), and adding information from individuals
with only pedigree data (PGds).

Under the CV1 scheme, for the linear predictor 1, on average
moderate improvements are observed by combining the matrices H
and A (especially for E2) compared with only using the Hmatrix to
model relationships between pairs of individuals (M9 vs. M1). Also,
in average, slight improvements were observed when the training set
size was increased with individuals with only pedigree data (PGds)
compared to the case where only the phenotypic information of
individuals with both genomic and pedigree data (GOds) was used
for model calibration.

A similar pattern was observed for the second linear predictor,
where the interaction with environmental factors was included using
the same covariance structures (H vs. B) contrasting models M2 and
M10. In addition, the linear predictors 3-5 showed similar patterns. In
all the cases, very low correlation values were observed for E1,
suggesting this environment’s high influence contributing to the
G × E interaction.

Regarding the CV2, more pronounced improvements in
predictive ability were found by combining H and A matrices for
linear predictors 1 and 2. However, these decreased when the
information from non-genotyped was also included in the
calibration sets, except for E2, where it practically remained the
same. For the linear predictors 3 and 4, some improvements were
observed with the PGds compared to GOds, while with the most
complex linear predictor (5), mixed results were found depending
on the environment.

4 Discussion

4.1 B-matrix optimization

This study introduces an approach for optimizing the hyper-
parameter w using a novel method. To find the optimum w value, a
cross-validation strategy using four of the original five folds was
implemented (three folds for model fitting and one-fold to optimizew
for 21 different values evenly spaced between 0 and 1 in steps of 0.05).
Then the phenotypic information of the fifth fold was predicted
considering the obtained w optimum value. This strategy offers a
robust method for selecting the hyper-parameter w, returning
satisfactory results regarding the accuracy of genomic predictions,
which is particularly crucial for complex traits such as FUMO. This
suggests that using the fourth fold for B-matrix optimization can be a
good strategy to guide the election of the w hyper-parameter.

Available studies have shown that the election of the w optimum
value varies according to the different characteristics being evaluated
(Liu et al., 2011; Ashraf et al., 2016; Velazco et al., 2019).
Nonetheless, our study presents a significant contribution by
demonstrating the importance of selecting the optimal w by
environment in unbalanced datasets, an approach not yet utilized
in previous research. Until now, the studies have focused on
selecting the w optimal value across environments (i.e., a
common optimum value for all the environments). However,
individuals have different genetic responses when changing
environmental conditions, with non-static variation (e.g.,
temperature, precipitation, humidity) being the main source of
genotype-environment interaction for maize (Cullis et al., 2000;
Kleinknecht et al., 2013; Dias et al., 2020; Krause et al., 2022).

Our results reveal that, particularly in situations with unbalanced
datasets, the difference in gene expressions of individuals between
environments can significantly influence the election of the w optimal
weighting factor. This finding has important implications for multi-
environment and multi-trait studies, suggesting that researchers
should consider not only the selection of w by trait, as is
customary, but also by environment. The change in the value of w
with unbalanced data occurs due to the alteration in the relative
contribution of genomic and pedigree information to the genetic
structure, which may necessitate a reevaluation of the hyper-
parameter w to ensure that the modeling of genetic relationships is
accurate and appropriate for the specific data in question.
Consequently, our study demonstrates that the best strategy for
building the B-matrix should be optimizing the w hyper-parameter
within in environments, which is particularly relevant for crop
improvement in tropical environments where G × E interactions
are pronounced, and datasets are often unbalanced.
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4.2 Prediction models

Over the decades, breeders have sought strategies to reduce the
FUMO content in grain (Duvick, 2001; Eller et al., 2008; Pádua et al.,
2016; Santiago et al., 2020; Butoto et al., 2022). The USFDA Center
for Food Safety and Applied Nutrition (USFDA, 2021) recommends
a maximum of 2–4 mg kg-1 of contamination of FUMO in corn
products. In Brazil, the contamination limit is 2 mg kg-1 of these
toxins in grains (Agência Nacional de Vigilância, 2011). Exceeding
these limits prevents the exportation and national marketing of
maize batches, leading to substantial economic losses for producers.
Therefore, in addition to high grain yield performance, developing
cultivars resistant to FUMO is a primary objective. However,
phenotyping this trait is laborious and expensive (Bush et al.,
2004). Consequently, implementing genomic selection becomes
an important alternative strategy for developing fumonisin-
resistant genotypes. Comparing genomic to traditional
phenotypic selection for FUMO Butoto et al. (2022) found that
both methods performed similarly. Nevertheless, the authors
highlight that genomic selection has the potential to be more
efficient than phenotypic selection due to the employment of
cheaper and faster genotyping methods.

To our knowledge, no studies in the literature have combined
genomic and pedigree information to construct relationship
covariance structures for predicting FUMO. Our results
demonstrate that the use of the B-matrix improved predictive
ability in all tested linear predictors for both prediction scenarios
and datasets (GPds and POds) compared to conventional GS
models. This improvement in predictive ability is crucial for
complex traits like fumonisin resistance, where accurate
predictions can significantly impact breeding program efficiency.
As observed, the use of a single-step approach was superior to the
use of only the H matrix, regardless of whether the training set size
was increased with un-genotyped individuals. Since some markers
may not be in linkage disequilibrium with QTLs, when combining
the A matrix and H or G matrix in a relationship the pedigree
information may have contributed to capturing associations
between causative alleles due to common ancestral identity,
improving predictions models (Velazco et al., 2019). This finding
has important practical implications, especially in situations where
genotyping costs are a constraint. The B-matrix approach allows
increase the size of the training set by including un-genotyped
individuals through pedigree information, potentially leading to
more robust and accurate predictions.

The observed improvements in prediction accuracy using the
B-matrix align with findings from previous studies by Imai et al.
(2019) and Cappa et al. (2019). These authors found that in terms of
prediction accuracy, the B-matrix matched or surpassed the use of
only the Gmatrix or the Amatrix only. Additionally, over the years,
several other authors have reported enhanced prediction accuracy
with the use of the B-matrix in plant and animal species (Ashraf
et al., 2016; Gao et al., 2012; Koivula et al., 2012; Lourenco et al.,
2015; Pérez-Rodríguez et al., 2017). Furthermore, the single-step
method allows the utilization of larger phenotypic datasets
compared to the GBLUP method, as demonstrated herein for
maize. Moreover, all the tested models corresponding to the
different linear predictors reached the lowest MSPEs when using
the B-matrix in comparison to those using only one data type to

model similarities between pairs of individuals (H, G, or A). These
results are consistent with those obtained by Velazco et al. (2019).
The selection of prediction models based on minimizing MSPE has
been recommended because this statistic considers both the
precision and bias of the models (Vitezica et al., 2011; González-
Recio et al., 2014).

Mainly in animal breeding, the use of the B-matrix in genomic
prediction has been widely discussed (Martini et al., 2018; Macedo
et al., 2020; Mäntysaari et al., 2020; Masuda et al., 2021). However,
this methodology has not yet become very popular in plant breeding
(Oliveira et al., 2020). Our results demonstrate the advantage of
using the single-step approach in the intermediate stage of a
breeding program in two different contexts. The first context is
when the program does not have all individuals genotyped (PGds),
for example, due to new materials inserted in the pipeline. In this
case, the B-matrix enables the construction of the relationship
matrix incorporating all individuals improving the predictive
capacity of the models. The simultaneous use of genotyped and
un-genotyped individuals relies on projecting genomic relationships
to un-genotyped individuals based on the conditional distribution of
breeding values for un-genotyped and genotyped individuals
(Legarra et al., 2009). The genomic relationships can improve the
pedigree relationships, while the un-genotyped individuals provide
more phenotypic information. As a strategy, de Oliveira et al. (2020)
used the B-matrix in multi-trait multi-environment genomic
prediction models due to the lack of genotypic information for
some evaluated maize hybrids. Likewise, Cappa et al. (2019) noted
that the utilization of the single-step method resulted in elevated
prediction accuracies and reduced bias of the genetic component of
unobserved (non-phenotyped) but genotyped individuals compared
to the standard GBLUP by using additional phenotypic information
from non-genotyped individuals.

In our study, including phenotypes from un-genotyped
individuals increased the predictive ability in most but not all the
tested scenarios. In agreement with our findings, in a study with a
broiler population, Hidalgo et al. (2021) found that the two most
recent years of pedigree, phenotypic, and genomic data were
sufficient to maintain prediction accuracies in selection
candidates (i.e., the last generation of individuals), adding
phenotypes of un-genotyped individuals from previous years did
not increase the accuracy. Lourenco et al. (2014) stated that distant
ancestors have minor contributions, explaining the null or marginal
increase in predictive ability, and sometimes their inclusion can
deteriorate predictive ability.

The second context consists of companies with genomic and
pedigree information for all individuals (GOds). Our results showed
that by combining both sources of information for modeling
covariance structures, the predictive ability of the models
increases, helping to prevent (discard) of advancing to the next
stages of the program the most susceptible hybrids to FUMO. The
increased predictive ability can be explained because the markers do
not capture all the genetic variance; blending the genomic
relationship matrix with a portion of the pedigree relationship
matrix (with an optimal value w) implicitly fits a residual
polygenic effect in the statistical model via the modified genomic
relationship matrix. Although the genomic relationship matrix
accounts for most of the genetic variation, its combination with
the pedigree relationship matrix increases the captured genetic
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variance. Furthermore, the combined use of pedigree and genomic
information in the B-matrix can help mitigate the limitations of
using the Gmatrix alone, such as incomplete linkage disequilibrium
between markers and causal variants, especially in cases where the
trait is influenced by rare or less common genetic variants, or
imperfect genomic data. By leveraging the complementary
information from both sources, the B-matrix provides a more
comprehensive and accurate representation of the genetic
relatedness among individuals, ultimately enhancing the
predictive ability of the models. Other researchers have also
observed that combining genomic and pedigree information
optimizes genomic prediction for complex traits (Crossa et al.,
2013; Basnet et al., 2019; Velazco et al., 2019).

Our study employed two cross-validation schemes, CV1 and CV2,
to evaluate the predictive ability of various models. The CV1 scheme,
which predicts untested hybrids in evaluated environments, generally
showed higher predictive abilities compared to the CV2 scheme. This
finding was contrary to our initial expectations based on similar studies
in the literature (Jarquin et al., 2021; Khanna et al., 2022; Persa et al.,
2021). One of the factors that could contribute to this unexpected
outcome is the unbalanced nature of our dataset that could potentially
impact the effectiveness of the CV2 approach, which relies on
information from other environments. These findings underscore
the need for further research to understand the factors influencing
the relative performance of CV1 andCV2 schemes in different contexts,
particularly for traits showing strong environmental influences. Finally,
the breeding programs are also interested in developing superior
cultivars that respond favorably to diverse environmental conditions
(Jarquin et al., 2021). Our results were consistent with those obtained by
several researchers that observed better predictive ability in models that
consider genetic and environmental interaction effects (Jarquin et al.,
2014; 2021; Lado et al., 2016; Basnet et al., 2019; Khanna et al., 2022),
further emphasizing the importance of accounting for G × E
interactions for reaching improved prediction accuracies of complex
traits in tropical maize breeding programs.

5 Conclusion

The findings of this study highlight the importance of
combining genomic and pedigree data. Particularly, optimizing
the election of the w hyper-parameter to construct the B-matrix
when dealing with diverse environments and unbalanced datasets.
The most convenient optimization resulted when it was
implemented within environments compared to across
environments. This strategy improves the predictive ability of the
models used for making predictions. The B-matrix was shown to
enhance the predictive ability of the tested linear models for different
prediction scenarios and datasets, compared to the G and, A
matrices. Hence, the single-step approach helps improve the
selection accuracy of FUMO trait.
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